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Figure 1: Embodied View Synthesis. Given a long video of deformable objects captured by a handheld RGBD sensor, Total-Recon renders
the scene from novel camera trajectories derived from the in-scene motion of actors: (1) egocentric cameras that simulate the point-of-view
of a target actor (such as the pet) and (2) 3rd-person (or pet) cameras that follow the actor from behind. Our method also enables (3) 3D
video filters that attach virtual 3D assets to the actor. Total-Recon achieves this by reconstructing the geometry, appearance, root-body-
and articulated motion of each deformable object in the scene and the background.

Abstract

We explore the task of embodied view synthesis from
monocular videos of deformable scenes. Given a minute-
long RGBD video of people interacting with their pets, we
render the scene from novel camera trajectories derived
from the in-scene motion of actors: (1) egocentric cam-
eras that simulate the point of view of a target actor and
(2) 3rd-person cameras that follow the actor. Building such
a system requires reconstructing the root-body and articu-
lated motion of every actor, as well as a scene representa-
tion that supports free-viewpoint synthesis. Longer videos
are more likely to capture the scene from diverse viewpoints
(which helps reconstruction) but are also more likely to con-
tain larger motions (which complicates reconstruction). To
address these challenges, we present Total-Recon, the first
method to photorealistically reconstruct deformable scenes
from long monocular RGBD videos. Crucially, to scale
to long videos, our method hierarchically decomposes the
scene into the background and objects, whose motion is de-
composed into carefully initialized root-body motion and
local articulations. To quantify such “in-the-wild” recon-
struction and view synthesis, we collect ground-truth data
from a specialized stereo RGBD capture rig for 11 chal-
lenging videos, significantly outperforming prior methods.

1. Introduction
We explore embodied view synthesis, a new class of

novel-view synthesis tasks that renders deformable scenes
from novel 6-DOF trajectories reconstructed from the in-
scene motion of actors: egocentric cameras [45, 7] that sim-
ulate the point-of-view of moving actors and 3rd-person-
follow cameras [54, 7] that track a moving actor from be-
hind (Figure 1). We focus on everyday scenes of people
interacting with their pets, producing renderings from the
point-of-view of the person and pet (Figure 1). While such
camera trajectories could be manually constructed (e.g., by
artists via keyframing), building an automated system is
an interesting problem of its own: spatial cognition the-
ory [57] suggests that the ability to visualize behavior from
another actor’s perspective is necessary for action learning
and imitation; in the context of gaming and virtual real-
ity [7, 45], egocentric cameras offer high levels of user im-
mersion, while 3rd-person-follow cameras provide a large
field of view that is useful for exploring a user’s environ-
ment.

Challenges. Building a system for embodied view syn-
thesis is challenging for many reasons. First, to reconstruct
everyday-but-interesting content, it needs to process long,
monocular captures of multiple interacting actors. How-
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Figure 2: Method Overview. Total-Recon represents the entire scene as a composition of M object-centric neural fields, one for the rigid
background and each of the M − 1 deformable objects. To render a scene, (1) each object field j is transformed into the camera space
with a rigid transformation

(
Gt

j

)−1 that encodes root-body motion and, for each deformable object, an additional deformation field Jt,→
j

that encodes articulated motion. Next, all (2) posed object fields are combined into a (3) composite field, which is then volume-rendered
into (4) color, depth, optical flow, and object silhouettes. Each rendered output defines a reconstruction loss that derives supervision from
a monocular RGBD video captured by a moving iPad Pro.

ever, such videos are likely to contain large scene motions,
which we demonstrate are difficult to reconstruct with cur-
rent approaches. Second, it needs to produce a deformable
3D scene representation that supports free-viewpoint
synthesis, which also would benefit from long videos likely
to capture the scene from diverse viewpoints. Recent
approaches have extended Neural Radiance Fields (NeRFs)
[28] to deformable scenes, but such work is often limited
to rigid-only object motion [18, 33], short videos with
limited scene motion [41, 35, 21, 55, 36, 60, 10, 61, 58],
or reconstructing single objects as opposed the entire
scene [65, 66, 67, 4]. Third, it needs to compute global
6-DOF trajectories of root-bodies and articulated body
parts (e.g., head) of multiple actors.

Key Ideas. To address these challenges, we introduce
Total-Recon, the first monocular NeRF that enables em-
bodied view synthesis for deformable scenes with large
motions. Given a monocular RGBD video, Total-Recon re-
constructs the scene as a composition of object-centric rep-
resentations, which encode the 3D appearance, geometry,
and motion of each deformable object and the background.
Crucially, Total-Recon hierarchically decomposes scene
motion into the motion of individual objects, which itself is
decomposed into global root-body movement and the local
deformation of articulated body parts. We demonstrate that
such decomposition of object motion, along with appropri-
ate initialization of root-body pose, allows reconstruction to
scale to longer videos, enabling free-viewpoint synthesis.
By reconstructing such motions in a globally-consistent

coordinate frame, Total-Recon can generate renderings
from egocentric and 3rd-person-follow cameras, as well as
static but extreme viewpoints like bird’s-eye-views.

Evaluation. Due to the difficulty of collecting ground-
truth data for embodied view synthesis on in-the-wild
videos, we evaluate our method on the proxy task of
stereo-view synthesis [35], which compares rendered views
to those captured from a stereo pair. To this end, we build
a stereo RGBD sensor capture rig for ground-truthing and
collect a dataset of 11 long video sequences in various
indoor environments, including people interacting with
their pets. Total-Recon outperforms the state-of-the-art
monocular deformable NeRF methods [36, 60], even when
modified to use depth sensor measurements.

Contributions. In summary, our contributions are: (1)
Total-Recon, a hierarchical 3D representation that mod-
els deformable scenes as a composition of object-centric
representations, each of which decomposes object motion
into its global root-body motion and its local articulations;
(2) a system based on Total-Recon for automated embod-
ied view synthesis from casual, minute-long RGBD videos
of highly dynamic scenes; (3) a dataset of stereo RGBD
videos containing various deformable objects, such as hu-
mans and pets, in a host of different background environ-
ments. Our code, models, and data can be found at https:
//andrewsonga.github.io/totalrecon.
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Method Entire
Scenes

Deform.
Objects

Beyond
Humans

Global
6-DOF
Traj.

Long
Videos

Extreme
Views

BANMo [67] ✗ ✓ ✓ ✗ ✓ ✓
PNF [18] ✓ ✗ ✓ ✓ ✗ ✗

NeuMan [16] ✓ ✓ ✗ ✓ ✗ ✗

SLAHMR [69] ✗ ✓ ✗ ✓ ✗ ✗

HyperNeRF [36] ✓ ✓ ✓ ✗ ✗ ✗

D2NeRF [60] ✓ ✓ ✓ ✗ ✗ ✗

DynIBaR [22] ✓ ✓ ✓ ✗ ✓ ✗

SUDS [56] ✓ ✓ ✓ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison to Related Work. Unlike prior work,
Total-Recon targets embodied view synthesis of scenes contain-
ing humans and pets, requiring the ability to (1) reconstruct entire
scenes, (2) model deformable objects, (3) extend beyond humans,
(4) recover global 6-DOF trajectories of objects’ root-bodies and
their articulated parts, (5) process minute-long videos of dynamic
scenes, and (6) render extreme views.

2. Related Work

Neural Radiance Fields. Prior works on Neural Radi-
ance Fields (NeRF) optimize a continuous scene function
for novel view synthesis given a set of multi-view images,
usually under the assumption of a rigid scene and densely
sampled views [28, 26, 27, 23, 14, 59]. DS-NeRF [6]
and Dense Depth Priors [44] extend NeRFs to the sparse-
view setting by introducing depth as additional supervision.
Total-Recon also operates in the sparse-view regime and
uses depth supervision to reduce the ambiguities inherent
to monocular, multibody, non-rigid reconstruction [62, 34].
Another line of work [18, 33] represents rigidly moving
scenes as a composition of multiple object-level NeRFs.
Total-Recon also leverages such an object-centric scene rep-
resentation, but models scenes containing non-rigidly mov-
ing objects, such as humans and pets.

Deformable NeRFs. Recent approaches extend NeRF to
monocular deformable scene reconstruction either by learn-
ing an additional function that deforms observed points in
the camera space to a time-independent canonical space [41,
35, 55, 36, 60] or explicitly modeling density changes over
time [10, 61, 58, 21]. Such methods are typically lim-
ited to short videos containing little scene and camera mo-
tion. They also perform novel-view synthesis only over
small baselines. Total-Recon belongs to the former cat-
egory of prior monocular deformable NeRFs, but unlike
them, our method hierarchically decomposes scene mo-
tion into the motion of each object, which is further de-
composed into global root-body motion and local articu-
lations. The proposed motion decomposition is what en-
ables embodied view synthesis: it allows Total-Recon to
scale to minute-long videos and reconstruct a deformable
3D scene representation that supports free-viewpoint syn-

thesis; it also makes it easy to extract an object’s root-body
motion, the key motion primitive required for 3rd-person-
follow view synthesis. Several works have taken differ-
ent approaches to making non-rigid reconstruction more
tractable. One group of work leverages human-specific pri-
ors [38, 53, 32, 39, 24, 16, 19, 37] such as human body mod-
els (e.g., SMPL), 3D skeletons, or 2D poses to achieve high
reconstruction quality. We achieve similar levels of fidelity
without relying on such shape priors, allowing Total-Recon
to generalize to pets and, by extension, reconstruct human-
pet interaction videos. Another body of work [15, 48, 20]
achieves high-fidelity scene reconstructions by relying on
synchronized multi-view video captured from a specialized
camera rig ranging from 8 to 18 static cameras. In con-
trast, Total-Recon only requires a single video captured
from a moving RGBD camera equipped with inertial sen-
sors, which has now become widely accessible in consumer
products with the advent of Apple’s iPhone and iPad Pro.

Reconstruction with RGBD Sensors. Depth sensors
represent the third class of attempts to make non-rigid re-
construction more tractable, reducing the need for a pre-
defined shape template. Kinect-fusion [30] creates a real-
time system for indoor scene localization and mapping. Dy-
namic Fusion [29] builds a template-free dense SLAM sys-
tem for dynamic objects. Later works improve RGBD re-
construction to be able to deal with topology changes [50,
51] and use correspondence matching for registration over
large motions [2, 3]. Recent works have incorporated neural
implicit representations to reconstruct the surface geometry
and 3D motion fields for deformable objects [43, 4] or large-
scale rigid scenes [1, 42] in isolation. Other works have re-
constructed humans alongside small-scale objects and fur-
niture [8, 2], but not the entire background. We aim to go
even further by reconstructing the entire scene, which in-
cludes the background and multiple deformable targets such
as humans and pets; not only do we reconstruct the geome-
try, but we also recover a radiance field that allows for pho-
torealistic scene rendering from embodied viewpoints and
other novel 6-DOF trajectories.

Concurrent Work. Concurrent work exhibits a subset of
the design choices necessary for embodied view synthesis.
SLAHMR [69] reconstructs the geometry and in-scene mo-
tion of human actors but not the scene appearance. Nerflets
[71] models the appearance, geometry, and motion of each
scene element but is limited to rigidly moving objects. Ro-
DynRF [25], NeRF-DS [63], HexPlane [5], and K-planes
[9] reconstruct other types of dynamic scene elements, such
as deformable or specular objects, but these methods have
been demonstrated on only short videos and/or videos con-
taining limited object root-body motion [40, 47, 63, 11].
DynIBaR [22] scales dynamic view synthesis to longer
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videos with complex camera and scene motion, and SUDS
[56] scales reconstruction to urban-scale dynamic scenes
captured from 1.2 million frames. However, neither demon-
strates extreme-view synthesis, a prerequisite for rendering
embodied views. We summarize and compare prior work to
Total-Recon in Table 1.

3. Method
3.1. Limitations of Prior Art

The state-of-the-art monocular deformable NeRFs [36,
60] decompose a deformable scene into a rigid, canonical
template model and a deformation field Jt,← that maps the
world space Gt

0X
t to the canonical space X∗, where Gt

0 is
the known camera pose at time t, and Xt is a camera space
point at time t:

X∗ = Wt,← (
Xt

)
= Jt,←(Gt

0X
t). (1)

In theory, this formulation is sufficient to represent all con-
tinuous motion; it performs well on short videos contain-
ing near-rigid scenes, as the deformation field only has to
learn minute deviations from the template model. However,
this motion model is difficult to scale to minute-long videos,
which are more likely to contain deformable objects under-
going large translations (e.g., a person walking into another
room) and pose changes (e.g., a person sitting down). Here,
the deformation field must learn large deviations from the
canonical model, significantly complicating optimization.

Another critical limitation of HyperNeRF and D2NeRF
is that they cannot track separate deformable objects and
therefore cannot perform 3rd-person-follow view synthesis
for scenes with multiple actors.

3.2. Component Radiance Fields

To address the limitations of existing monocular de-
formable NeRFs, we propose Total-Recon, a novel 3D rep-
resentation that models a deformable scene as a compo-
sition of M object-centric neural fields, one for the rigid
background and each of the M − 1 deformable objects
(Figure 2). Crucially, Total-Recon hierarchically decom-
poses scene motion into the motion of each object, which
itself is decomposed into global root-body motion and lo-
cal articulations. This key design choice scales our method
to minute-long videos containing highly dynamic and de-
formable objects.

Background Radiance Field. We begin by modeling
the background environment as a Neural Radiance Field
(NeRF) [28]. For a 3D point X∗ ∈ R3 and a viewing di-
rection v∗ in the canonical world space, NeRF defines a
color c and density σ represented by an MLP. We follow
contemporary variants [26] that include a time-specific em-
bedding code ωt

e to model illumination changes over time

and model density with as a function of a neural signed dis-
tance function (SDF) MLPσ(·) = αΓβ(MLPSDF(·)) [68]
to encourage the reconstruction of a valid surface:

σ = MLPσ(X
∗), ct = MLPc(X

∗,v∗, ωt
e). (2)

The pixel color can then be computed with differentiable
volume rendering equations (Section 3.3).

Most NeRF methods, including HyperNeRF [36] and
D2NeRF [60], assume images with known cameras. While
our capture devices are equipped with inertial sensors, we
find their self-reported camera poses have room for im-
provement. As such, we also model camera pose as an opti-
mizable rigid-body transformation Gt

0 ∈ SE(3) that maps
points in a time-specific camera space Xt ∈ R3 to the world
space (where we assume homogenous notation):

X∗ = Gt
0X

t. (3)

Deformable Field (for Object j). We model the de-
formable radiance field of object j ∈ {1, · · · ,M − 1} with
BANMo [67], which consists of a canonical rest shape and
time-dependent deformation field. The canonical rest shape
is represented by the same formulation described by Equa-
tion 2, but now defined in a local object-centric canonical
space rather than the world space. BANMo represents ob-
ject motion with a warping function Wt,←

j : Xt → X∗j that
maps the camera space points Xt to canonical space points
X∗j with a rigid-body transformation Gt

j ∈ SE(3) and a de-
formation field Jt,←

j modeled by linear blend skinning [13]:

X∗j = Wt,←
j

(
Xt

)
= Jt,←

j

(
Gt

jX
t
)
. (4)

Note that our choice of deformation field differs from the
SE(3)-field used in HyperNeRF and D2NeRF, which has
been shown to produce irregular deformation in the pres-
ence of complex scene motion [67]. Intuitively, rigid-body
transformation Gt

j captures the global root-body pose of
object j relative to the camera at time t, while deformation
field Jt,←

j aligns more fine-grained articulations relative to
its local canonical space (Figure 2). Explicitly disentan-
gling these two sources of object motion (as opposed to con-
flating them) enables easier optimization of the deformation
field, because local articulations are significantly easier to
learn than those modeled relative to the world space (Equa-
tion 1). Furthermore, this motion decomposition makes the
deformation field invariant to rigid-body transformations of
the object. A motion model similar to ours was proposed by
ST-NeRF [15], but their model encodes an object’s global
root-body motion with a 3D axis-aligned bounding box that
does not explicitly represent object orientation, a prereq-
uisite for embodied view synthesis from 3rd-person-follow
cameras.
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Rendered features f̂ at pixel xt Corresponding 3D features fij(Xt
i)

color ĉ(xt) cti
(
Wt, ←

j (Xt
i)
)

flow F̂(xt, t → t′) Πt′
(
Wt′, →

j

(
Wt, ←

j (Xt
i)
))

− xt

depth d̂(xt) [0, 0, 1] ·Xt
i

Table 2: Rendered 2D features f̂ and their corresponding 3D fea-
tures fij . Πt′ denotes the camera intrinsics at time t′.

As did BANMo, Total-Recon also models a forward
warp Xt

j = Wt,→
j (X∗) =

(
Gt

j

)−1
Jt,→
j (X∗) that maps

the canonical space to the camera space, which is used to
establish the surface correspondences required for egocen-
tric view synthesis and 3D video filters.

3.3. Composite Rendering of Multiple Objects

Given a set of M object representations (the background
is treated as an object as well), we use the composite render-
ing scheme from prior work [31, 52] to combine the outputs
of all object representations and volume-render the entire
scene. To volumetrically render the image at frame t, we
sample multiple points along each camera ray vt. Denot-
ing the ith sample as Xt

i, we write the density and color
observed at sample i due to object j as:

σij = MLPσ,j

(
X∗ij

)
, cij = MLPc,j

(
X∗ij ,v

∗
j , ω

t
e

)
,

where X∗ij = Wt,←
j (Xt

i) and v∗j = Wt,←
j (vt) are sample i

and camera ray vt backward-warped into object j’s canoni-
cal space, respectively. The composite density σi at sample
i along the ray is then computed as the sum of each ob-
ject’s density σij ; the composite color ci is computed as the
weighted sum of each object’s color cij , where the weights
are the normalized object densities σij/σi:

σi =

M−1∑
j=0

σij , ci =
1

σi

M−1∑
j=0

σijcij . (5)

We can then use the standard volume rendering equations
to generate an RGB image of the scene, where N is the
number of sampled points along camera ray vt, τi is the
transmittance, αi is the alpha value for sample point i and
δi is the distance between sample point i and the (i + 1):

ĉ =

N∑
i=1

τiαici, τi =

i−1∏
k=1

(1− αk), αi = 1− e−σiδi .

Rendering Flow, Depth, and Silhouettes. Our compos-
ite rendering scheme can be used to render different quanti-
ties by replacing the object color cij in Equation 5 with the
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Figure 3: 6-DOF Trajectories for Embodied View Synthesis.
To synthesize embodied views from egocentric or actor-following
cameras, Total-Recon reconstructs the entire background, every
individual actor in the scene, as well as global 6-DOF trajectories
of its root-body and its articulated body parts (e.g. head).

appropriately defined 3D feature fij (Table 2) and render-
ing the resulting composite feature fi. To render occlusion-
aware object silhouettes, we follow ObSURF [52] to pro-
duce a categorical distribution over the M objects:

ôj =

N∑
i=1

τiαij , where τi =

i−1∏
k=1

(1− αk), (6)

αi = 1− e−σiδi , αij = 1− e−σijδi . (7)

Losses. Given a monocular RGBD video, we optimize all
parameters in our composite scene representation, which
for each of the M objects includes the appearance and
shape MLPs (MLPc,j , MLPσ,j), rigid-body transforma-
tions Gt

j , and forward, backward deformation fields J←j ,
J→j . We optimize three reconstruction losses: a color loss
Lrgb, a flow loss Lflow, and a depth loss Ldepth, where the
ground truth color c and depth d are provided by the RGBD
video, and the “ground truth” flow F is computed by an
off-the-shelf network [64]. The model also optimizes a 3D-
cycle consistency loss Lcyc,j [67] for each deformable ob-
ject to encourage their forward and backward warps to be
consistent, where xt ∈ R2 denotes pixel location at time t:
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Lrgb =
∑
xt

||c(xt)− ĉ(xt)||2, (8)

Lflow =
∑
xt

||F(xt)− F̂(xt)||2, (9)

Ldepth =
∑
xt

||d(xt)− d̂(xt)||2, (10)

Lcyc,j =
∑
i

τiαij

∥∥∥Wt′, →
j

(
Wt, ←

j (Xt
i)
)
−Xt

i

∥∥∥2 . (11)

Initialization. We initialize the rigid-body transforma-
tions of each deformable object Gt

j using a pre-trained
category-specific PoseNet [67]; we initialize the rigid-body
transformation of the background Gt

0 with the camera poses
provided by the iPad Pro.

Embodied View Synthesis and 3D Filters. To enable
embodied view synthesis and 3D video filters (Figure 3),
we design a simple interface that allows a user to select a
point on a target object’s surface in its reconstructed canon-
ical mesh, and use its forward warping function Wt,→

j :

X∗ → Xt followed by the rigid-body transformation Gt
0

to place the egocentric camera (or virtual 3D asset) in the
world space. The surface normal to the object’s mesh at
the user-defined point provides a reference frame to align
the egocentric camera’s viewing direction and place the 3D
asset. To implement a 3rd-person-follow camera, we add
a user-defined offset to the object’s local reference frame,
which is defined by its root-body pose.

4. Experiments
Implementation Details. In practice, we train our com-
posite scene representation by first pre-training each object
field separately. For deformable objects, we pre-train using
a depth loss (Equation 10) combined with the losses op-
timized by BANMo [67]. This includes a silhouette loss
Lmask =

∑
xt ||oj(x

t) − ôj(x
t)||2, where the “ground

truth” object silhouette oj is computed by an off-the-shelf
instance segmentation engine [17]. For pre-training the
background, we optimize color, flow, and depth losses
(Equations 8, 9, 10) on pixels outside the ground truth ob-
ject silhouettes. Importantly, we don’t supervise the object
fields on frames that are not provided an object silhouette
since it cannot be determined whether the absence of detec-
tion is a true or false negative.

After pre-training, we composite-render the pre-trained
object fields and jointly finetune them using only the
color, depth, flow, and object-specific 3D-cycle consistency
losses. Since the silhouette loss is no longer used, the scene
representation is supervised on all frames of the training se-

quence during joint-finetuning. We provide a complete de-
scription of the implementation details in the supplement.

Dataset. We evaluate Total-Recon on novel-view synthe-
sis for deformable scenes. To enable quantitative evalua-
tion, we built a stereo rig comprised of two iPad-Pros rigidly
attached to a camera mount, a setup similar to that of Ner-
fies [35]. Using the stereo rig, we captured 11 RGBD se-
quences containing 3 different cats, 1 dog, and 2 human
subjects in 4 different indoor environments. The RGBD
videos were captured using the Record3D iOS App [49],
which also automatically registers the frames captured by
each camera. These video sequences, which were subsam-
pled at 10 fps, range from 392 to 901 frames, amount to, on
average minute-long videos that are significantly longer and
contain more dynamic motion than the datasets introduced
by [35, 36, 60, 11]. The left and right cameras were regis-
tered by solving a Perspective-n-Point (PnP) problem using
manually annotated correspondences, and their videos were
synchronized based on audio. We provide a complete de-
scription of our dataset in the supplement.

Reconstruction and Applications. By hierarchically de-
composing scene motion into the motion of each object,
which itself is decomposed into root-body motion and local
articulations, Total-Recon automatically computes novel 6-
DoF trajectories such as those traversed by egocentric cam-
eras and 3rd-person follow cameras (Figure 3). In turn,
these trajectories enable automated embodied view synthe-
sis and 3D occlusion-aware video filters (Figure 4). These
tasks are also enabled by Total-Recon’s ability to recover an
accurate deformable 3D scene representation, which is cur-
rently out of reach for the best of related methods (Figure
5). As shown in the bird’s eye view, each reconstructed ob-
ject is properly situated with respect to the background and
other objects, a direct consequence of our use of depth su-
pervision. Furthermore, even though the iPad Pro can only
measure depth up to 4m, Total-Recon can render depth be-
yond this sensor limit by pooling the measurements from
other frames into a single metric scene reconstruction. We
provide results on additional sequences in the supplement.

Baselines and Evaluation. In Figure 5 and Table 3, we
compare Total-Recon to D2NeRF [60] and HyperNeRF
[36], and their depth-supervised equivalents on the proxy
task of stereo-view synthesis, a prerequisite for embodied
view synthesis: we train each method on the RGBD frames
captured from the left camera of our dataset and evaluate
the images rendered from the viewpoint of the right camera.
The depth-supervised versions of the baselines contain the
same depth loss used in Total-Recon. We report LPIPS [70]
and the average (depth) accuracy at 0.1m [42] in all sub-
sequent experiments, and we include a more complete set
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Figure 4: Embodied View Synthesis and 3D Filters. For select sequences of our RGBD dataset, we visualize the scene geometry and
appearance reconstructed by our method (3D reconstruction) and the resulting downstream applications. The yellow and blue camera
meshes in the mesh renderings represent the egocentric and 3rd-person-follow cameras, respectively. To showcase the 3D video filter we
attach a sky-blue unicorn horn to the forehead of the target object, which is then automatically propagated across all frames. Full-length
videos can be found at https://andrewsonga.github.io/totalrecon/applications.html.

of metrics (PSNR, SSIM, RMS depth error) in the supple-
ment. Because D2NeRF and HyperNeRF were not designed
to recover a metric scene representation, we replaced their
COLMAP [46] camera poses with those provided by the
iPad Pro (which are metric measurements) for the sake of
fair comparison.

Comparisons. Total-Recon qualitatively and quantita-
tively outperforms all of the baselines. As shown in Figure
5, Total-Recon successfully reconstructs the entire scene,
whereas the baselines are only able to reconstruct the rigid
background at best. As shown in Table 3, Total-Recon sig-
nificantly outperforms all baselines in terms of LPIPS and

the average accuracy at 0.1m (Acc@0.1m). We attribute
this huge gap to the baselines’ inability to reconstruct highly
dynamic objects. We provide more details regarding the
baselines and additional visualizations in the supplement.

4.1. Ablation Studies

Table 4 (and Figures 6 and 7) analyzes the importance
of Total-Recon’s design choices (see Section 3) by ablat-
ing its key components: the depth loss Ldepth (row 2), the
deformation field Jt

j (row 3), PoseNet-initialization of the
root-body pose (row 4), and the root-body pose Gt

j itself
(row 5), where j denotes a deformable actor. For all abla-
tions, we use the same set of training losses used in Total-

17677



DOG 1
(626 images)

DOG 1 (V2)
(531 images)

CAT 1
(641 images)

CAT 1 (V2)
(632 images)

CAT 2
(834 images)

CAT 2 (V2)
(901 images)

CAT 3
(767 images)

HUMAN 1
(550 images)

HUMAN 2
(483 images)

HUMAN - DOG

(392 images)
HUMAN - CAT

(431 images)
MEAN

LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑ LPIPS↓ Acc↑
HyperNeRF .634 .107 .432 .176 .521 .316 .438 .314 .641 .277 .397 .252 .592 .213 .632 .053 .585 .067 .487 .072 .462 .162 .531 .198
D2NeRF .540 .219 .546 .220 .687 .346 .588 .403 .556 .333 .595 .339 .759 .231 .588 .066 .630 .128 .576 .078 .628 .126 .611 .247

HyperNeRF (+depth) .373 .352 .425 .357 .532 .552 .371 .596 .330 .605 .376 .612 .514 .451 .501 .211 .445 .249 .450 .283 .456 .214 .428 .439
D2NeRF (+depth) .507 .338 .532 .270 .685 .510 .580 .362 .561 .438 .553 .376 .730 .243 .585 .086 .609 .131 .608 .154 .645 .176 .599 .302

Total-Recon .271 .841 .313 .790 .382 .889 .333 .894 .237 .967 .281 .925 .261 .949 .213 .909 .264 .849 .256 .827 .233 .914 .278 .895

Table 3: Baseline Comparisons. We train Total-Recon, HyperNeRF [36], D2NeRF [60], and their depth-supervised variants on the left
video captured with our stereo rig, and evaluate the novel view synthesis results on the held-out right video. Total-Recon significantly
outperforms all of the baselines for all 11 sequences. These sequences are sampled at 10 fps, amounting to minute-long videos, on average.
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Ours
(w/ depth)

D2NeRF
(w/ depth)

HyperNeRF
(w/ depth)

Figure 5: Baseline Comparisons. We compare Total-Recon to
depth-supervised variants of HyperNeRF [36] and D2NeRF [60]
on the task of stereo-view synthesis (the left camera is used for
training and the right is used for testing). While the baselines are
able to reconstruct only the background, Total-Recon can recon-
struct both the background and the moving deformable object(s),
demonstrating holistic scene reconstruction.

Recon and initialize camera pose Gt
0 with those reported by

ARKit. For ablations that model root-body motions, we ini-
tialize each deformable actor’s root-body pose Gt

j with pre-
dictions made by PoseNet [67] and optimize them during
reconstruction; for row 4, we replace the PoseNet predic-
tions with identity rotations. We report the novel-view met-
rics averaged over 6 select sequences of our dataset: DOG 1
(v1), CAT 1 (v1), CAT 2 (v1), HUMAN 1, HUMAN 1 & DOG
1, and HUMAN 2 & CAT 1.

Depth Supervision. Table 4 shows that removing depth
supervision (row 2) significantly reduces the average accu-
racy at 0.1m (Acc). Figure 6 indicates that this reflects the
incorrect arrangement of objects stemming from their scale
inconsistency - while removing depth supervision does not
significantly deteriorate the training-view RGB renderings,
it induces critical failure modes as shown in the novel-view
3D reconstructions: (a) floating foreground objects, as evi-

Methods Depth
Loss

Deform.
Obj.

Root
Init.

Root
Motion LPIPS↓ Acc@0.1m↑

(1) Full model ✓ ✓ ✓ ✓ .268 .898
(2) w/o loss Ldepth ✗ ✓ ✓ ✓ .372 .154
(3) w/o deform. Jj ✓ ✗ ✓ ✓ .296 .867
(4) w/o root-body init. ✓ ✓ ✗ ✓ .293 .870
(5) w/o root-body Gj ✓ ✓ ✗ ✗ N/A N/A

Table 4: Ablation Study. Removing depth supervision (2) signif-
icantly hurts performance, while removing the deformation field
(3) and PoseNet-initialization of root-body poses (4) hurts mod-
erately. Most importantly, removing root-body poses entirely (5)
prevents convergence (N/A) as the deformation field alone has to
explain global object motion (see Figure 2). These experiments
justify our hierarchical modeling of motion, as even root-bodies
without a deformation field (3) or poorly initialized root-bodies
(4) are better than no root-bodies (5). We visualize these ablations
in Figure 7 and explore other ablations in the supplement.

denced by their shadows, and (b) the human incorrectly oc-
cluding the dog. In other words, without depth supervision,
Total-Recon overfits the training view and learns a degen-
erate scene representation where the reconstructed objects
fail to converge to the same scale. We show results on addi-
tional sequences in the supplement.

Motion Modeling. Table 4 shows that removing the de-
formation field (row 3) also hurts performance. This is
because, without the deformation field, our method has to
explain an object’s non-rigid motion solely with its rigid,
root-body poses. As a result, this ablation can only recover
coarse object reconstructions that fail to model moving
body parts such as limbs. Removing PoseNet-initialization
of root-body poses (row 4) is just as detrimental, result-
ing in noisy appearance and geometry artifacts; see Fig-
ure 7 and additional visuals in the supplement. Most no-
tably, Table 4 shows that removing object root-bodies en-
tirely (row 5) causes the optimization to fail to converge
(N/A), even though the deformation field can (in theory)
represent all continuous motion. It appears difficult for
deformation fields alone to explain global root-body mo-
tion because such motions can deviate significantly from a
canonical model, complicating optimization.
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Figure 6: Ablation Study on Depth Supervision. While removing
depth supervision does not significantly deteriorate the training-
view RGB renderings, it significantly hurts the novel-view 3D re-
constructions, as characterized by the following: (a) floating fore-
ground objects (as evidenced by their shadows) and (b) the human
incorrectly occluding the dog. These failure modes indicate that
without depth supervision, Total-Recon overfits the training view,
and the reconstructed objects fail to converge to the same scale.

Novel View 
(GT)

Complete 
Model

w/o depth 
loss

w/o deform.
field 

w/o root
init.

Figure 7: Ablation Study. We visualize the ablations from Ta-
ble 4. Removing the depth loss causes the cat to sink into the
ground due to inconsistent object scales. Removing the deforma-
tion field produces coarse object reconstructions that fail to capture
articulated body parts such as moving limbs. Removing PoseNet-
initialization of root-body poses results in noisier appearance and
geometry, as shown by the human actor’s left hand. We omit
the ablation without root-body poses as it does not converge. We
present additional visualizations in the supplement.

These diagnostics justify Total-Recon’s hierarchical mo-
tion representation, which explicitly models objects’ root-
body poses; root-bodies without articulated deformations
(row 3) or poorly initialized root-bodies (row 4) are bet-
ter than no root-bodies at all (row 5). Our ablations also
suggest that the poor performance of the baseline methods
(on our challenging dataset) may be attributed to the lack
of object-centric motion modeling. We provide a more de-
tailed analysis with additional experiments and RGBD se-
quences in the supplement.

5. Discussion and Limitations
We have presented a new system for automated embod-

ied view synthesis from monocular RGBD videos, focusing
on videos of people interacting with their pets. Our main
technical contribution is Total-Recon, a 3D representation
for deformable scenes that hierarchically decomposes scene
motion into the motion of each object, which is further de-
composed into its root-body motion and local articulations;
this key design choice enables appropriate initialization of
root-body poses and hence easier optimization over long
videos containing large motions. By explicitly reconstruct-
ing the geometry, appearance, root-body- and articulated
motion of each object, Total-Recon enables seeing through
the eyes of people and pets and generating game-like traver-
sals of deformable scenes from behind a target actor.

Limitations. In Total-Recon, scene decomposition is pri-
marily supervised by object silhouettes computed by an
off-the-shelf segmentation model [17], which may be in-
accurate, especially in partial occlusion scenarios. This
may damage the resulting reconstructions and embodied-
view renderings. We believe that incorporating the latest
advances in video instance segmentation [12] will enable
Total-Recon to be applied to more challenging scenarios.
Second, Total-Recon initializes the root-body pose of each
deformable object using a PoseNet [67] trained for humans
and quadruped animals, which does not generalize to other
object categories (e.g., birds, fish). We reserve the recon-
struction of generic scenes for future work. Finally, our
model needs to be optimized on a per-sequence basis for
roughly 15 hours with 4 NVIDIA RTX A5000 GPUs and
is therefore not suitable for real-time applications. Incorpo-
rating recent advances in fast neural field training methods
is an interesting avenue for future research.
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