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Abstract

LiDAR and cameras are complementary sensors for 3D
object detection in autonomous driving. However, it is chal-
lenging to explore the unnatural interaction between point
clouds and images, and the critical factor is how to conduct
feature alignment of heterogeneous modalities. Currently,
many methods achieve feature alignment by projection cal-
ibration only, without considering the problem of coor-
dinate conversion accuracy errors between sensors, lead-
ing to sub-optimal performance. In this paper, we present
GraphAlign, a more accurate feature alignment strategy for
3D object detection by graph matching. Specifically, we
fuse image features from a semantic segmentation encoder
in the image branch and point cloud features from a 3D
Sparse CNN in the LiDAR branch. To save computation, we
construct the nearest neighbor relationship by calculating
Euclidean distance within the subspaces that are divided
into the point cloud features. Through the projection cali-
bration between the image and point cloud, we project the
nearest neighbors of point cloud features onto the image
features. Then by matching the nearest neighbors with a
single point cloud to multiple images, we search for a more
appropriate feature alignment. In addition, we provide a
self-attention module to enhance the weights of significant
relations to fine-tune the feature alignment between hetero-
geneous modalities. Extensive experiments on nuScenes
benchmark demonstrate the effectiveness and efficiency of
our GraphAlign.

1. Introduction

3D object detection, a vital computer vision task in au-
tonomous driving, relies on deep learning for accurately
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Figure 1. Comparison of feature alignment strategies: (a)
Projection-based quickly establishes the relationship between
modal features but may suffer from misalignment due to sensor er-
ror. (b) Attention-based preserves semantic information by learn-
ing alignment but has a high computational cost. (c) Our pro-
posed GraphAlign uses graph-based feature alignment to match
more plausible alignments between modalities with reduced com-
putation and improved accuracy.

identifying and locating objects [8, 36, 43, 50, 52, 65–67] in
3D space [34, 35, 58, 60, 86]. With the availability of di-
verse sensor data, such as cameras and LiDAR, 3D object
detection research has made significant progress. However,
challenges and difficulties remain due to the inherent limita-
tions of each modality. While LiDAR point cloud provides
accurate depth information, it lacks semantic information.
Conversely, camera images contain semantic information
but lack depth information [34,58]. Therefore, multi-modal
3D object detection has been proposed to leverage the com-
plementary advantages of both modalities to improve detec-
tion performance.

Despite the potential of multi-modal 3D object detection,
the effective fusion of heterogeneous modal features has not
been fully explored. In this work, we mainly attribute the
current difficulties of training multi-modal detectors to two
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aspects. On the one hand, many methods [4,5,11,15–17,22,
27–29, 32, 37, 39, 49, 54, 55, 61, 63, 64, 70, 72, 78–81, 84, 85]
rely on establishing deterministic correspondences between
points and image pixels to fuse point clouds and image, as
shown in Fig. 1 (a). However, accuracy errors resulting
from the difference between LiDAR and camera sensors,
such as timing synchronization errors, especially the mis-
alignment of small objects in long-range feature fusion, can
lead to a decrease in detection performance. On the other
hand, a few methods [1, 6, 7, 24] employ attention-based
solution to accomplish feature alignment rather than pro-
jection, as shown in Fig. 1 (b). However, the key issue
with using attention-based for point cloud and image fea-
ture alignment in multi-modal 3D object detection is that it
is too computationally expensive and cannot meet the real-
time detection requirements.

In this work, we propose GraphAlign, a graph matching-
based feature alignment strategy, to enhance the accuracy
of multi-modal 3D object detection, as shown in Fig. 1
(c). GraphAlign comprises two key modules: Graph Fea-
ture Alignment (GFA) and Self-Attention Feature Align-
ment (SAFA). The GFA module divides the point cloud
space into subspaces and generates the K nearest neigh-
bor features for each point cloud. It then transforms the
local neighborhood information of the point cloud into im-
age neighborhood information via a projection calibration
matrix, followed by one-to-many feature fusion between a
single point cloud feature and K neighbor image features.
The SAFA module employs a self-attention mechanism to
enhance the weights of important relationships in the fused
features and selects the most critical feature from K fused
features. Our work’s main contributions can be summarized
as follows:

• We propose GraphAlign, a feature alignment frame-
work based on graph matching, to address the mis-
alignment issue in multi-modal 3D object detection.

• We propose Graph Feature Alignment (GFA) and
Self-Attention Feature Alignment (SAFA) modules to
achieve accurate alignment of image features and point
cloud features, which can further enhance the feature
alignment between point cloud and image modalities,
leading to improved detection accuracy.

• Experiments are conducted using the KITTI [12]
and nuScenes [2] benchmarks, demonstrating that
GraphAlign can boost point cloud detection accuracy,
especially for long-range object detection.

2. Related work

2.1. 3D Object Detection with Single Modality

3D object detection is commonly conducted using a sin-
gle modality, either a camera or a LiDAR sensor. Camera-
based 3D detection methods [18,20,23,25,30,33,48,73–75]
take images as input and output object localization in space.
Some methods use a modified 2D object detection frame-
work with a monocular camera to directly regress 3D box
parameters from images [18, 20, 33, 48]. However, monoc-
ular cameras cannot provide depth information, which has
led to other methods that use stereo or multi-view images to
generate dense 3D geometric representations for 3D object
detection [42,59]. Although camera-based 3D object detec-
tion has made remarkable advancements, its accuracy is not
as good as 3D detection methods using LiDAR.

LiDAR-based 3D object detection [9, 19, 46, 68, 69, 71]
directly processes irregular point cloud data using methods
such as PointNet [40] and PointNet++ [41]. Other meth-
ods convert point cloud data into regular grids using vox-
els [83] and pillars [19], which is convenient for feature ex-
traction using 3D or 2D CNN processing [13, 51, 57, 71].
Although LiDAR-based 3D object detection is superior to
image-based methods, it has limitations due to the sparse
nature of point clouds, the lack of texture features, and se-
mantic information.

2.2. 3D Object Detection with Multi-modalities

To address the limitations of each modality, various
methods combine the data from the two modalities to im-
prove detection performance. PointPainting [54] proposes
to enhance each LiDAR point with the semantic score of
the corresponding camera image. PI-RCNN [64] fuse se-
mantic features from the image branch and raw LiDAR
point clouds to achieve better performance. Frustum Point-
Nets [39] and Frustum-ConvNet [61] utilize images to gen-
erate 2D proposals and then lift them up to 3D space (frus-
tum) to narrow the searching space in point clouds. The
Mvx-Net [49] method appends RoI pooling image eigen-
vectors to dense eigenvectors for each voxel in a LiDAR
point cloud. 3D-CVF [79] and EPNet [15] explore align-
ment strategies on feature maps across different modalities
with a learned calibration matrix. However, these methods
use projection matrices to align two heterogeneous features,
which destroys the image semantic information, affecting
performance. Other methods propose a learnable alignment
method [1,6,7,24] using the cross-attention mechanism. Al-
though this method effectively preserves the semantic infor-
mation of the image, the frequent query of image features
by the attention mechanism increases computational costs.
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Figure 2. The framework of GraphAlign. It consists of the Graph Feature Alignment (GFA) module and the Self-Attention Feature
Alignment (SAFA) module. The GFA module takes image and point cloud features as input, uses projection calibration matrix to convert
3D positions to 2D pixel positions, constructs local neighborhood information to find nearest neighbors, and combines image and point
cloud features. The SAFA module models the contextual relationships among K nearest neighbors through self-attention mechanism,
thereby enhancing the importance of fused features, ultimately selecting the most representative features.

3. GraphAlign

In this section, we propose an accurate feature align-
ment, GraphAlign, which achieves the fusion of point
clouds and images by graph matching. We adopt the
LiDAR-only detector Voxel RCNN [9] and CenterPoint
[77] as the baseline. Fig. 2 shows the network architecture
of our GraphAlign, which includes two modules: Graph
Feature Alignment (GFA) module and Self-Attention Fea-
ture Alignment (SAFA) module. The details of GraphAlign
are presented in the following.

3.1. Graph Feature Alignment

Previous works on point cloud and image feature align-
ment have used projection and attention mechanisms, but
these solutions have potential problems. Projection is lim-
ited by sensor errors, while attention mechanisms require
massive computation. To address these issues, we proposed
the Graph Feature Alignment (GFA) module, which con-
structs neighborhood through graph for more accurate and
efficient feature alignment.

The GFA module includes both point cloud and image
pipelines, where the fusion of deep features occurs before
the 3D Sparse CNN process. Voxel-wise encodor is used to
obtain the point cloud features after voxelization. We use
the depth features of semantic segmenter DeepLabv3 [3]
instead of segmentation scores which contain richer ap-
pearance cues and larger perception fields, making them
more complementary to point cloud fusion. In the projec-
tion stage, we treat point clouds as multi-modal aggregation
points because point cloud have depth features more suit-
able for 3D detection than images. We then project the 3D
point cloud onto the image plane, as follow:

zc

 u
v
1

 = hK
[
R T

] 
Px

Py

Pz

1

 (1)

where, Px, Py , Pz denote the LiDAR point’s 3D location, u,
v, zc denote the 2D location and the depth of its projection
on the image plane, K denotes the camera intrinsic param-
eter, R and T denote the rotation and the translation of the
LiDAR with respect to the camera reference system, and h
denotes the scale factor due to down-sampling.

After feature extraction, we obtain the point cloud depth
feature, defined as FP ∈ RN×C , where N , C are the
number of point cloud, and channel of the global feature
map, respectively. And the 3D coordinates of the point
cloud are defined as CP ∈ RN×3 , where 3 is the coor-
dinates of the point cloud, represents (x, y, z). To elimi-
nate the impact of feature misalignment due to point cloud
data augmentation before 3D to 2D projection, the point
cloud is converted to its raw coordinates by inverse oper-
ations, such as removing the flip up and down. CP trans-
forms image I ∈ Rh×w×3 into pixel coordinates, defined as
CI ∈ RN×2, where 2 is the coordinates of the image pix-
els, represents (x, y), after the projection calibration matrix
Equation (1). However, since the point cloud is projected
onto the image, there exists a small range of image coor-
dinates and an extensive range of point cloud coordinates.
We have to remove the coordinates of the image pixels that
are out of range after the projection, and the correction rule
is N ′ = {n1, n2, . . . , nj | 0 ≤ x ≤ w, 0 ≤ y ≤ h}, and
N ′ ≤ N . Thus, we obtain the filtered novel pixel coordi-
nates, defined as C′

I ∈ RN ′×2.
To obtain the neighborhood information of the point
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Figure 3. GFA Process Flow. (a) sensor accuracy errors lead
to misalignment. (b) GFA builds neighbor relationships through
graphs in the point cloud feature. (c) We project the point cloud
features onto the image features and obtain the K nearest neigh-
bors of the image features. (d) We perform one-to-many fusion,
specifically, by fusing each individual point cloud feature with K
neighboring image features to achieve a better alignment.

cloud, defined as KP ∈ RN×K , where N and K are the
number of point cloud and the number of point cloud neigh-
bors, respectively, we performed a data flow in Algorithm
(1) and obtained KP by inputting CP and some hyperpa-
rameters. In addition, to save computational cost during
this period, we designed subspaces to accelerate the compu-
tation, i.e., searching for nearest neighbors in the subspace
instead of the whole space.

In addition, we map the neighbors of the point cloud
to the image neighbors, defined as KI ∈ RN×K , where
KI = KP. There are three main reasons why we have not
constructed neighbor coordinates for images in this process
but mapped by point clouds: First, point cloud coordinates
provide richer Euclidean information than images because
they are three-dimensional. Second, the graph is designed
for input objects with irregular and unstructured data struc-
tures like point clouds rather than regular data like images.
Third, there is an insurmountable gap between the 3D point
cloud coordinates and the 2D image coordinates of two het-
erogeneous neighborhoods, making it difficult to construct
neighbor coordinates for images.

For the above reasons, we choose to index the point
cloud neighborhood to the image. Image segmentation
encoder outputs image depth features, defined as FI ∈
Rh×w×c′ , which are indexed by C′

I to obtain novel im-
age depth feature F′

I ∈ RN×C that are consistent with the
point cloud coordinates. Then, indexing the image depth
features F′I with KI, we obtain the image depth features
with neighbors, defined as FKI

∈ RN×K×C , where N , K,
and C are the number of point cloud, the number of image

Algorithm 1: Graph for the point cloud neighbors
Input:
Point cloud coordinates CP ∈ RN×3.
Hyper-parameters: No. of point cloud neighbors
K = 36.
Hyper-parameters: No. of point clouds in the
subspace NPsub

= 5000.
1 while training do
2 No. of subspaces Nsub = N÷NPsub

3 List: KP

4 for isub = 1 . . . Nsub do
5 CP

isub = [P(isub−1)×Nsub
, . . . , PNsub×isub

]

6 if CP
isub > K then

7 Dsub =[
√

(c2p − c2pi
)|cp ∈ CP

isub , i =

1, . . . , NPsub
]

8 KPsub
=Min(Dsub, K)

9 KP = KP.Append(KPsub
)

10 else
11 NPsub

=REM(Num(CP ))

12 Dsub =[
√

(c2p − c2pi
)|cp ∈ CP

isub , i =

1, . . . , NPsub
]

13 KPsub
=Min(Dsub, NPsub

) +
[0, ..., 0]K−NPsub

14 KP = KP.Append(KPsub
)

15 end
16 end
17 end

Output: Point cloud neighbors KP ∈ RN×K×C .

neighbors, and channel of the point cloud feature map, re-
spectively. We replicate the point cloud depth feature FP

by K times, defined as FKP
∈ RN×K×C . Instead of fus-

ing point cloud neighbors and image neighbors, we directly
perform K replicated point clouds and K image neighbors
fusion for the following reasons. Instead of fusing the point
cloud neighbors and the image neighbors, we directly per-
form the fusion of the replicated K times of the point cloud
and the image neighbors to find the most appropriate fusion
relationship between points and pixels, as shown in Fig. 3.
Finally, we obtain the fused features of point clouds and
images with neighborhood relations, as follow:

FKPI
= FKP

+ FKI
(2)

where, FKPI
∈ RN×K×C is the fusion feature. N , K,

and C are the number of point cloud, the number of im-
age neighbors, and channel of the point cloud feature map,
respectively.
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Figure 4. SAFA module flow. The head and max modules are sim-
plified here, and the SAFA module aims to enhance the expression
of fusion features by improving the global context information be-
tween the K neighborhoods.

3.2. Self-Attention Feature Alignment

After obtaining the fused features in the GFA module
as mentioned above, the aggregation relationship between
these features and their K neighbors was found to be under-
estimated. To overcome this limitation, we introduced the
SAFA module as a complementary component to the GFA
module. It employs self-attention mechanism to amplify the
importance of significant fusion features, as illustrated in
Fig. 4. Currently, a few methods [1, 6, 7, 24] employ cross-
attention to learn the feature alignment of point clouds and
image heterogeneous modalities. However, the computa-
tional cost is high: given the point number N and the size of
image feature W ×H , the complexity is O(NWHC). Our
SAFA module is based on the GFA module and achieves
further vital fusion feature weight assignment by perform-
ing a multi-head self-attention operation on FKPI

, and
its computation complexity is O(NK2C), where N is the
number of point clouds, K as hyperparameters is mostly
36, w and h are the width and height of the image, which
are 1272 and 375 pixels in the KITTI [12] dataset, and C
is the feature dimension, which is generally 16. By that
means, the computation complexity of the cross-attention
mechanism-based methods is 400 times higher than our
SAFA module.

Specifically, the GFA module outputs fusion features
FKPI

∈ RN×K×C , which we perform a multi-head self-
attention operation to find more suitable fusion features
with neighborhoods to improve detection performance. As
in Algorithm(2), we present a remarkably detailed process
flow diagram for the SAFA module, which we perform in
a calculation-saving manner, and ultimately output a novel
fusion feature,defined as FKSAFA

∈ RN×K×C , where, N ,
K, and C are the number of point cloud, the number of im-
age neighbors, and channel of the point cloud feature map,
respectively.

The SAFA module aims to enhance the representation of
fusion features by better learning the context global infor-
mation among the K neighborhoods. Finally, we select the

Algorithm 2: SAFA module flow
Input:
The GFA module outputs fusion features:
FKPI

∈ RN×K×C

Hyper-parameters: No. of attention heads H=1.
1 while training do
2 Wq,Wk,Wv ∈ RC×C

3 Q,K, V = [Wq,Wk,Wv]FKPI

4 Add H by Reshape:
Q,K, V ∈ RN×K×C − > RN×H×K× C

H

5 Att = Softmax(QKT ), Att ∈ RN×H×K× C
H

6 FKSAFA
= AttV , FKSAFA

∈ RN×K×C

7 end
Output: A noval fusion feature with attention:

FKSAFA
∈ RN×K×C .

max operation to make up the more significant features for
get a novel fusion feature, defined as FmPI

∈ RN×C , as
follow:

FmPI
= Max(FKSAFA

) (3)

where, N , C are the number of point cloud, channel of the
point cloud feature map, respectively.

3.3. LiDAR Detection

Generally, images serve as auxiliary features for point
clouds. After the fusion of point cloud and image, FmPI

is
fed into the subsequent LiDAR pipeline for further detec-
tion. Our fusion process is completed during the 3D back-
bone of the LiDAR pipeline, as shown in Fig. 2. Subse-
quently, we transform 3D features into BEV features and
finally predict using the detection head. In addition, the pre-
dicted 3D box of the point cloud can be converted into the
2D box of the image using the projection matrix.

4. Experiments
In this section, we present the details of each dataset

and the experimental setup of GraphAlign, and evaluate
the performance of 3D object detection on KITTI [12] and
nuScenes [2] datasets.

4.1. Dataset and Evaluation Metrics

4.1.1 KITTI dataset

The KITTI dataset [12] provides synchronized LiDAR
point clouds and front-view camera images, and consists of
7,481 training samples and 7,518 test samples. The standard
evaluation metric for object detection is mean Average Pre-
cision (mAP), computed using recall at 40 positions (R40).
In this work, we evaluate our models on the most commonly
used car category using Average Precision (AP) with an
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Table 1. Performance comparison with the state-of-the-art meth-
ods on KITTI test set for car 3D detection with an average preci-
sion of 40 sampling recall points evaluated on KITTI server. ‘L’
and ‘C’ represent LiDAR and Camera, respectively.

Method Modality AP3D(%) APBEV (%)

Easy Mod. Hard Easy Mod. Hard

PV-RCNN [45] L 90.25 81.43 76.82 94.98 90.65 86.14
SECOND [71] L 84.65 75.96 68.71 88.07 79.37 77.50

PointPillars [19] L 82.58 74.31 68.99 90.07 86.56 82.81
VoxSet [13] L 88.53 82.06 77.46 - - -
TANet [31] L 84.39 75.94 68.82 91.58 86.54 81.19

Part-A2 [47] L 85.94 77.86 72.00 89.52 84.76 81.47
VP-Net [51] L 90.46 82.03 79.65 94.49 90.99 86.58
MV3D [4] L&C 74.97 63.63 54.00 86.62 78.93 69.80
MMF [26] L&C 86.81 76.75 68.41 89.49 87.47 79.10

PI-RCNN [64] L&C 84.37 74.82 70.03 91.44 85.81 81.00
EPNet [15] L&C 89.81 79.28 74.59 94.22 88.47 83.69

PointPainting [54] L&C 82.11 71.70 67.08 - - -
MSF-MC [62] L&C 89.63 80.06 75.83 93.42 86.97 84.54

Fast-CLOCs [38] L&C 89.11 80.34 76.98 93.02 89.49 86.39
Focals Conv [5] L&C 90.55 82.28 77.59 - - -

SFD [63] L&C 91.73 84.76 77.92 95.64 91.85 86.83
HMFI [21] L&C 88.90 81.93 77.30 - - -

Graph-VoI [72] L&C 91.89 83.27 77.78 95.69 90.10 86.85

Voxcl RCNN [9] L 90.90 81.62 77.06 - - -
Voxcl RCNN* L 90.76 81.69 77.42 92.89 89.97 84.69

Our GraphAlign L&C 0.96 83.49 80.14 93.91 91.79 88.05

* denotes re-implement result.

Intersection over Union (IoU) threshold of 0.7. To com-
pare our results with other state-of-the-art methods on the
KITTI 3D detection benchmark, we split the KITTI train-
ing dataset into a 4:1 ratio for training and validation, and
report our performance on the KITTI test dataset.

4.1.2 nuScenes dataset

The nuScenes dataset [2] is a large-scale 3D detection
benchmark consisting of 700 training scenes, 150 validation
scenes, and 150 testing scenes. The data were collected us-
ing six multi-view cameras and a 32-channel LiDAR sensor,
and the dataset includes 360-degree object annotations for
10 object classes. To evaluate the detection performance,
the primary metrics used are the mean Average Precision
(mAP) and the nuScenes detection score (NDS), which as-
sess a method’s detection accuracy in terms of classifica-
tion, bounding box location, size, orientation, attributes,
and velocity.

4.2. Implementation Details

4.2.1 Network Architecture

Since KITTI [12] and nuScenes [2] are distinct datasets with
varying evaluation metrics and characteristics, we provide
a detailed description of the GraphAlign settings for each
dataset in the following section.

GraphAlign with Voxel RCNN [9]: We validate our
GraphAlign on the KITTI [12] dataset using Voxel RCNN
[9] as the baseline. The input voxel size is set to (0.05m,

Table 2. Performance comparison with state-of-the-art methods on
KITTI validation dataset for car class. The results are reported by
the mAP with 0.7 IoU threshold and 40 recall points. ‘L’ and ‘C’
represent LiDAR and Camera, respectively.

Method Moiality AP3D(%) APBEV (%)

Easy Mod. Hard Easy Mod. Hard

PointRCNN [46] L 88.88 78.63 77.38
SECOND [71] L 87.43 76.48 69.10
CT3D [44] L 92.85 85.82 83.46 96.14 91.88 89.63
Part-A2 [47] L 89.47 79.47 78.54 90.42 88.61 87.31
MV3D [4] L&C 71.29 62.68 56.56 86.55 78.10 76.67
MMF [26] L&C 87.90 77.87 75.57 96.66 88.25 79.60
MSF-MC [62] L&C 89.63 80.06 75.83 93.42 86.97 84.54
PI-RCNN [64] L&C 88.27 78.53 77.75
EPNet [15] L&C 92.28 82.59 80.14 95.51 91.47 91.16

Voxel RCNN [9] L 92.38 85.29 82.86 95.52 91.25 88.99
Our GraphAlign L&C 92.44 87.01 84.68 95.65 92.82 91.41

0.05m, 0.1m), with anchor sizes for cars set at [3.9, 1.6,
1.56], and anchor rotations at [0, 1.57]. We adopt the same
data augmentation solution as Focal Loss [5].

GraphAlign with CenterPoint [77]: We validate our
GraphAlign on the nuScenes [2] dataset using CenterPoint
[77] as the baseline. The detection range for the X and Y
axis is set at [-54m, 54m] and [-5m, 3m] for the Z axis. The
input voxel size is set at (0.075m, 0.075m, 0.2m), and the
maximum number of point clouds contained in each voxel
is set to 10.

4.2.2 Training and Testing Details

Our GraphAlign is meticulously trained from scratch us-
ing the Adam optimizer and incorporates a stand-alone se-
mantic segmenter, namely, DeepLabv3 [3]. To enable ef-
fective training on KITTI [12] and nuScenes [2], we uti-
lize 8 NVIDIA RTX A6000 GPUs for network training.
Specifically, for KITTI, our GraphAlign model based on
Voxel RCNN [9] requires approximately 2 hours of train-
ing time which train 80 epochs. Whereas for nuScenes,
our GraphAlign model based on CenterPoint [77] necessi-
tates approximately 20 hours of training time which train
20epochs. During the model inference stage, we employ a
non-maximal suppression (NMS) operation in RPN with an
IoU threshold of 0.7 and select the top 100 region proposals
to serve as input for the detection head. Following refine-
ment, we apply NMS again with an IoU threshold of 0.1
to eliminate redundant predictions. For additional details
concerning our method, please refer to OpenPCDet [53].

4.3. Comparison with State-of-the-Arts

4.3.1 Performance on KITTI dataset.

As shown in Table 1 , we compare GraphAlign with state-
of-the-art methods in 3D and BEV APs on KITTI test
dataset. We observe that our GraphAlign achieves state-
of-the-art performance. In detail, it shows remarkably out-
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Table 3. Comparison with SOTA methods on the nuScenes test set. ‘C.V.’, ‘Ped.’, and ‘T.C.’ are short for construction vehicle, pedestrian,
and traffic cone, respectively.

Method mAP NDS Car Truck C.V. Bus Trailer Barrier Motor. Bike Ped. T.C.

InfoFocus [56] 39.5 39.5 77.9 31.4 10.7 44.8 37.3 47.8 29.0 6.1 63.4 46.5
S2M2-SSD [82] 62.9 69.3 86.3 56.0 26.2 65.4 59.8 75.1 61.6 36.4 84.6 77.7
AFDetV2 [14] 62.4 68.5 86.3 54.2 26.7 62.5 58.9 71.0 63.8 34.3 85.8 80.1

VISTA [10] 63.0 69.8 84.4 55.1 25.1 63.7 54.2 71.4 70.0 45.4 82.8 78.5
PointPillars [19] 30.5 45.3 68.4 23.0 4.1 28.2 23.4 38.9 27.4 1.1 59.7 30.8

PointPainting [54] 46.4 58.1 77.9 35.8 15.8 36.2 37.3 60.2 41.5 24.1 73.3 62.4
MVP [78] 66.4 70.5 86.8 58.5 26.1 67.4 57.3 74.8 70.0 49.3 89.1 85.0

AutoAlign [7] 65.8 70.9 85.9 55.3 29.6 67.7 55.6 - 71.5 51.5 86.4 -
AutoAlignV2 [6] 68.4 72.4 87.0 59.0 33.1 69.3 59.3 - 72.9 52.1 87.6 -
TransFusion [1] 68.9 71.7 87.1 60.0 33.1 68.3 60.8 78.1 73.6 52.9 88.4 86.7
BEVFusion [28] 69.2 71.8 88.1 60.9 34.4 69.3 62.1 78.2 72.2 52.2 89.2 85.2

DeepInteraction [76] 70.8 73.4 87.9 60.2 37.5 70.8 63.8 80.4 75.4 54.5 90.3 87.0

CenterPoint [77] 58.0 65.5 84.6 51.0 17.5 60.2 53.2 70.9 53.7 28.7 83.4 76.7
Our GraphAlign 66.5+8.5 70.6+5.1 87.6 57.7 26.1+8.6 66.2 57.8 74.1 72.5+18.8 49.0+20.3 87.2 86.3+9.6

Table 4. Effect of each component in our GraphAlign. Results are
reported on KITTI validation set with Voxel RCNN. ”P” indicates
projection.

P GFA SAFA AP3D(%)
#Params Runtime

Mod. Hard

85.29 82.86 7.59 M 5ms
✓ 85.59+0.30 83.07+0.21 7.74 M 17ms
✓ ✓ 86.62+1.03 84.21+1.14 7.74 M 24ms
✓ ✓ ✓ 87.01+0.39 84.68+0.47 7.75 M 26ms

standing performance at three difficulty levels of 3D and
BEV detection, with (90.96%, 83.49%, 80.14%, 93.91%,
91.79%, 88.05%). For better comparison, we reproduce
Voxel RCNN [9] as a strong baseline network. It is worth
noting that our replication is almost identical to the results
reported in [9]. Our GraphAlign achieves better perfor-
mance than the baseline Voxel RCNN with (0.06%, 1.80%,
2.72%, 1.02%, 1.82%, 3.36%) improvements on three lev-
els. Compared with the multi-modal method Focals Conv
[5], our GraphAlign achieves better performance than Fo-
cals Conv with the improvements (0.41%, 1.21%, 2.72%).
Our GraphAlign performs well on the KITTI [12] test
dataset’s moderate and hard levels, which have more long-
range objects. In addition, we also provide the results of
the KITTI validation dataset to better present the detec-
tion performance of our GraphAlign, as shown in Table 2.
There is a significant improvement compared to the base-
line Voxel RCNN on the KITTI [12] validation dataset’s
moderate and hard levels. Even slight misalignments be-
tween point clouds and images can likely lead to significant
errors in detection. GraphAlign’s ability to use graphs to
establish relationships between heterogeneous modalities is
a key factor in its success.

4.3.2 Performance on nuScenes dataset.

We also conducted experiments on the much larger
nuScenes [2] dataset using the state-of-the-art 3D detec-
tor CenterPoint [77] to further validate the effectiveness

Table 5. Effect of each component in our GraphAlign. Results are
reported on nuScenes 1

4
validation with CenterPoint. ”P” indicates

projection.
P GFA SAFA mAP NDS #Params Runtime

56.1 64.2 9.01M 12ms
✓ 58.0+1.9 64.8+0.6 9.16M 28ms
✓ ✓ 61.3+3.3 67.8+3.0 9.16M 35ms
✓ ✓ ✓ 62.8+1.5 68.5+0.7 9.17M 37ms

* denotes re-implement result.

of our GraphAlign. As shown in Table 3, GraphAlign
achieved 66.5 mAP and 70.6 NDS on the nuScenes test
dataset, which is 8.5 mAP and 5.1 NDS higher than the
strong CenterPoint [77]. Furthermore, we marked in red
those categories, ”C.V.,” ”Motor,” ”Bike,” and ”T.C.,” that
showed a significant increase in performance, with ”Motor”
and ”Bike” increasing by 18.8% and 20.3%, respectively.
Our GraphAlign exhibits excellent performance in small
object detection, particularly for these four categories that
are characterized by a higher proportion of small objects at
long distances, following more accurate feature alignment.

4.4. Ablation Study

4.4.1 Effect of Projection-only, the GFA and SAFA
modules, and Attention-based

This section discusses the results of ablation experiments
conducted on the baseline detectors Voxel RCNN and Cen-
terPoint to evaluate the performance of each module in
GraphAlign. The results are reported in Table 4 and Table 5
for KITTI and nuScenes 1

4 validation datasets, respectively.
As shown in Table 4, the moderate and hard AP scores

for KITTI are initially at 85.29% and 82.86%, respectively.
Adding the projection-only module to the image branch
only slightly improves the mAP score by 0.30% and 0.21%,
respectively. The lackluster performance was due to the
intrinsic misalignment caused by the sensors’ accuracy er-
rors. However, compared with projection-only, the consec-
utive addition of GFA and SAFA modules led to a contin-
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uous improvement of AP on the moderate and hard levels
of KITTI, by 1.03% and 0.39% (moderate) and 1.14% and
0.47% (hard), respectively. This significant performance
improvement is attributed to our GraphAlign method’s ac-
curate alignment of long-range objects.

As shown in Table 5, the Attention-based feature align-
ment strategy AutoAlignV2 [6] shows slightly improved
detection accuracy compared to GraphAlign, its runtime is
five times longer and cannot meet the real-time requirement.
The reason for this is the global alignment learning between
the point cloud and the image through the Attention mecha-
nism, while our GraphAlign learns local relationships based
on projection, similar to the Anchor mechanism, to enable
faster learning based on prior knowledge. Although the
SAFA module with an attention mechanism has been added
to our GraphAlign, it focuses on learning important local
features of neighbors rather than computing with global im-
age features.

4.4.2 Effect of the Hyperparameters

In this section, we have analyzed the experimental results of
our model with respect to various hyperparameters, includ-
ing K (number of point cloud neighbors), NPsub

(number
of point clouds in the subspace), and H (number of atten-
tion heads) for the car class on the KITTI validation dataset
and 1

4 on nuScenes.
Table 6 indicates that the optimal performance for

GraphAlign based on Voxel RCNN was achieved when K
was set to 16, while for GraphAlign based on CenterPoint,
the optimal value was 25. Although there was a slight im-
provement in performance on easy and moderate levels for
K set to 25 and 36, respectively, the corresponding increase
in computation time by 11

Moreover, Table 7 reveals that the runtime was signifi-
cantly impacted by NPsub

. We found that the best perfor-
mance was achieved with NPsub

set to 1000. Even though
setting NPsub

to 3000 resulted in a slight improvement in
accuracy on the KITTI dataset, the increase in AP was lim-
ited, and the runtime increased by 38%. Therefore, we se-
lected 1000 as the optimal value for NPsub

. Subdividing the
subspace proved critical in saving time, and setting NPsub

to 500 did not improve performance.
Additionally, as depicted in Fig. 8, as H increases, AP

gradually improves, but the effect on runtime is more sig-
nificant, with an increase of approximately 10%. Generally,
H = 1 is preferred, but larger values may be used to achieve
higher AP.

4.4.3 Distances Analysis

To better understand the excellent performance of our
GraphAlign at long distances, we present performance met-
rics for different distance ranges in Table 9. Specifically,

Table 6. Effect of the number of point cloud neighbors K.

K

KITTI [12] nuScenes [2]

AP3D(%)
Runtime mAP NDS Runtime

Easy Mod. Hard

9 91.53 86.38 84.17 25ms 61.9 67.9 35ms
16 92.44 87.01 84.68 26ms 62.1 67.8 37ms
25 92.09 87.11 84.23 29ms 62.8 68.5 41ms
36 92.58 86.87 83.97 34ms 62.9 68.3 47ms
48 92.43 87.58 83.90 40ms 63.1 68.1 54ms

Table 7. Effect of the number of point cloud NPsub in the sub-
space.

NPsub

KITTI [12] nuScenes [2]

AP3D(%)
Runtime mAP NDS Runtime

Easy Mod. Hard

500 92.09 86.59 84.01 23ms 60.9 68.8 34ms
1000 92.44 87.01 84.68 26ms 62.8 68.5 37ms
3000 92.57 87.05 84.77 36ms 61.9 68.7 50ms
5000 92.09 86.81 84.12 45ms 62.2 67.9 58ms
8000 91.97 86.24 85.02 53ms 61.8 67.5 69ms

10000 92.11 86.27 84.32 59ms 61.5 67.0 76ms

Table 8. Effect of the number of attention heads H .

H

KITTI [12] nuScenes [2]

AP3D(%)
Runtime mAP NDS Runtime

Easy Mod. Hard

1 92.44 87.01 84.68 26ms 62.8 68.5 37ms
2 93.57 87.89 84.79 29ms 62.9 68.4 41ms
3 92.87 87.69 84.55 35ms 63.1 68.4 47ms
4 93.51 88.13 84.97 41ms 63.5 68.8 56ms

Table 9. Performance on different distances. The results are evalu-
ated with 3D AP calculated by 40 recall positions for car class on
the moderate level.

P GFA SAFA
AP3D(%) APBEV (%)

0-20m 20-40m 40m-inf 0-20m 20-40m 40m-inf

95.94 79.45 39.45 96.09 89.34 54.00
✓ 95.97 79.52+0.07 38.93-0.52 96.48 90.68+1.34 53.54-0.46
✓ ✓ 96.13 82.02+2.50 46.49+7.56 96.47 92.65+1.88 58.56+5.20
✓ ✓ ✓ 96.12 82.17+0.15 47.67+1.18 96.57 93.54+0.89 59.99+1.43

there was a significant drop in Projection-only, particularly
in the 40m-inf range where there were many small objects.
This was mainly due to misalignment of small objects from
different modalities. By adding the GFA and SAFA mod-
ules, the 3D APs increased by 7.56% and 1.18% respec-
tively, while the BEV APs increased by 5.20% and 1.43%
respectively in the 40m-inf range. These results demon-
strated that our GraphAlign’s effective feature alignment
strategy is helpful for the long-range small objects detec-
tion.

5. Conclusions
In this work,we present GraphAlign, a more accurate

and efficient feature alignment strategy for 3D object de-
tection by graph matching. Specifically, the Graph Fea-
ture Alignment (GFA) module constructs neighbor fusion
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features based on prior knowledge of projection matrix,
which avoids sensor accuracy errors. Furthermore, the Self-
Attention Feature Alignment (SAFA) module is designed
to enhance the weight of important relationships. Compre-
hensive experimental results demonstrate that GraphAlign
significantly improves the 3D detector on the KITTI and
nuScenes datasets. Building upon existing Projection-based
and Attention-based feature alignment strategies, we hope
that our work can provide a new perspective for multi-
modal feature fusion in autonomous driving.

Limitation and future work. One of our limitations is
that our GraphAlign rely on independent semantic segmen-
tation rather than end-to-end learning. As such, in future
work, we aim to investigate the use of end-to-end learning
for graph matching in multi-modal fusion.
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