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Figure 1. Our agent interacts with the currently generated spatial graph by proposing new edges to be added. A tree-based search produces
a sequence of actions that maximizes a reward function based on complex geometrics priors.

Abstract

Accurately predicting road networks from satellite im-
ages requires a global understanding of the network topol-
ogy. We propose to capture such high-level information
by introducing a graph-based framework that given a par-
tially generated graph, sequentially adds new edges. To
deal with misalignment between the model predictions and
the intended purpose, and to optimize over complex, non-
continuous metrics of interest, we adopt a reinforcement
learning (RL) approach that nominates modifications that
maximize a cumulative reward. As opposed to standard su-
pervised techniques that tend to be more restricted to com-
monly used surrogate losses, our framework yields more
power and flexibility to encode problem-dependent knowl-
edge. Empirical results on several benchmark datasets
demonstrate enhanced performance and increased high-
level reasoning about the graph topology when using a tree-
based search. We further demonstrate the superiority of our
approach in handling examples with substantial occlusion
and additionally provide evidence that our predictions bet-
ter match the statistical properties of the ground dataset.

1. Introduction
Road layout modelling from satellite images constitutes

an important task of remote sensing, with applications in

1Correspondence sotirios.anagnostidis@inf.ethz.ch.

everyday life, such as traffic flow prediction and navigation.
The vast amounts of data available from the commercializa-
tion of geospatial data, in addition to the need for accurately
establishing the connectivity of roads in remote areas, have
led to an increased interest in the precise representation of
existing road networks. By nature, these applications re-
quire structured data types that provide efficient represen-
tations to encode geometry, in this case, graphs, a de facto
choice in domains such as computer graphics, virtual real-
ity, gaming, and the film industry. These structured-graph
representations are also commonly used to label recent road
network datasets [60] and map repositories [40]. When
dealing with complex predicted structures, however, how
well the model optimizes a surrogate objective is not always
the best indication of how well the model’s predictions are
aligned with the required task risk, i.e. the targeted final
utilization.

Problems of this nature have been recently extensively
studied in the regime of natural language processing, where
the misalignment between training objectives for tasks such
as machine translation and summarization has garnered
considerable attention among the academic community,
who have devoted significant efforts to its analysis and elu-
cidation. A popular emerging technique is to first learn to
imitate some example outputs and then fix any misalign-
ment issues by using reinforcement learning to adjust the
predictions based on a reward function. The reward usually
comes in the form of external human evaluation [41, 4].

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Typical road network features (SpaceNet dataset). From left to right: (a) the distribution of angles between road segments leading
to the same intersection is biased towards 0 and 90 degrees, i.e. parallel or perpendicular roads. The same also holds (b) for angles between
random road pieces within a ground distance of 400 meters. (c) Most road vertices belong to a single road piece, with a degree of 2. (d)
The average number of intersections for areas of 400×400 meters by ground distance.

In this work we manifest how RL fine-tuning can greatly
benefit and boost performance when producing intricate ge-
ometric predictions. For the task of road layout detection,
existing methods, in contrast, mostly rely on pixel-based
segmentation models that are trained on masks produced by
rasterizing ground truth graphs. Performing pixel-wise seg-
mentation, though, ignores structural features and geomet-
ric constraints inherent to the problem. As a result, mini-
mum differences in the pixel-level output domain can have
significant consequences in the proposed graph, in terms of
connectivity and path distances, as manifested by the of-
ten fragmented outputs obtained after running inference on
these models. In order to address these significant draw-
backs, we propose a new paradigm where we (i) directly
generate outputs as spatial graphs and (ii) formalize the
problem as a game where we sequentially construct the out-
put by adding edges between key points. These key points
can in principle come from any off-the-shelf detector that
identifies road pieces with sufficient accuracy. Our gener-
ation process avoids having to resort to cumbersome post-
processing steps [8, 32] or optimize some surrogate objec-
tives [30, 34] whose relation to the desired qualities of the
final prediction can be disputed. Concurrently, the sequen-
tial decision-making strategy we propose enables us to fo-
cus interactively on different parts of the image, introducing
the notion of a current state and producing reward estimates
for a succession of actions. In essence, our method can be
considered as a generalization of previous refinement tech-
niques [8, 26] with three major advantages: (i) removal of
the requirement for greedy decoding, (ii) ability to attend
globally to the current prediction and selectively target parts
of the image, and (iii) capacity to train based on demanding
task-specific metrics.

More precisely, our contributions are the following:

• We propose a novel generic strategy for tuning autore-
gressive models that removes the requirement of de-
coding according to a pre-defined order and refines ini-
tial sampling probabilities via a tree search.

• We create a synthetic benchmark dataset of pixel-level

accurate labels of overhead satellite images for the task
of road network extraction. This gives us the ability
to simulate complex scenarios with occluded regions,
allowing us to demonstrate improved robustness.

• We confirm the wide applicability of our approach by
improving the performance of existing methods on the
popular SpaceNet and DeepGlobe datasets.

2. Related work

Initial attempts to extract road networks mainly revolved
around handcrafted features and stochastic geometric mod-
els of roads [6]. Road layouts have specific characteristics
regarding radiometry and topology e.g. particular junction
distribution, certain general orientation, and curvature (see
Fig. 2), that enable their detection even in cases with signif-
icant occlusion and uncertainty [19]. Modern approaches
mostly formulate the road extraction task as a segmentation
prediction task [27, 31, 3] by applying models such as Hour-
glass [37] or LinkNet [10]. This interpretation has signifi-
cant drawbacks when evaluated against structural losses be-
cause of discontinuities in the predicted masks. Such short-
comings have been addressed by applying some additional
post-processing steps, such as high-order conditional ran-
dom fields [38, 65] or by training additional models that
refine these initial predictions [29, 8]. Other common tech-
niques include the optimization of an ensemble of losses.
[13] rely on a directional loss and use non-maximal sup-
pression as a thinning layer, while [8] calculate orientations
of road segments. Although such auxiliary losses somewhat
improve the output consistency, the fundamental issue of
producing predictions in the pixel space persists. It remains
impossible to overcome naturally occurring road structures,
e.g. crossings of roads in different elevations, see Fig. 3.

Previous failure cases have led to more intuitive concep-
tualizations of the task. Roadtracer [7], iteratively builds
a road network, similar to a depth-first search approach,
while [13] learn a generative model for road layouts and
then apply it as a prior on top of a segmentation prediction
mask. Proposed graph-based approaches encode the road
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Segmentaiton Model Threshold and extract graph Compare to ground truth

Figure 3. (Left) Typical segmentation-based methods generate an output graph by thresholding a segmentation mask, which can however
often lead to fragmented outputs. Predicting segmentation masks also makes it impossible (right) to capture complex road interactions,
such as overlapping roads at different elevations.

network directly as a graph, but either operate based on a
constrained step-size [56] to generate new vertices or op-
erate on a single step [18, 5], involving use-defined thresh-
olding to post-process the final predictions. Most similar
to our work, [26] predict locations of key points and de-
fine a specific order traversing them, as also done in [69].
Such autoregressive models have been recently successfully
applied with the use of transformers [61] in a range of ap-
plications [36, 42, 43, 69] to model constraints between el-
ements, where their supervised training explicitly requires
tokens to be processed in a specific order. This specific or-
der combined with the fact that only a surrogate training ob-
jective is used, introduces limitations, discussed further in
the next section. In order to eliminate this order requirement
and to optimize based on the desired metric, while attend-
ing globally to the currently generated graph, we propose to
use RL as a suitable technique to tune these models.

RL has found success in the past in computer vision ap-
plications, we refer the interested reader to [24] for a com-
prehensive review. These approaches mainly use RL as an
auxiliary unit with the goal of improving efficiency [68] or
robustness [45]. We differ from these as we use RL to tune
pre-trained models with the goal of aligning with a specified
task-specific reward. Such tuning was concurrently shown
to significantly boost performance for tasks such as object
detection, among others [54].

3. Methodology
We parametrize a road network as a graph G = {V, E}

with each vertex vi = [xi, yi]
⊤ ∈ V representing a key

point on the road surface. The set of edges (vi, vj) ∈ E ,
corresponds to road segments connecting these key points.
We can then generate a probability distribution over roads
by following a two-step process: i) generation of a set of
vertices and ii) generation of a set of edges connecting them.
Formally, for an image I, a road network R is derived as:

R = argmax
V,E

P (V, E | I) = P (E | V, I)P (V | I). (1)

The graph nodes typically correspond to local information
in an image, and we therefore resort to a CNN-based model

to extract key points, providing the set V ′, that sufficiently
captures the information in the ground truth graph G. The
construction of edges, however, requires higher-level rea-
soning that can cope with parallel roads, junctions, occlu-
sions, or poor image resolution, among other difficulties.

Considering probabilistic models over sequences and us-
ing the chain rule, we can factorize the joint distribution as
the product of a series of conditional distributions

P (E | V, I;σ) =
NE∏
n=1

P (eσ(n) | e<σ(n),V, I), (2)

where e<σ(n) represents eσ(1), eσ(2), . . . , eσ(n−1) and σ ∈
SNE denotes the set of all permutations of the integers
1, 2, . . . , NE , with NE the number of edges. For our work
we consider the setting where these sequences are upper
bounded in length, i.e. NE ≤ Nmax, since we are dealing
with satellite images of fixed size. Autoregressive models
(ARMs) have been used to solve similar tasks in the past by
defining a fixed order of decoding [39, 59, 36, 42]. In our
case, this would correspond to sorting all key points by their
coordinates x and y and generating edges for each of them
sequentially. We call this the autoregressive order. There
are, however, two major drawbacks.

First, the evaluation metrics used for this task define a
buffer region in which nodes in the ground truth and the
predicted graph are considered to be a match. Therefore,
a newly generated edge can be only partially correct when
only partially overlapping with the ground truth graph. This
non-smooth feedback comes in clear contrast to the super-
vised training scheme of ARMs, minimization of the neg-
ative log-likelihood, that assumes perfect information re-
garding the key points’ locations, i.e. that the sets V and V ′

are the same. In practice, this condition is rarely met as the
exact spatial graph can be represented in arbitrarily many
ways by subdividing long edges into smaller ones or due to
small perturbation to key points’ locations. It is thus imper-
ative that our model can estimate the expected improvement
of adding selected edges, which implicitly can also signal
when to appropriately end the generation process.
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Second, the requirement to decode according to the au-
toregressive order introduces a bias and limits the expres-
siveness of the model [58]. As a result, it can lead to failures
in cases with blurry inputs or occlusions [26]. We employ
RL to overcome these deficiencies and align the model with
the required objective. In more detail, we tune an autore-
gressive model, described in Section 3.1, with the ability to
search into sequences of actions in the future, as described
in Section 3.2. Our novel generic strategy improves the
autoregressive model without requiring significantly more
computational resources.

3.1. Autoregressive model

We start by introducing a base autoregressive model, il-
lustrated in Fig. 4. Given an image and a set of key points,
i.e a set of vertices V ′, our model produces a graph by se-
quentially predicting a list of indices corresponding to the
graph’s flattened, unweighted edge-list. Each forward pass
produces probabilities over the set of key points, which
leads to a new index after sampling. A successive pair of
indices defines an edge as its two endpoints. A special end-
of-sequence token is reserved to designate the end of the
generation process.

Following [63, 53], we begin by extracting visual fea-
tures per key point, by interpolating intermediate layers of a
ResNet backbone to the key points’ locations, which are fur-
ther augmented by position encodings of their locations. We
then further process these features using two Transformer
modules. The first transformer (Transformer I in Fig. 4) en-
codes the raw features of the key points as embeddings. The
second transformer (Transformer II in Fig. 4) takes as input
the currently generated edge list sequence, corresponding
to the currently partially generated graph. Edges are di-
rectly mapped to the embeddings of their comprising key
points, supplemented by position and type embeddings, to
differentiate between them, as shown in Fig. 5 (a). An addi-
tional global image embedding also extracted by the ResNet
is used to initialize the sequence. The Transformer II mod-
ule produces a single hidden state, which is linked with the
NV′ + 1 (corresponding to the provided key points, sup-
plemented by the special end of the generation token) key
points’ embeddings by a pointer network [62], via a dot-
product. This allows the generation of a probability distri-
bution of variable length depending on the current set V ′,
instead of using a fixed action space.

3.2. Augmented search

In order to address the problems of greedy decoding (an-
alyzed in Section 3), we frame our road extraction task as
a classical Markov-decision process (MDP). The genera-
tion of a graph for every image defines an environment,
where the length of the currently generated edge list deter-
mines the current step. Let ot, αt and rt correspond to the
observation, the action, i.e. the selected key point index,

and the observed reward respectively, at time step t. The
aim is to search for a policy that maximizes the expected
cumulative reward over a horizon T , i.e., maxπ J(π) :=

Eπ[
∑T−1

t=0 γtrt] where γ ∈ (0, 1] indicates the discount fac-
tor and the expectation is with respect to the randomness in
the policy and the transition dynamics. We set the discount
factor to 1 due to the bounded time horizon.

Instead of training a reward model [41], we employ es-
tablished graph-theoretic metrics that also allow the defi-
nition of intermediate rewards, accelerating initial training.
More formally, each action leads to the selection of a new
key point, with new edges being added once every two ac-
tions. The addition of a new edge leads to a revision of the
predicted graph and triggers an intermediate reward

rt = sc(Ggt,Gpredt)− sc(Ggt,Gpredt−1
), (3)

where sc(Ggt,Gpredt) is a similarity score between the
ground truth graph Ggt and the current estimate Gpredt . Dis-
cussion of the specific similarity scores used in practice is
postponed for Section 3.3.

A proper spatial graph generation entails (i) correct
topology and (ii) accurate location prediction of individual
roads. For the latter, intermediate vertices of degree 2 are
essential. We call a road segment (RS), an ordered collec-
tion of edges, between vertices of degree d(.) two (or a col-
lection of edges forming a circle):

RS = {(vrs1 ,vrs2), . . . , (vrsk−1
,vrsk)}

s.t (vrsi ,vrsi+1) ∈ E for i = 1, . . . , k − 1

d(vrsi) = 2, for i = 2, . . . k − 1,

(d(vrs1) ̸= 2 and d(vrsk) ̸= 2 or vrs1 = vrsk).

During the progression of an episode (i.e. the sequential
generation of a graph), the topological nature of the sim-
ilarity scores in Eq. 3 implies that the effect of each new
edge to the reward will be reflected mostly once its whole
corresponding road segment has been generated. To re-
solve the ambiguity in the credit assignment and allow our
agent to look ahead into sequences of actions, we rely on
Monte Carlo Tree Search (MCTS) to simulate entire se-
quences of actions. We use a state-of-the-art search-based
agent, MuZero [48], that constructs a learnable model of the
environment dynamics, simulating transitions in this latent
representation and leading to significant computational ben-
efits. At every step, the enhanced model with its new com-
ponents produces value [50] and reward estimates, which
define an exploration strategy. Simulations into future se-
quences of actions are performed based on this strategy,
helping the model to make decisions based on future out-
comes, not yet experienced. Compared to a simpler PPO
objective [49, 41], that in our experience did not lead to sig-
nificant improvements, MCTS generates a series of simula-
tions traversing the tree from a root node, generating more
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Figure 4. The autoregressive model with its three main components. (1) A backbone image model (ResNet) that extracts features for each
key point at different scales, along with a global image embedding. (2) A key point model embeds visual and location features of distinct
key points. (3) An edge embedding model relates the current edge sequence with the respective key points. Each edge token (signalled
with the tokens ‘index-i’) corresponds to an index specifying the respective key point. A pair of such tokens designates an edge as its two
endpoints. At the end of (3) we obtain a new distribution over key points that leads to an incremental update to the graph, after sampling.

stable value and reward estimates. MuZero requires three
distinct parts (see also Fig. 5):

1. A representation function f creates a latent vector of
the current state ht = fθ(ot), in our case the au-
toregressive model, shown in Fig. 4. Our current la-
tent representation ht contains the graph’s hidden state
along with the key points’ embeddings used to map ac-
tions to latent vectors. As key points remain the same
throughout the episode, image-based features (Com-
ponents (1) and (2) in Fig. 4) are only computed once.

2. A dynamics network g, we use a simple LSTM [20],
as commonly done, that predicts the effect of a new
action by predicting the next hidden state and the ex-
pected reward: (ĥt, r̂t) = gθ(h̃t−1, αt). We can re-
place h̃t−1 with the latent representation ht−1, or its
previous computed approximation ĥt−1 for tree search
of depth larger than 1.

3. A prediction network ψ, that estimates the policy and
the value for the current state (pt+1, vt) = ψθ(h̃t). We
compute the policy via a pointer network as described
in Section 3.1. Value estimates are produced by a sim-
ple multi-layer perceptron.

The dynamics network guides the search and evaluates
the expected reward of actions. For every newly gener-
ated edge, we also explicitly inform the network regarding
the creation of new intersections and the expected relative
change in the overall road surface generated via embeddings
(see Fig. 5). By using the dynamics network, we bypass the
expensive call to the decoder module during the search, and
can instead approximate small modifications in the latent
representation directly. For our experiments, the dynamics

Current edge sequence

Key-point
embedding  
 


0

0




1

1




2

0




3

1




4

0




5

1




6

0




7

1

Hidden state

policydot-
product

(a)

(b)

value

estimate

position  


type  


Autoregressive

Model

Current hidden state
Embedding of selected key point

Vertex type embedding
Edge length embedding

Dynamics
network

reward

estimate

Next hidden state

Current hidden state

Prediction
network

Embedding

(c)

Figure 5. The autoregressive model generates a hidden state cor-
responding to the graph embedding. (a) When doing so, the edge
decoder directly attends to the input key points’ embeddings, aug-
mented by position and type embeddings. (b) The prediction net-
work uses the hidden state to produce value and policy predictions.
A pointer network allows an intuitive scale of the action space by
the number of key points. (c) The dynamics network simulates tra-
jectories by estimating new hidden states and rewards. For newly
generated edges, it takes as input the embeddings of the new key
points, but also the degree of the two vertices involved and the
length of the newly proposed generated edge.

network requires up to 90 times less floating-point opera-
tions to simulate trajectories, compared to using the edge
embeddings’ decoder. Effectively, our method does not in-
volve significantly more computation budget compared to
the base autoregressive model. More details regarding the
MuZero training and exploration are provided in Section 4
and in the appendix.

3.3. Evaluation metrics

We adopt the same evaluation metrics both as a compari-
son between different methods and to determine the reward
for our agent, through Eq. 3. We use the relaxed versions of
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precision, recall, and intersection over union for pixel-level
predictions Correctness/Completeness/Quality (CCQ) [66,
64]. As graph-theoretic metrics we use APLS [60] and ad-
ditionally include new metrics introduced in [14] that com-
pare Paths, Junctions and Sub-graphs of the graphs in ques-
tion, producing respectively precision, recall and f1 scores.
More details can be found in the appendix.

4. Experiments

Implementation details. We resize images to 300 × 300
pixels, standardizing according to the training set statis-
tics. For exploration, we initialize workers using Ray [33]
that execute episodes in the environment. For training, we
unroll the dynamics function for td = 5 steps and use
priority weights for the episode according to the differ-
ences between predicted and target values. Our algorithm
can be considered as an approximate on-policy TD(λ) [55]
due to the relatively small replay buffer. We reanalyse
older games [48] to provide fresher target estimates. Un-
visited graph nodes are selected based on an upper confi-
dence score, balancing exploration with exploitation, simi-
lar to [51]. We add exploration noise as Dirichlet noise and
select actions based on a temperature-controlled sampling
procedure, whose temperature is reduced during training.

Given the limited high-quality available ground truth la-
bels [52] and to accelerate training, we employ modifi-
cations introduced in EfficientZero [71]. We investigate
adding supervision to the environment model and better ini-
tialize Q-value predictions similar to the implementation
of Elf OpenGo [57]. We further scale values and rewards
using an invertible transform inspired by [44]. Here, we
predict support, as fully connected networks are biased to-
wards learning low-frequency representations [21]. Select-
ing new actions involves generating simulations that can be
done expeditiously given the small dimension of the latent
space and the modest size of the dynamics network. Finally,
to generate key points, we skeletonize segmentation masks
provided by any baseline segmentation model, by thresh-
olding the respective segmentation masks produced and ap-
plying RDP-simplification [17, 46]. Selecting an appropri-
ate threshold and subdividing larger edges guarantees that
the generated set V ′ adequately captures most of the ground
truth road network, leaving the complexity of the problem
for our model to handle. We will use the term ARM to de-
note the autoregressive model and Ours for the RL-tuned
model.

4.1. Synthetic dataset

Initially, a simplified setting is chosen wherein the com-
plete governance of both the nature and intensity of the dif-
ficulty inherent in the road-extraction task can be regulated.
We generate a dataset of overhead satellite images of a syn-
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Figure 6. (Left) Examples of fragmented outputs from the LinkNet
model under cases of significant occlusion and how our approach
performs in these demanding circumstances. (Right) The perfor-
mance gap between our method and the same baseline is wide,
based on topological spatial graph metrics, for a wide range of dif-
ficulties in the images. More details and examples are given in the
supplementary material.

thetic town using CityEngine1. We randomly specify veg-
etation of varying height and width along the side walks of
the generated streets, leading inadvertently to occlusions of
varying difficulty. The simulated environment allows spec-
ifying pixel-perfect masks regarding both roads and trees
occluding the road surface based on the provided camera
parameters [23]. We defer more details regarding the gen-
eration process and dataset examples to the supplementary
material.

We compare our method by training on our dataset a
LinkNet model [10], a popular segmentation model that has
been widely used in the remote sensing community [25].
Even in this synthetic and thus less diverse scenario, the
deficiency of segmentation models to rely mostly on local
information, with no explicit ability for longer-range inter-
actions, is evident. Fig. 6 illustrates examples of such over-
segmented predictions and how our approach can improve
on them. We also define a ‘difficulty’ attribute per syn-
thetic satellite image, quantifying the occlusions as a per-
centage of the ground truth road mask covered. We observe
a considerable absolute improvement in topological metric
scores when training our model on this synthetic dataset,
compared to the baseline, for varying image difficulty.

4.2. Real datasets

We assess our approach on the SpaceNet and DeepGlobe
datasets. A single image is provided to our method, with
a spatial graph being generated as the output. We use the
same train-test splits as in [8] to promote reproducibility,
while results are reported for the final combined graph on
the original image scale. No pre-training on the synthetic

1https://www.esri.com/en-us/arcgis/products/arcgis-
cityengine/overview
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Method CCQ TLTS APLS ↑ Path-Based Junction-Based Sub-graph-Based
corr. ↑ comp. ↑ qual. ↑ corr. ↑ 2l+2s ↓ pre. ↑ rec. ↑ f1 ↑ pre. ↑ rec. ↑ f1 ↑ f1 ↑

Sp
ac

eN
et

DeepRoadMapper [29] 0.6943 0.6838 0.5386 0.4110 0.1012 0.5143 0.5958 0.6400 0.6171 0.6293 0.7443 0.6820 0.6783
Segmentation [28, 22] 0.7493 0.7094 0.5969 0.4143 0.0828 0.5454 0.6909 0.6863 0.6885 0.7186 0.7710 0.7438 0.7117
LinkNet [10] 0.8100 0.7449 0.6409 0.4894 0.0743 0.5743 0.6719 0.6460 0.6586 0.6985 0.7809 0.7374 0.7576
Orientation [8] 0.8070 0.8001 0.6862 0.5594 0.0884 0.6315 0.7175 0.7280 0.7227 0.7552 0.7591 0.7571 0.7802
Sat2Graph [18]** 0.6917 0.7351 0.5734 0.5802 0.1104 0.5951 0.5952 0.5416 0.5671 0.7474 0.5951 0.6626 0.7180
SPIN road mapper [5] 0.7837 0.7988 0.6621 0.5922 0.1058 0.6422 0.7276 0.7265 0.7270 0.7621 0.7827 0.7722 0.7837
Ours 0.8150 0.8092 0.6932 0.5970 0.0732 0.6587 0.7383 0.7613 0.7496 0.7845 0.7821 0.7833 0.7948

D
ee

p
G

lo
be LinkNet [10] 0.8012 0.8676 0.7328 0.6640 0.0804 0.6525 0.6882 0.6920 0.6901 0.7675 0.7444 0.7558 0.7879

Orientation [8] 0.8243 0.8857 0.7545 0.6866 0.1047 0.7012 0.6937 0.8082 0.7465 0.7624 0.7939 0.7778 0.8282
Ours* 0.8223 0.8979 0.7494 0.7242 0.0743 0.7400 0.7150 0.8274 0.7671 0.7912 0.8283 0.8093 0.8391

* We do not fine-tune our model on the DeepGlobe dataset but instead refine predictions standardizing according to train dataset statistics.
** The authors provided predictions corresponding only to a center crop of the original SpaceNet dataset images. Also, note that the test set is different from the one reported on the rest of the methods, see also the appendix.
Blue: best score, Green: second best score, Gray: results reported in different test set

Table 1. Quantitative results for the SpaceNet and DeepGlobe datasets.

DeepRoadMapper [29] Segmentation [22] Orientation [8] Ours Ground Truth Satellite Image

Table 2. Qualitative results of improved connectivity. We recommend zooming in for more details.

Table 3. APLS metric and perplexity (bits of information per edge)
results for the SpaceNet dataset with provided key points that ad-
equately capture the ground truth graph. Autoregressive order is
defined in Section 3, while random order entails random permuta-
tion between edges and the order of key points within edges. To
calculate perplexity for our method we use the initial predicted
policy distribution, without any additional search. More details on
baselines and general approach are presented in the appendix.

Metric
Method Random Cls GCN ARM Ours

APLS 0.008 0.430 0.594 0.894 0.928
Bits per edge: Autoregressive order 8.743 - - 0.528 4.321

Bits per edge: Random order 8.743 - - 28.74 4.432

dataset takes place.

4.2.1 Comparison to Baselines

We initially train the ARM model on ground-truth graph in-
formation by using a set of key points V ′ = V . Even in
this scenario, RL tuning increases the semantic quality of
the extracted graphs as seen in Table 3. In cases where the
set V ′ is imperfect, and for reasons elaborated in Section 3,
newly proposed edges may be only partially correct. Under

such circumstances, supervised training is infeasible, hence
we rely on RL to produce the graph that leads to the max-
imum cumulative reward, i.e. our selected evaluation met-
rics. We conduct comparative analysis against the follow-
ing approaches; we explore powerful CNN architectures,
by training a Segmentation model with a ResNet backbone.
We evaluate DeepRoadMapper [29], a model that refines
previous segmentation by adding connections along pos-
sible identified paths. As done by [8] we notice that in
complex scenarios, the effect of this post-processing step is
not always positive. We also evaluate against LinkNet [10],
and Orientation [8], which is trained to predict simultane-
ously road surfaces and orientation, and the relevant base-
lines [18, 5].

Quantitative results in Table 1 and visual inspection in
Table 2, affirm that the global context and the gradual gen-
eration incite a better understanding of the scene, lead-
ing to consistently outperforming topological metric results
compared to the baselines. We remark that our predic-
tions are more topologically consistent with fewer short-
comings, such as double roads, fragmented roads, and over-
connections. This is further supplemented by comparing the
statistics of the predicted spatial graphs in Fig. 7. We further
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Figure 7. (Left) Comparison of generated graph statistics, following the same post-processing, averaged across regions of 400×400 meters
in ground distance. Orientation refers to the method of [8]. (Right) The estimated Pareto front achieved through the evaluation of various
runs, where a different number of MCTS simulations is being executed at each state. obj refers to an average of the APLS, Path-based f1,
Junction-based f1 and Sub-graph-based f1 metrics.

showcase the transferability of our model by employing it
with no fine-tuning (apart from dataset-specific image nor-
malization) on the DeepGlobe dataset. We can refine pre-
vious predictions by adding missing edges, leading to more
accurate spatial graph predictions, as shown in Table 1. Our
conjecture that road structures and their geometric features
exhibit a high degree of recurrence across various locations
and geographic regions worldwide is thus confirmed.

4.2.2 Ablation study

We experimented attending to image features for the two
transformer modules by extracting per-patch visual features
from the conditioning image H img = [himg

1 ,himg
2 , . . . ], as

done in the Vision Transformer [16]. This did not lead to
significant improvements, which we attribute to over-fitting.
In Table. 4 we highlight the relative importance of some ad-
ditional components for the final predictions. As efficiency
is also of particular importance to us, we further visualize
the effect of varying the simulation depth of the dynamics
network during training (Fig. 7 (right)). Surprisingly per-
haps, our method performs consistently even with a limited
number of simulations.

In the appendix, we provide incremental results for the
task of predicting road networks based on an optimal set
of key points and insights concerning interpretability and
further comparison to baselines based on the varying diffi-
culty of the predicted underlying road networks. We also
give more information regarding the generation of the syn-
thetic dataset and the model architecture. Finally, we pro-
vide more implementation decisions, including details on
exactly how key points and generated and how individual
patch-level predictions are fused together. It is important to
emphasize that our proposed method can operate effectively
even when working with partially initialized predictions,
making it a practical refinement approach that can be ap-
plied to existing baselines. By initializing our model based
on the ARM model, we can achieve a rapid fine-tuning
phase. Additionally, by utilizing the learned environment
model, which avoids the need for expensive calls to the edge
embedding model at each simulation step in MCTS, we can
train the model even using a single GPU.

Model APLS P-f1 J-f1 S-f1

Ours 0.6587 0.7496 0.7833 0.7948
− autoregressive pre-training -15.3% -13.7% -14.1% -13.3%
− visual features for key-points -13.4% -12.7% -12.1% -12.3%
− tree-search during evaluation -2.1% -1.4% -1.7% -1.1%
+ cross attend to image features +0.2% -0.4% -0.7% -0.3%

P: Path-based, J: Junction-based, S: Sub-graph-based

Table 4. Ablations study on SpaceNet dataset.

5. Conclusions

We presented a reinforcement learning framework for
tuning autoregressive tasks for the task of generating
a graph as a variable-length edge sequence, where a
structured-aware decoder selects new edges by simulating
action sequences into the future. Importantly, this allows
the model to better capture the geometry of the targeted
objects. One advantage of the proposed method is that
the reward function is based on (non-continuous) metrics
that are directly connected to the application in question.
Our approach does not require significantly more computa-
tional resources compared to state-of-the-art supervised ap-
proaches, and in addition, it can be used to refine predictions
from another given model. We also remark that the direct
prediction of a graph enables the concurrent prediction of
meta-information about the edges, including, for instance,
the type of road (e.g. highway, primary or secondary street,
biking lane).

Our approach opens the door to several directions for fu-
ture work. For example, we have assumed that a pre-defined
model gives the location of key points, but one could instead
augment the action space to propose new key points’ loca-
tions. Other promising directions include the direct predic-
tion of input-dependent graph primitives, e.g. T-junctions
or roundabouts. Finally, we emphasize that our approach
is suitable for a wide variety of applications where autore-
gressive models are typically used, which we intend to look
into in the future. Such applications include among oth-
ers, Scene Graph Generation [67, 70] and Visual reason-
ing/Factual Visual Question Answering [11, 35].
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6. Reproducibility Statement
We have taken multiple steps to ensure the reproducibil-

ity of the experiments. We refer the reader to the appendix
for a complete description of the training protocol. We have
also released the code as part of the supplementary material.
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[59] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu. Wavenet: A gen-
erative model for raw audio. In 9th ISCA Speech Synthesis
Workshop, pages 125–125, 2016.

[60] Adam Van Etten, Dave Lindenbaum, and Todd M Bacastow.
Spacenet: A remote sensing dataset and challenge series.
arXiv preprint arXiv:1807.01232, 2018.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[62] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer
networks. arXiv preprint arXiv:1506.03134, 2015.

[63] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages 52–67,
2018.

[64] Shenlong Wang, Min Bai, Gellert Mattyus, Hang Chu, Wen-
jie Luo, Bin Yang, Justin Liang, Joel Cheverie, Sanja Fidler,
and Raquel Urtasun. Torontocity: Seeing the world with a
million eyes. arXiv preprint arXiv:1612.00423, 2016.

[65] Jan D Wegner, Javier A Montoya-Zegarra, and Konrad
Schindler. A higher-order crf model for road network extrac-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1698–1705, 2013.

[66] Christian Wiedemann, Christian Heipke, Helmut Mayer, and
Olivier Jamet. Empirical evaluation of automatically ex-
tracted road axes. Empirical evaluation techniques in com-
puter vision, 12:172–187, 1998.

[67] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei.
Scene graph generation by iterative message passing. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 5410–5419, 2017.

[68] Jingtao Xu, Yali Li, and Shengjin Wang. Adazoom: Adap-
tive zoom network for multi-scale object detection in large
scenes. arXiv preprint arXiv:2106.10409, 2021.

[69] Zhenhua Xu, Yuxuan Liu, Lu Gan, Yuxiang Sun, Xinyu Wu,
Ming Liu, and Lujia Wang. Rngdet: Road network graph
detection by transformer in aerial images. IEEE Transactions
on Geoscience and Remote Sensing, 60:1–12, 2022.

[70] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi
Parikh. Graph r-cnn for scene graph generation. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 670–685, 2018.

[71] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel,
and Yang Gao. Mastering atari games with limited data.
arXiv preprint arXiv:2111.00210, 2021.

5418


