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Abstract

Text-driven localized editing of 3D objects is particu-
larly difficult as locally mixing the original 3D object with
the intended new object and style effects without distort-
ing the object’s form is not a straightforward process. To
address this issue, we propose a novel NeRF-based model,
Blending-NeRF, which consists of two NeRF networks: pre-
trained NeRF and editable NeRF. Additionally, we intro-
duce new blending operations that allow Blending-NeRF to
properly edit target regions which are localized by text. By
using a pretrained vision-language aligned model, CLIP,
we guide Blending-NeRF to add new objects with varying
colors and densities, modify textures, and remove parts of
the original object. Our extensive experiments demonstrate
that Blending-NeRF produces naturally and locally edited
3D objects from various text prompts.

1. Introduction
3D image synthesis and related technologies are greatly

impacting industries such as art, product design, and ani-
mation. While recent 3D image synthesis techniques like
Neural Radiance Field (NeRF) [22] have opened up new
applications for 3D content production [8, 14, 26] at scale,
their ability to enable precise and localized editing of object
shapes and colors remains a challenge for broader adoption.
Often time, a more localized and granular editing of 3D
objects, especially attaching or removing certain objects of
certain styles, is still difficult and costly in spite of several
recent attempts at 3D object editing [4, 18, 21, 35, 40].

Previous attempts, such as EditNeRF [18] and NeRF-
Editing [40], only offer limited and non-versatile editing
options, while Text2Mesh [21] and TANGO [4] allow only
simple texture and shallow shape transformations of entire
3D objects. CLIP-NeRF [35] propose a generative method
with disentangled conditional NeRF for object editing but
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Figure 1. Representative results of text-driven localized object
editing using our method. (a) Bulldozer is the original object, and
each editing is performed by (b) color change, (c) density addition,
and (d) density removal operations.

it requires a large volume of training data for the targeted
editing category and is hard to edit only the desired part of
objects locally. They present an additional approach, fine-
tuning a single NeRF per scene with a CLIP-driven objec-
tive, which can edit object appearance but not shape well.

To achieve effective and practical localized editing of 3D
objects by any text prompts at scale, it is necessary to apply
style changes to specific portions of the object, including
selectively changing color and locally adding and remov-
ing densities, as shown in Figure 1. In this study, we pro-
pose a novel method for localized object editing that allows
modification of 3D objects by text prompts, enabling full
stylization including density-based localized editing. We
believe that relying on the simple fine-tuning of a single
NeRF to generate new densities in the low initial density
area or to alter existing densities through a CLIP-driven ob-
jective is inadequate for achieving complete stylization of
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shapes and colors. Instead, our approach involves parame-
terizing specific regions in the implicit 3D volumetric rep-
resentations and blending the original 3D object representa-
tion with an editable NeRF architecture specifically trained
to render the blended image naturally. We use a pretrained
vision-language method like CLIPSeg [19] to specify the
area to be modified in the text input workflow.

The proposed method is based on a novel layered NeRF
architecture, called Blending-NeRF, which includes a pre-
trained NeRF and an editable NeRF. There are some studies
that employ multiple NeRFs and train them simultaneously
to individually reconstruct the static and dynamic compo-
nents of a dynamic scene [7, 33, 37, 39]. On the other hand,
our approach introduces an additional NeRF to facilitate
text-based modifications in specific regions of a pretrained
static scene. These modifications encompass various edit-
ing operations, including color changes, density addition,
and density removal. By blending density and color from
the two NeRFs, we can achieve fine-grained localized edit-
ing of 3D objects. In summary, our contributions include:

• We propose the novel Blending-NeRF architecture that
combines a pretrained NeRF with an editable NeRF
using various objectives and training techniques. This
approach allows to naturally edit the specific regions of
3D objects while preserving their original appearance.

• We introduce new blending operations that capture the
degree of density addition, density removal, and color
alteration. Thanks to these blending operations, our
method allows for precisely targeting the specific re-
gions for localized editing and constraining the degree
of object editing.

• We conduct several experiments involving text-guided
3D object editing, such as editing of shape and color,
and compare our approach to previous attempts and
their simple extensions, showing that Blending-NeRF
is both qualitatively and quantitatively superior.

2. Related Work
Text-Guided 3D Object Generation This task aims to
create 3D objects from natural language descriptions. Re-
cent advancements in joint embedding of images and
text [28, 41], text-to-image generation [29, 30], and neu-
ral rendering [3, 22, 23, 32, 34] have made it possible to
generate 3D objects without 3D supervision, using only tex-
tual guidance. CLIP-Forge [31] uses an auto-encoder and a
contrastive language-image pretraining (CLIP) [28] embed-
ding to generate multiple object geometries for a given text
query without paired text and 3D data. It is not that efficient,
though, requiring a large unlabeled 3D dataset to train its
autoencoder and to learn a latent space for shapes. Dream-
Field [8] optimizes NeRF from multiple camera views to

produce high-quality objects so that the CLIP embeddings
of the rendered image and target text are similar. It im-
proves the fidelity and visual quality of generated objects
using simple geometric priors. DreamFusion [26] uses a
pretrained 2D text-to-image diffusion model [30] and NeRF
to perform text-to-3D synthesis, while CLIP-Mesh [11] op-
timizes texture, normal, and vertices position of the mesh
using a differentiable renderer and CLIP. Our work utilizes
NeRF and CLIP to generate 3D objects but focuses on lo-
calized editing of objects based on textual guidance, which
is different from previous studies.

3D Object Editing Preserving the original object struc-
ture while meeting user intent is crucial in object editing
tasks. Liu et al. [18] proposed a conditional radiance field
that enables color and shape editing by learning disentan-
gled volumetric representation and propagating sparse 2D
user scribbles over the 3D region. NeRF-Editing [40] estab-
lishes the correspondence between explicit mesh represen-
tation and implicit volume representation, allowing for con-
trollable shape deformation such as increasing or decreasing
the size of 3D objects. Our method also aims at localized
editing but differs in using texts as input and focusing on re-
shaping and restyling rather than simple modifications [18]
or geometric transformations [40].

Text-driven 3D object editing methods have also been
studied. Text2Mesh [21] and TANGO [4] edit the style of
3D objects with the supervision of CLIP. Text2Mesh styl-
izes a 3D mesh by predicting color and local geometries for
a given target text prompt. TANGO enables photorealistic
3D style transfer by automatically predicting reflectance ef-
fects according to a text prompt without task-specific train-
ing. CLIP-NeRF [35] allows for control of global structure
and appearance individually by leveraging disentangled la-
tent representations from conditional generative models, but
it requires a significant amount of 3D dataset (e.g., 150k
chair images [24] that include sofas and wood chairs for
training). While CLIP-NeRF also presents a single NeRF-
based editing method per scene that can edit an object’s
color, it has a limitation in that it cannot edit its density
well. That is, it fails to achieve satisfying results while edit-
ing the shape of a single NeRF by a text prompt. Our ap-
proach overcomes such limitations, allowing full stylization
to the specific regions as demonstrated in our experiments.

3. Background
3.1. Neural Radiance Field

Neural Radiance Field (NeRF) [22] implicitly represents
a 3D scene with a multi-layer perceptron (MLP) which pro-
duces a density and a color for a queried ray point sam-
ple. Specifically, given a camera ray r(t) = o+ td passing
through a image pixel, depth t ∈ [tnear, tfar], and camera cen-
ter o, it takes as input a 3D position x and viewing direction
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Figure 2. Overall architecture and main objectives. The target editing region is specified by the source text Tsource in the original rendered
image Io, and the editable NeRF g is trained to render a blended image Iβ that matches the target text Ttarget. The CLIP encoders and other
localized editing objectives are omitted for simplicity.

d to produce a density σo ∈ [0,∞) and a color co ∈ [0, 1]3:

(σo, co) = fθ(γ(x), γ(d)), (1)

where θ is the parameterized network weights, and γ is a
positional encoding. Then, NeRF estimates the expected
color of a ray by using quadrature with K sampled points:

Ĉo(r) =

K∑
k=1

T o
kα

o
kc

o
k, (2)

where T o
k =

∏k−1
k′=1(1 − αo

k′) is a transmittance [27] with
an alpha value αo

k = 1 − exp(−σo
kδk) and δk = tk+1 − tk

is a distance between two adjacent sampled points on a ray.
An accumulated opacity of a ray also can be estimated as:

Êo
acc(r) =

K∑
k=1

T o
kα

o
k. (3)

3.2. Connecting Text and Images

There have been various studies on vision-text joint rep-
resentation learning methods [10, 17, 41] including CLIP
[28]. CLIP’s image and text encoders are pretrained on
large dataset to ensure that the representation vectors of
image-text pairs match well. Based on these aligned rep-
resentations, CLIP losses (i.e., global [25] and directional
[6] CLIP loss) are widely used in text-guided image editing
[1, 2, 6, 12, 25, 35]. The global CLIP loss Lglobal(I, T ) min-
imizes the cosine distance between an image I and a text T
in the CLIP embedding space:

Lglobal(I, T ) = Dcos(Eimg(I), Etxt(T )), (4)

where Eimg(·) and Etxt(·) are the image and text encoder of
CLIP, and Dcos is the cosine distance. In another way, the
directional CLIP loss Ldir controls the direction of change

for the image embedding vector. This method is known to
prevent mode-collapsed problems [6], which is defined as:

Ldir(Itarget, Ttarget, Isource, Tsource) = Dcos(△I,△T ), (5)

where △I = Eimg(Itarget) − Eimg(Isource) and △T =
Etxt(Ttarget)−Etxt(Tsource). Here, Itarget and Ttarget are target
edited image and its text description, and Isource and Tsource
are original image and its text description. We use both
CLIP losses for text-driven object editing.

In addition, CLIP is also used for text or image-driven
segmentation tasks in a zero-shot manner [5, 16, 19, 36, 38].
We utilize CLIPSeg [19] to get the target image region for
a queried text for localized object editing.

4. Method

Our goal is to locally edit the pretrained NeRF model
with the natural language as guidance. To this end, we pro-
pose Blending-NeRF, which consists of pretrained NeRF
fθ for the original 3D model and editable NeRF gϕ for ob-
ject editing. The weight parameter θ is frozen, and ϕ is
learnable. The edited scene is synthesized by blending the
volumetric information of two NeRFs (Section 4.1). We
use two kinds of natural language prompts: source text and
target text, describing the original and edited 3D model, re-
spectively. Blending-NeRF performs text-driven editing us-
ing the CLIP losses with both prompts (Section 4.2). How-
ever, using only the CLIP losses is not sufficient for local-
ized editing as it does not serve to specify the target re-
gion. Thus, during training, we specify the editing region
in the original rendered scene using the source text. Si-
multaneously, the editable NeRF is trained to edit the tar-
get region under the guidance of localized editing objective
(Section 4.3). An overview of the proposed method is de-
picted in Figure 2. Note that Blending-NeRF is trained in
an end-to-end manner.
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4.1. Blended Volume Rendering

Editable NeRF The editable NeRF extends NeRF to pro-
duce two blending ratios βc ∈ [0, 1] and βσ ∈ [0, 1] in
addition to a density σe ∈ [0,∞) and a color ce ∈ [0, 1]3

for seamlessly blending the ray points of two networks:

(σe, ce, βσ, βc) = gϕ(γ(x), γ(d))

σo′ = (1− βσ)σo

co
′
= (1− βc)co + βcce.

(6)

The density blending ratio βσ determines the amount of
density σo in the pretrained NeRF that is removed for object
modification. Consequently, the modified original density
σo′ contributes to the dominance of the editable NeRF den-
sity σe. Similarly, the color blending ratio βc controls the
amount of color co modified in the pretrained NeRF. In this
case, to prevent the modified original color co

′
from chang-

ing to a specific color (e.g., black or white), it is determined
by mixing the editable color ce by the proportion of βc. Fi-
nally, we get σo′ , co

′
, σe, and ce to blend the two NeRFs.

Using these values, partial addition and removal of density,
and change of color are performed on the original scene by
the following blending operations.

Blending Operations A previous work [20] introduces a
method for augmenting the static part with the transient part
of the NeRF outputs on volume rendering to disentangle
the static and transient components. Likewise, the blended
color Ĉβ(r) of a ray can be calculated as:

Ĉβ(r) =

K∑
k=1

T β
k (α

o′

k co
′

k + αe
kc

e
k)

T β
k =

k−1∏
k′=1

(1− αβ
k′)

αβ
k = 1− exp(−σβ

k δk), σβ
k = σo′

k + σe
k,

(7)

where αo′

k = 1− exp(−σo′

k δk) and αe
k = 1− exp(−σe

kδk).

In parallel, the color Ĉe(r) of the ray for the editable
NeRF is calculated as:

Ĉe(r) =

K∑
k=1

T β
k (α

o′

k βc
k + αe

k)c
e
k. (8)

The colors Ĉo, Ĉe, and Ĉβ are later used to render the three
images: original, editable, and blended images.

We also define three types of accumulated opacity for the
ray: Êadd

acc , Êremove
acc , and Êchange

acc . The accumulated opacities

Blended Image 𝐼𝛽Original Image 𝐼𝑜 Editable Image 𝐼𝑒

Figure 3. The rendered images of the ‘bulldozer’ object edited by
the target text ‘bulldozer amber’. Given a sampled camera pose,
Blending-NeRF renders three types of images for training.

are calculated as follows:

Êadd
acc (r) =

K∑
k=1

T β
k α

e
k

Êremove
acc (r) =

K∑
k=1

(T o′

k − T o
k )α

o
k

/
K∑

k=1

αo
k

Êchange
acc (r) =

K∑
k=1

T β
k α

o′

k βc
k,

(9)

where T o′

k =
∏k−1

k′=1(1 − αo′

k′). Each accumulated opac-
ity denotes the degree of adding density, removing density,
and changing color for the rendered pixel by the blending
operations. Specifically, Êadd

acc represents the amount of den-
sity added by the editable NeRF, and Êremove

acc represents the
amount of density removed from the pre-trained NeRF by
the blending ratio βσ

k . The last opacity Êchange
acc means the

amount of original color cok changed by the blending oper-
ations. Note that the modifications to the object’s parts that
are occluded in a specific viewpoint are ignored in this op-
eration. These accumulated opacities for the ray are used to
limit the region and amount of the object editing, guided by
the source text. This method, which plays an important role
in localized object editing, is described in Section 4.3.

Volume Rendering There are three types of images that
are rendered with Blending-NeRF, namely original, ed-
itable, and blended images, during our localized object edit-
ing process. To train our model, we first sample a camera
pose to generate these images from the sampled viewpoint.
For 360◦ bounded scenes, we set a uniform distribution over
the upper hemisphere with bounded radius [9] and sample a
camera pose each training iteration.

Given the sampled camera pose p, the rays are also
sampled at even intervals to make an image patch of size
S covering the entire extent of the image plane (refer to
Appendix for details). Then we can obtain S × S image
patches Io(θ,p), Ie(θ, ϕ,p), and Iβ(θ, ϕ,p) for original,
editable, and blended images by using Eq. (2), Eq. (8),
and Eq. (7). Likewise, for our localized editing, the three
types of opacity patches Êadd

acc (θ, ϕ,p), Ê
remove
acc (θ, ϕ,p), and
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Êchange
acc (θ, ϕ,p) of S×S size are also obtained using Eq. (9).

Once trained, Blending-NeRF can render over an entire im-
age without pixel strides at any camera pose. Examples of
rendered images are shown in Figure 3.

4.2. Text-Driven Objective

We leverage the pretrained CLIP model for text-
driven object editing on Blending-NeRF. For image
patches Io(θ,p), Ie(θ, ϕ,p), and Iβ(θ, ϕ,p) ren-
dered in the previous step, we apply the global
and directional CLIP losses of Eq. (4) and Eq. (5):
Le

global(I
e(θ, ϕ,p), Ttarget), Lβ

global(I
β(θ, ϕ,p), Ttarget) and

Ldir(I
β(θ, ϕ,p), Ttarget, I

o(θ,p), Tsource). The global CLIP
losses Le

global and Lβ
global make CLIP embeddings of both

editable image Ie and blended image Iβ close to that of
target text Ttarget. The directional CLIP loss ensures that the
direction of representation vector from the source image
Io to the blended image Iβ is similar to the direction from
the source text Tsource to the target text Ttarget. The total
text-driven objective is defined as:

Lclip = Ldir + λglobalLglobal, (10)

where Lglobal = Lβ
global +Le

global is the global CLIP loss, and
λglobal is a hyperparameter for balancing the directional and
global CLIP losses.

Image and Text Augmentation Before feeding image
patches and text prompts to CLIP encoders, we apply im-
age and text augmentations. Previous work [14] shows that
applying 2D image-based augmentations can prevent ad-
versarial generation problems when using CLIP guidance.
Similarly, we augment image patches in the order of differ-
ential [42] and random perspective augmentations. We use
the text templates [2] to augment Tsource and Ttarget.

4.3. Localized Editing Objective

The text-driven objective can guide Blending-NeRF to
edit the original object to match the meaning of a given
target text Ttarget. However, with the CLIP losses alone,
it is challenging to specify the region and amount of
editing. Thus, we employ a text-guided semantic seg-
mentation method and the opacity patches Êadd

acc (θ, ϕ,p),
Êremove

acc (θ, ϕ,p), and Êchange
acc (θ, ϕ,p). Note that precisely

targeting the region for localized editing and constraining
the degree of object editing is well handled by these three
accumulated opacities, which capture the extent of density
addition, density removal, and color alteration through our
blending operations. In addition, joint optimization of lo-
calizing target region and constraining editable amount to
maintain the high-fidelity results of the pre-trained NeRF
is a vital factor in producing localized editing that is less
prone to noise, as demonstrated throughout our experimen-
tal results in Section 5.4.

Localizing Target Region We use CLIPSeg [19] to guide
the region to be edited only with a user text prompt Tsource.
Specifically, we leverage zero-shot segmentation h(I, T ) to
produce a probability map of the pixels in an image I as-
sociated with the input text T . We first estimate region M ,
which is more likely to be Tsource than the text ‘photo’ in the
source image Io(θ,p), as follows:

M = 1(h(Io(θ,p),Tsource)− h(Io(θ,p), ‘photo’)), (11)

where function 1(·) pixel-wisely outputs 1 if its input is
positive, and 0 otherwise. After applying Nf dilation op-
erations to M , we get the positive target region M+ which
specifies the region of interest to edit. Additionally, we
specify the negative target region M− which designates the
region of non-interest by applying Nf dilatation operations
to M+ and element-wise not operation. Then the loss to
localize the target region is:

Lregion = MSE([0]S×S ,M− ⊙ Esum)+

λ+MSE([1]S×S ,M+ ⊙ Esum),
(12)

where Esum =
∑

x={add,remove,change} Ê
x
acc(θ, ϕ,p) is the

pixel-wise sum of the three accumulated opacities, ⊙ de-
notes pixel-wise multiplication, and λ+ is a hyperparam-
eter for balancing the two terms. The first term prevents
modification outside the target region, while the second en-
courages editing within the target region.

Constraining Editable Amount To limit the amount of
area being modified, we use an opacity loss similar to the
transmittance loss in the previous work [8]. The opacity loss
Lopacity is defined using the opacity patches Êadd

acc (θ, ϕ,p),
Êremove

acc (θ, ϕ,p), and Êchange
acc (θ, ϕ,p) as follows:

Lopacity =
∑
x

max(τx,mean(Êx
acc(θ, ϕ,p))), (13)

where x = {add, remove, change} and {τx} are the thresh-
olds to limit the amount of addition and removal of density,
and change of color. These thresholds are annealed for sta-
ble learning.

We also apply the regularization loss Lreg to the opacity
patch Êadd

acc (θ, ϕ,p) to avoid adding ambiguous densities:

Lreg = −mean(F (Êadd
acc (θ, ϕ,p))), (14)

where F (z) = z log2 z + (1 − z) log2(1 − z) is the bi-
nary entropy function. Note that we use stop gradients
to ensure that localized editing losses do not indiscrimi-
nately affect training. In particular, the losses for opac-
ity patch Êadd

acc (θ, ϕ,p) to add density are only concerned
with the backpropagation by editable density σe. Like-
wise, the losses by opacity patches Êremove

acc (θ, ϕ,p) and
Êchange

acc (θ, ϕ,p) propagate only to βσ and βc, respectively.
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Figure 4. Examples of editing in which the common target text templates are applied to various 3D objects. The images in the
first column are the original objects. The object names are listed on the left side of the figure, and the target text templates are
listed on the top of the figure. For example, the second image in the first row is an edited result with ‘old boat’, which com-
bines ‘boat’ and ‘old *’. We denote the • as changing colors, • as adding densities, and • as removing densities of the object.
If two or more dots exist, the editing is performed with the corresponding case together. This notation is common to all figures.

• : changing colors • : adding densities • : removing densities.

Finally, our total objective Ltotal for text-driven localized
object editing is:

Ltotal = Lclip + λ1Lregion + λ2Lopacity + λ3Lreg, (15)

where λ1, λ2, and λ3 are hyperparameters to balance losses.

5. Experiments and Results
5.1. Implementation Details

The pretrained NeRF consists of an 8-layer MLP of 256
hidden units with ReLU activations as in the architecture
of the originally proposed NeRF [22]. For the editable
NeRF, we partially modified the original NeRF using resid-
ual blocks (see Appendix for details). We followed the same
procedures in the hierarchical volume sampling of NeRF as
well, but we did the importance sampling based on T β

k α
β
k

instead of T o
kα

o
k. The patch size for all images and accumu-

lated opacities is S = 72. We used Adam Optimizer and the

learning rate is linearly decayed from 5× 10−4 to 10−4 for
the first 1k iteration steps and stays at 10−4 for the remain-
ing steps. We included the regularization loss component
only after the first 1k iteration steps, once the density of
the newly added object has reached a certain level of form.
Regarding the hyperparameter values, we employed the fol-
lowing: λglobal = 0.5, λ1 = 1, λ2 = 2, and λ3 = 0.2. We
evaluated our method using a variety of target texts and six
3D objects (ship, hotdog, mic, lego, chair, and ficus) from
the Realistic Synthetic 360◦ dataset [22].

5.2. Localized Editing

To investigate the performance of our method for local-
ized object editing, we performed a variety of experiments
such as addition or removal of densities, and color changes
to the original objects. Figure 4 shows the edited results
obtained by applying the same target text templates to all
source objects. Our method clearly achieves a detailed edit-
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Figure 5. Examples of editing in which the target-specific text
descriptions are applied to 3D objects. The texts on the left of the
images refer to the editing target on the original objects.

ing of the target object while preserving the source struc-
ture. For example, when given a source text ‘boat’ and a
target text ‘gold texture boat’, a well-stylized boat with a
gold texture was rendered while preserving the background.
The localized editing also worked well when simultane-
ously adding densities to an object and changing its colors.
In the examples of ‘burning bulldozer’ or ‘snow on mic’, the
appropriate ambient effect appeared naturally along with
editing the target object.

We extended our experiments to a more diverse set of tar-
get texts, as shown in Figure 5. In particular, we performed
object editing tasks to remove densities. For instance, given
a source text ‘green-chair’ and a target text ‘round shape
backless green-chair’, the back and armrests of the chair
were removed to achieve the editing goal.

5.3. Comparison with Baselines

Baselines To demonstrate the effectiveness of our ap-
proach, we compared it against three different variants of
CLIP-NeRF. Wang et al. [35] present a single NeRF-based
editing method per scene (let’s call it CLIP-NeRF-c). We
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Figure 6. Comparison with baselines. Our method demonstrates
superior ability, particularly in editing density, as evidenced by
the third row where we added densities, as well as the fourth and
fifth rows where we removed densities. In contrast, the competing
methods fail to achieve these tasks.

CLIP-NeRF-c CLIP-NeRF-f CLIP-NeRF-D Ours

DL1
↓ .029 .041 .047 .051

SCLIP ↑ .065 .081 .084 .128
MPCLIP ↑ .063 .077 .080 .121

Table 1. Quantitative comparison with baseline models. We mea-
sured the preservation of the original appearance (DL1 ) and the
alignment with the target text (SCLIP). We also measured the ma-
nipulative precision (MPCLIP) to consider them both.

compared our method against CLIP-NeRF-c, which only
fine-tunes its color-related layers, using officially released
code. We also evaluated our method against CLIP-NeRF-f,
which fine-tunes all layers instead of just the color-related
ones. Additionally, we compared our method against an-
other variant, CLIP-NeRF-D, which uses distilled feature
fields [13] as a localization module using official code that
fine-tunes all layers.

Evaluation Metric We evaluated the quality of text-
driven object editing using the manipulative precision (MP)
metric [15]. The MP metric takes into account two aspects:
the preservation of the original appearance, which is mea-
sured as the L1 normalized pixel distance (DL1 ) between
the original and edited image, and the alignment with the
target text, which is measured by the CLIP score (SCLIP)
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Figure 7. Ablation study on the text-driven objectives. The ‘boat’
object is edited with ‘submarine’ (upper row) and ‘exploding boat’
(bottom row) as the target texts.

w/o Lregion w/o Lopacity w/o Lreg w/o Lglobal w/o Ldir Ours

DL1
↓ .049 .085 .053 .053 .049 .051

SCLIP ↑ .121 .126 .125 .122 .108 .128
MPCLIP ↑ .115 .115 .119 .115 .103 .121

Table 2. Quantitative comparison with ablation models. We ab-
late the proposed localized editing (w/o Lregion, w/o Lopacity, and
w/o Lreg) and text-driven objectives (w/o Lglobal and w/o Ldir).

between the edited image and target text. The CLIP score
is obtained by averaging CLIP similarity and Directional
CLIP similarity [12]. For a fair comparison, we used CLIP
ViT-L/14 to calculate the CLIP score instead of CLIP ViT-
B/32 used to train Blending-NeRF and the baselines. Fi-
nally, the CLIP based MP metric is defined as MPCLIP =
(1 − DL1) × SCLIP. We calculated all these metrics using
60 different scenes for each model.

Comparisons We qualitatively and quantitatively com-
pared the performance of Blending-NeRF with three vari-
ants of CLIP-NeRF. Our method outperformed all base-
lines, as shown in Figure 6. The CLIP-NeRF variants were
able to perform the color change task (mic → crochet mic),
but struggled with the density change tasks. Although the
localizing module helped CLIP-NeRF-D to edit the target
region well, it still had difficulty in editing the densities of
the target object. As indicated by Wang et al. [35], this
demonstrates that relying on the simple fine-tuning of a sin-
gle NeRF to generate new densities in the low initial density
area or to alter existing densities through a CLIP-driven ob-
jective is not sufficient for achieving complete localized ob-
ject editing of shapes. Instead, we found in our experiments
that using our novel dual NeRF architecture to blend volu-
metric information from two independent NeRFs, namely,
pretrained NeRF capturing the original 3D model and ed-
itable NeRF capturing object editing information, and spec-
ifying the positive and negative regions to help the blended
editing focus on the target regions results in more natural lo-
calized object editing. These qualitative results in Figure 6
are consistent with the superior quantitative performance of
our model, measured using MP metric, as shown in Table 1.

Oursw/o ℒregw/o ℒregion w/o ℒopacity

h
o
td

o
g

Figure 8. Ablation study on the localized editing objectives. The
‘hotdog’ object is edited with ‘stained glass hotdog’ (upper row)
and ‘hamburger’ (bottom row) as the target texts.

5.4. Ablation Study

To validate the effect of our text-driven and localized
editing losses, we compared the performance qualitatively
as well as quantitatively when each loss term was removed
from the total objective. We first performed an ablation
study on text-driven losses, as shown in Figure 7. In the
‘submarine’ case, when global CLIP loss was not used (w/o
Lglobal), the result was blurry with degraded quality. Simi-
larly, in the ‘exploding boat’ case, when only global CLIP
loss was used (w/o Ldir), the explosion effect was not well
expressed, resulting in a poor editing performance. These
results are also consistent with the poor CLIP scores and
MP metrics, as shown in Table 2. That is, using both global
and directional losses enhances the overall editing quality.

We further analyzed the effect of localized editing losses
on localizing the target region. As shown in Figure 8, when
each localized editing loss was excluded (i.e., w/o Lregion
or w/o Lopacity), the editing regions were not well targeted
or adequately constrained overall. As shown in Table 2,
these results are also consistent with the low MP metric (w/o
Lregion) and the poor preservation score (w/o Lopacity). Addi-
tionally, for the w/o Lreg in the ‘hamburger’ case, the edited
object has ambiguous boundaries. In contrast, our method
edits objects with clear boundaries and less noise. This
result implies that the regularization loss guides Blending-
NeRF to add density distinctly, improving the MP metric as
shown in Table 2. That is, our method can locally and nat-
urally edit the target object in the original scene with only
minor modifications to the regions of non-interest.

5.5. Extendability of Blending-NeRF

We investigated the extendability of the proposed
method using Instant-NGP [23] which utilizes hash grid
encoding to represent a 3D scene with low computational
cost. The localized editing results on real scenes [22] in
Figure 9 demonstrate that our method can be integrated
with other 3D scene representation methods such as Instant-
NGP. In this experiment, Blending-NeRF was able to inherit
the advantages of Instant-NGP over the originally proposed
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source object

flower
swarovski blue 

crystal flower, *
snow on flower

yard

deck

pineapple, * snow on pineconepinecone

Figure 9. Examples of localized editing on the pinecone and
vasedeck scenes. Blending-NeRF with Instant-NGP was used for
these results. (* : trending on artstation)

NeRF [22] on memory efficiency and training time. For
more results and implementation details, refer to Section E
of Appendix.

5.6. Editing Operations

Our approach explicitly distinguishes editing operations,
such as adding and removing density, and changing color.
The editing results can vary even for the same scene and
text, depending on the manually specified editing opera-
tions. By choosing different combinations of the editing
operations, users have the ability to achieve desired editing,
as shown in Figure 10.

source object

pinecone → burning pinecone, a DSLR photo

Figure 10. Experiments on using different editing operations. The
source object (‘pinecone’) is edited into each object using the same
target text (‘burning pinecone, a DSLR photo’) with different com-
binations of editing operations. Note that Blending-NeRF with
Instant-NGP was used for these results.

5.7. Limitations

Our work has limitations in that the overall performance
can be affected by the two off-the-shelf models, CLIPSeg

boat → galaxy big bang explosion on boat

boat → cyberpunk neon boat

𝑆 = 36 𝑆 = 72 𝑆 = 128 𝑆 = 164

Figure 11. Experiments on object editing with various patch sizes.
The numbers at the top denote each patch size used. The source
object (‘boat’) is edited into each object using two target texts:
‘cyberpunk neon boat’ (top row) and ‘galaxy big bang explosion
on boat’ (bottom row), respectively. Note that Blending-NeRF
with Instant-NGP was used for these results.

and CLIP. For instance, if the segmentation of the target
area by CLIPSeg is not appropriate, unedited parts may re-
main. This performance degradation can be mitigated by
using advanced segmentation models or a potential solution
described in Appendix (i.e., user-provided mask).

Additionally, we found that the limited patch size input
to CLIP’s image encoder can make edited results blurry.
The input size of the CLIP encoder is 224, but we used a
patch size of 72 due to our computational resources when
we used the originally proposed NeRF [22] as a backbone.
However, this issue can be alleviated by using a memory-
efficient backbone (i.e., Instant-NGP). As shown in Fig-
ure 11, where we applied the proposed method to Instant-
NGP as described in Section 5.5, the blurry results were im-
proved as the patch sizes increased. Considering the trade-
off between the quality improvement and the increase in
computational time, we set the patch size as 128 for our
experiments using Instant-NGP.

6. Conclusion

For text-driven localized 3D object editing, we propose
Blending-NeRF, which consists of pretrained NeRF and ed-
itable NeRF. The target region for editing is specified by the
source text and the original object in the pretrained NeRF.
Blending-NeRF renders blended images of two NeRFs suit-
able for the target text by freezing the pretrained NeRF and
training the editable NeRF to locally edit the original ob-
ject while maintaining the overall appearance. Especially,
we define three types of editing operations (i.e., adding or
removing density, changing color) and use them to perform
various 3D object editing. Empirical results show that our
approach is superior to text-driven localized object editing.
We firmly believe that the proposed method and localized
object editing tasks hold practical value in neural rendering.

14391



References

[1] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended
diffusion for text-driven editing of natural images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18208–18218, 2022. 3

[2] Omer Bar-Tal, Dolev Ofri-Amar, Rafail Fridman, Yoni Kas-
ten, and Tali Dekel. Text2live: Text-driven layered image
and video editing. arXiv preprint arXiv:2204.02491, 2022.
3, 5

[3] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5855–5864,
2021. 2

[4] Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and
Kui Jia. Tango: Text-driven photorealistic and robust
3d stylization via lighting decomposition. arXiv preprint
arXiv:2210.11277, 2022. 1, 2

[5] Jian Ding, Nan Xue, Gui-Song Xia, and Dengxin Dai. De-
coupling zero-shot semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11583–11592, 2022. 3

[6] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):1–13, 2022. 3

[7] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.
Dynamic view synthesis from dynamic monocular video. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5712–5721, 2021. 2

[8] Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter
Abbeel, and Ben Poole. Zero-shot text-guided object genera-
tion with dream fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
867–876, 2022. 1, 2, 5

[9] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf
on a diet: Semantically consistent few-shot view synthesis.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5885–5894, 2021. 4

[10] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representa-
tion learning with noisy text supervision. In International
Conference on Machine Learning, pages 4904–4916. PMLR,
2021. 3

[11] Nasir Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu
Popa. Clip-mesh: Generating textured meshes from text
using pretrained image-text models. ACM Transactions on
Graphics (TOG), Proc. SIGGRAPH Asia, 2022. 2

[12] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Dif-
fusionclip: Text-guided diffusion models for robust image
manipulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2426–
2435, 2022. 3, 8

[13] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field dis-
tillation. arXiv preprint arXiv:2205.15585, 2022. 7

[14] Han-Hung Lee and Angel X Chang. Understanding pure
clip guidance for voxel grid nerf models. arXiv preprint
arXiv:2209.15172, 2022. 1, 5

[15] Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip HS
Torr. Manigan: Text-guided image manipulation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7880–7889, 2020. 7

[16] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen
Koltun, and René Ranftl. Language-driven semantic seg-
mentation. arXiv preprint arXiv:2201.03546, 2022. 3

[17] Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli
Ouyang, Jing Shao, Fengwei Yu, and Junjie Yan. Su-
pervision exists everywhere: A data efficient contrastive
language-image pre-training paradigm. arXiv preprint
arXiv:2110.05208, 2021. 3

[18] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Jun-Yan Zhu, and Bryan Russell. Editing conditional
radiance fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 5773–5783,
2021. 1, 2
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