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Abstract

A triangular mesh is one of the most popular 3D data
representations. As such, the deployment of deep neural
networks for mesh processing is widely spread and is in-
creasingly attracting more attention. However, neural net-
works are prone to adversarial attacks, where carefully
crafted inputs impair the model’s functionality. The need
to explore these vulnerabilities is a fundamental factor in
the future development of 3D-based applications. Recently,
mesh attacks were studied on the semantic level, where clas-
sifiers are misled to produce wrong predictions. Neverthe-
less, mesh surfaces possess complex geometric attributes
beyond their semantic meaning, and their analysis often in-
cludes the need to encode and reconstruct the geometry of
the shape.

We propose a novel framework for a geometric adversar-
ial attack on a 3D mesh autoencoder. In this setting, an ad-
versarial input mesh deceives the autoencoder by forcing it
to reconstruct a different geometric shape at its output. The
malicious input is produced by perturbing a clean shape in
the spectral domain. Our method leverages the spectral de-
composition of the mesh along with additional mesh-related
properties to obtain visually credible results that consider
the delicacy of surface distortions1.

1. Introduction
A triangular mesh is the primary representation of 3D

shapes, with applications in many safety-critical realms. In

the medical field, incorrect perception of the geometric sub-

tleties of an organ can lead to life-threatening errors. In

robotics and automotive, a precise understanding of the ge-

ometry of obstacles is essential to prevent accidents. The

security of facial modeling is also dependent on the accu-

racy of the processed geometry of the mesh.

Autoencoders (AEs) are one of the most prominent deep-

learning tools to process the mesh’s geometry. They are de-

signed to capture geometric features which enable dimen-

1https://github.com/StolikTomer/SAGA
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Figure 1. A result of our geometric mesh attack. A mesh of

a sphere (top left) is perturbed into an adversarial example (top

right). While the original mesh is accurately reconstructed by

an autoencoder (AE) (bottom left), our attack fools the AE and

changes the output geometry to a cube! (bottom right).

sionality reduction for both storage and communication pur-

poses [6, 4]. Mesh AEs are also used for segmentation, self-

supervised learning, and denoising tasks [16, 19, 7].

Despite their tremendous achievements, neural networks

are often found vulnerable to adversarial attacks. These at-

tacks craft inputs that impair the victim network’s behavior.

Adversarial attacks were extensively studied in recent years,

focusing especially on the semantic level, where the input to

a classifier is carefully modified in an imperceivable man-

ner to mislead the network to an incorrect prediction. Se-

mantic adversarial attacks are abundant in the case of 2D

images [8, 20, 3], and recently, semantic attacks on 3D rep-

resentations have also drawn much attention, both on point

clouds [29, 10, 28] and meshes [30, 14, 23, 1].

Nonetheless, the vulnerabilities of networks that process

geometric attributes, such as AEs, have not been thoroughly

investigated. AEs may be imperative to many practical

mesh deployments and their credibility and robustness de-

pend on the study of geometric adversarial attacks.

We propose a framework of a geometric adversarial at-

tack on 3D meshes. Our attack, named SAGA, is exempli-

fied in Figure 1. The input mesh of the sphere is perturbed

and fed into an AE that reconstructs a geometrically differ-
ent output, i.e., a cube! Ideally, the deformation of the input

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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should be unapparent and yet effectively modify the output

geometry.

In our attack, we aim to reconstruct the geometry of a

specific target mesh by perturbing a clean source mesh into

a malicious input. We present a white-box setting, where we

have access to the AE and we optimize the attack according

to its output. A black-box framework is also explored by

transferring the adversarial examples to other unseen AEs.

Mesh perturbations include shifts of vertices that af-

fect their adjacent edges and faces and possibly result in

noticeable topological disorders, such as self-intersections.

Therefore, concealed perturbations must address the inher-

ent topological constraints of the mesh. To cope with the

fragility of the mesh surface, we apply the perturbations

in the spectral domain defined by the eigenvectors of the

Laplace-Beltrami operator (LBO) [5]. Particularly, we fa-

cilitate an accelerated attack by operating in a shared spec-

tral coordinate system for all shapes in the dataset. The

source’s distortions are retained by using low-frequency

perturbations and additional mesh-related regularizations.

The attack is tested on datasets of human faces [24] and

animals [32]. We evaluate SAGA using geometric and se-

mantic metrics. Geometrically, we measure the similarity

between shapes by comparing the mean curvature of match-

ing vertices. Semantically, we use a classifier to predict the

labels of the adversarial reconstructions, and a detector net-

work to demonstrate the difficulty of identifying the adver-

sarial shapes. We also conduct a thorough analysis of the

attack and a comprehensive ablation study.

To summarize, we are the first to propose a geometric
adversarial attack on 3D meshes. Our method is based on

low-frequency spectral perturbations and regularizations of

mesh attributes. Using these, SAGA crafts adversarial ex-

amples that change an AE’s output into a different geomet-

ric shape.

2. Related Work
Spectral mesh analysis. The vertices and triangular

faces of a mesh define a discrete approximation of a 2D

surface [17]. The spectral analysis of continuous 2D mani-

folds is derived from the Laplace-Beltrami operator (LBO),

which is a generalization of the Laplacian from the Eu-

clidean setting to curved surfaces. The eigenfunctions of

the LBO form an orthogonal basis that spans signals upon

the shape’s surface.

Taubin [26] was the first to introduce the spectral analy-

sis of meshes by exploring the notion of a discrete LBO.

Pursuing research [17, 13] suggested using the classic

cotangent scheme [21] to construct the LBO. In this case,

the operator is more robust against differences in mesh dis-

cretization. Consequently, the LBO eigenvectors are ap-

proximate samples of the continuous eigenfunctions on the

vertices of the mesh [13]. Based on this analysis, we uti-

lized the spectral basis of the mesh to perform our attack.

Mesh autoencoders. Nowadays, a prevailing 3D learn-

ing technique employs AE networks that learn to encode

geometric shapes into a latent space and reconstruct them.

Marin et al. [15] used a multilayer-perceptron (MLP) AE to

establish a latent representation of the mesh, and then ex-

ploited it in an additional pipeline to recover a shape from

its LBO spectrum.

A popular mesh AE was presented by Ranjan et al. [24],

where spectral convolution layers and mesh sampling meth-

ods achieved promising results on human face data. Fur-

ther work suggested using spiral convolution operators [2],

while Zhou et al. [31] used a fully convolutional architec-

ture with a spatially varying kernel to handle irregular sam-

pling density and diverse connectivity. All the mentioned

AEs operate on the mesh vertices, assuming a known con-

nectivity, to successfully reconstruct the surface. We used

Marin’s AE [15] as our victim model, and we explore the

attack transferability to the CoMA AE [24].

3D adversarial attacks. In recent years, the research

of adversarial attacks on 3D data has expanded, focusing

almost entirely on semantic attacks that aim to malfunction

classifiers. The literature on semantic adversarial attacks of

point clouds is vast. A common approach [29, 10] is to refer

to the perturbation as shifts or additions of outlier points in

the 3D Euclidean space.

On the contrary, semantic mesh attacks often leverage

properties derived from the connectivity of the vertices.

Belder et al. [1] introduced the concept of random walks

on the mesh surface to create adversarial examples. Other

papers [14, 23] addressed semantic attacks in the spectral

domain. Mariani et al. [14] used band-limited perturba-

tions and extrinsic restrictions to cause misclassifications.

Rampini et al. [23] suggested a universal attack by apply-

ing a purely intrinsic regularization on the spectrum of the

adversarial shape.

The work most similar to ours is the geometric point

cloud attack proposed by Lang et al. [12]. To our knowl-

edge, this is the only geometric attack on 3D shapes. Lang

et al. demonstrated the ability to reproduce a different ge-

ometry by feeding an AE with a malicious input shape.

However, that work focused on point clouds. It used ver-

tex displacements in the 3D Euclidean space and exploited

the lack of connectivity and order to construct adversarial

examples.

In contrast, our work is oriented to 3D meshes. Unlike

point clouds, meshes have topological constraints. Hence,

swaps of vertices’ locations or local shifts of vertices are

highly noticeable. We leverage the connectivity to operate

in the spectral domain where we control global attributes

across the shape and better preserve the geometry of the

original surface.
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3. Method
We attack an autoencoder (AE) trained on a collection

of shapes from several semantic classes. In each attack, we

use a single source-target pair, where the source and target

shapes are selected from different classes. Our goal is to

find a perturbed version of the source, with minimal distor-

tion, that misleads the AE to reconstruct the target. Ideally,

the source’s perturbations should be invisible while still al-

tering the AE’s output to the geometry of the target shape.

Given an attack setup of a source shape and a target class,

we choose, as a pre-processing step, the nearest neighbor

shape from the target class in the sense of a Euclidean norm

of the difference between matching vertices. Since the AE

is sensitive to the geometry of its input, selecting a target

that is geometrically similar to the source benefits the attack

and reduces the potential magnitude of the perturbation.

In the upcoming subsections, we present a preliminary

spectral analysis followed by a description of the spectral

domain in which the attack is performed. Then, we define

the problem statement and elaborate on the perturbation pa-

rameters, the loss function, and the evaluation metrics.

3.1. Preliminaries

Manifolds. A geometric shape can be described as a

2D Riemannian manifold X embedded in the 3D Euclidean

space R
3 [17]. Let ΔX be the Laplace-Beltrami operator

(LBO) of the manifold X , which is a generalization of the

Laplacian operator to the curved surface. The LBO admits

an eigendecomposition of the shape into a set of discrete

eigenvalues {λi}, known as the spectrum of the shape, and

a set of eigenfunctions {φi}, as follows:

ΔXφi = λiφi. (1)

The eigenfunctions {φi} : X −→ R form an orthogo-

nal spectral basis of scalar functions. Thus, the Euclidean

embedding values of the manifold in the x, y, z axes can

be represented as three linear combinations of the spec-

tral basis using a set of corresponding spectral coefficients
{αi,x}, {αi,y}, {αi,z}.

Mesh graphs. A continuous manifold of a 3D shape can

be discretized into a triangular mesh graph M = (V, F ).
V ∈ R

n×3 is the vertices matrix, in which each of the n
vertices is assigned a 3D Euclidean coordinate. F ∈ R

m×3

is the triangular faces matrix consisting of m triplets of ver-

tices. We calculate the discrete LBO using the prevailing

classic cotangent scheme [21]. In this case, the LBO is an

n × n matrix and the eigenvectors are approximated sam-

ples of the continuous eigenfunctions on the vertices of the

mesh graph [13]. Let us arrange the eigenvectors as the

columns of Φ ∈ R
n×n and the n spectral coefficients of

each Euclidean axis as the columns of A ∈ R
n×3. Then,

the spectral representation of the mesh vertices is given by:

Fixed

Autoencoder

Frequency

Spectral
Perturbation

xed

ncoder

Fix

Autoeen

Regularization 
Losses

Reconstruction 
Loss

Reconstruction TargetSource Adversary

Figure 2. The proposed attack framework. Attack parameters

perturb the spectral coefficients of the source shape to craft an ad-

versarial example. The malicious input (Adversary) misleads the

AE to reconstruct the geometry of the target mesh. The pertur-

bation is optimized using a loss function that compares the AE’s

output with the target shape, and regularizes the adversarial shape

to preserve the source’s geometric properties.

V = ΦA. (2)

3.2. Shared Spectral Representation

The spectral decomposition of a mesh is computationally

demanding, and it is restraining the efficiency of our attack.

Thus, we propose a novel approach in which the attack is

performed in a shared spectral domain. The idea is to rep-

resent all the attacked shapes in a shared coordinate system

defined by a single set of spectral eigenvectors. This shared

basis accelerates the attack by omitting the heavy calcula-

tions of a per-shape spectral decomposition.

Shared spectral basis. The spectral decomposition

varies between different shapes since the surface of each

shape is a unique manifold and its spectral eigenfunctions

are defined over its specific geometric domain. However,

the geometric resemblance of the shapes in the dataset can

be utilized to construct a shared basis of eigenvectors. The

idea of a shared set of eigenvectors assures that, practically,

the Euclidean coordinates of the vertices of any shape can

be spanned by the shared basis with a negligible error.

The shared basis was built as a linear combination of the

bases of multiple shapes, which were sampled from differ-

ent classes. The coefficients of the linear combination were

optimized using gradient descent. The loss function was

the sum, across all sampled shapes, of the mean-vertex Eu-

clidean distance between the original coordinates and their

representation in the shared spectral domain. More details

can be found in the supplementary.

Basis transformation. We denote the shared basis by

Φshared ∈ R
n×n, where its columns are the set of n shared

eigenvectors. In the new coordinate system, the vertex ma-

trix V of a mesh M can be replaced by the spectral coeffi-

cients matrix A′ ∈ R
n×3 according to:

V = ΦsharedA
′. (3)

Given Φshared and V , the spectral coefficients are found us-

ing least squares. In the following sections, we refer to A′
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simply as A for ease of notation and assume it was calcu-

lated using Φshared.

3.3. Attack

We pose the attack as an optimization problem in a

white-box framework, where the AE is fixed. We denote the

source mesh taken from class S by MS = (VS , FS), and the

target mesh taken from class T by MT = (VT , FT ). The

spectral representations of VS and VT are given by the spec-

tral coefficients matrices AS and AT , as defined in Equa-

tion 3. Let us denote by k the number of frequencies we aim

to perturb. We add perturbation parameters from B ∈ R
k×3

to obtain the adversarial input Aadv , according to:

Aadv(i) =

{
AS(i) +B(i), if i < k

AS(i), otherwise,
(4)

where AS(i) = [αi,x, αi,y, αi,z] ∈ R
3 and B(i) =

[βi,x, βi,y, βi,z] ∈ R
3 are the spectral coefficients of fre-

quency i and their perturbation parameters, respectively.

Note that the optimized parameters of the attack are the el-

ements of B. The resulting adversarial mesh is Madv =
(Vadv, FS), where Vadv = ΦsharedAadv . Also, we propose

an attack with a multiplicative perturbation, defined as:

Aadv(i) =

{
AS(i)(1 +B(i)), if i < k

AS(i), otherwise.
(5)

The advantages of operating in the spectral domain are

realized by confining the attack to a limited range of low

frequencies. By attacking only the low frequencies, we in-

herently enforce smooth surface perturbations and reduce

sharp local changes of the curvature. Consequently, signif-

icantly fewer parameters are used compared to a Euclidean

space attack where all vertices are shifted. It also offers the

flexibility to control the number of optimized parameters.

Problem statement. The problem statement is depicted

in Figure 2. The parameters of the perturbation B are opti-

mized according to the following objective:

argmin
B

Lrecon(M̂adv,MT ) + Lreg(Madv,MS)

s.t. M̂adv = fAE(Madv),
(6)

where fAE is the AE model and M̂adv is the reconstruction

of Madv by fAE . Lrecon and Lreg are the loss terms for

the target reconstruction and the perturbation regularization,

correspondingly. Both terms are further discussed next.

Reconstruction and regularization losses. The recon-

struction of a target shape is achieved by explicitly minimiz-

ing the Euclidean distance between the vertices of the AE’s

output and the vertices of the clean target mesh. Specifi-

cally, Lrecon is defined as:

Lrecon =
1

n

n∑
i=1

∥∥∥V̂adv(i)− VT (i)
∥∥∥2
2
. (7)

where V̂adv(i), VT (i) ∈ R
3 are the 3D coordinates of vertex

i in meshes M̂adv,MT , respectively. The sign ‖·‖2 refers

to the l2-norm.

To alleviate the distortion of the source shape, we com-

bine the inherent smoothness provided by the spectral per-

turbations with the Lreg loss. This loss consists of addi-

tional mesh-oriented regularizations that are meant to pre-

vent abnormal geometric distortions.

We consider four kinds of regularization measures in

Lreg , each with a different weight assigned to it. Inspired

by Sorkine [25], the first term, denoted by Llap, compares

the shapes in a non-weighted-Laplacian representation. In

this representation, a vertex V (i) is represented by the dif-

ference between V (i) and the average of its neighbors. This

loss promotes smooth perturbations since it considers the

relative location of a vertex compared to its neighbors. Let

I be an identity matrix of size n × n, J be the mesh ad-

jacency matrix, and D = diag(d1, ..., dn) be the degree

matrix. Then, the non-weighted Laplacian operator, Lnon,

is defined as Lnon = I −D−1J , and the vertices matrix is

transformed into Ṽ = LnonV . The loss Llap is defined as:

Llap =
1

n

n∑
i=1

∥∥∥Ṽadv(i)− ṼS(i)
∥∥∥2
2
. (8)

The second regularization term, Larea, reduces the Eu-

clidean distance between matching vertices, normalized by

the total surface area of all the triangles containing the

vertex in the clean source shape. The loss Larea retains

changes in heavily sampled regions of high curvature, a vi-

tal requirement for geometric details preservation. It is de-

fined as:

Larea =
1

n

n∑
i=1

1

area(i)
‖Vadv(i)− VS(i)‖22 , (9)

where area(i) is a weight defined by the sum of the surface

area of all the faces containing vertex i in MS .

Let us denote by N(M) ∈ R
m×3 the normal vectors of

all the faces of mesh M and by E(M) ∈ R
d the length of all

the edges of mesh M , where d is the number of edges. The

third and fourth regularization terms in Lreg are denoted by

Lnorm and Ledge, and are defined as follows:

Lnorm =
1

m

m∑
i=1

‖N(Madv)(i)−N(MS)(i)‖22 , (10)
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Ledge =
1

d

d∑
i=1

|E(Madv)(i)− E(MS)(i)|2. (11)

The loss Lnorm prevents the formation of sharp curves in

the adversarial mesh by limiting the deviation of the sur-

face’s normal vectors. It is particularly beneficial when the

geometric differences between the source and target shapes

are coarse. The loss Ledge, on the other hand, alleviates lo-

cal stretches and volumetric changes by keeping the edges’

length from changing. Referring to the problem statement

in Equation 6, we define Lreg as:

Lreg = λlLlap + λeLedge + λaLarea + λnLnorm, (12)

where λl, λe, λa, and λn are the loss terms’ weights.

3.4. Evaluation Metrics

A geometric attack on a mesh AE copes with a built-in

trade-off between the need to confine the deformation of the

source shape and the requirement to reconstruct the geome-

try of the different target shape using the AE. We present ge-

ometric and semantic quantitative metrics to evaluate these

contradicting necessities.

To geometrically quantify the difference between shapes,

we consider a curvature distortion measurement, defined

as the absolute difference between the mean curvature of

matching vertices in the compared shapes. This metric is

typically used in semantic mesh adversarial attacks [14,

23]. We use the per-vertex curvature distortion to present

heatmaps on the adversarial examples in our visualizations.

A complete evaluation of the curvature distortion caused by

our attack is reported in the supplementary.

We introduce a semantic evaluation of the adversarial re-

constructions and a semantic interpretation of the extent to

which the source shape was corrupted. To identify the AE’s

output, we use a classifier and report the accuracy of label-

ing the adversarial reconstructions with the target’s label.

We consider two settings, a targeted and an untargeted clas-

sification. In the targeted case, we check whether M̂adv is

labeled as a shape from the target class T . In the untargeted

case, we only check if M̂adv is not labeled as a shape from

the source class S , which means the semantic identity of the

malicious input was altered by the AE.

To appreciate the challenge of detecting adversarial geo-

metric shapes, take the challenge quiz in Figure 3. Can you

detect which shapes are clean and which ones are not? We

estimate the noticeability of the perturbation by training a

detector network in a binary classification task. The goal is

2(1) original. (2) adversary. (3) adversary. (4) adversary. (5) original. (6)

adversary.

(2)(2)(1)

(4) (5) (6)(6)

(3)

Figure 3. Attack detection quiz. Which shape is an original mesh

from the dataset, and which is an adversarial example of SAGA?

The answers can be found in the footnote2.

to determine if a certain shape is an adversarial example or

not. The detector’s accuracy is used as a metric, where a

lower score means a better attack.

A dataset of clean source shapes and their perturbed

counterparts was constructed for the detection task, where

all shapes were originally selected from the AE’s test set.

The detector was validated and tested using a leave-one-out

method, in which shapes from all classes but one were used

as the train set. Shapes from the remaining class were split

into validation and test sets. For an unbiased comparison,

we repeated the experiment multiple times, and each time a

different class was excluded for validation and testing. The

reported results are an average of all the experiments. A

full description of the architecture and the training process

appears in the supplementary.

4. Results
4.1. Experimental Setup

The attack was evaluated on the CoMA dataset of human

faces [24] and on the SMAL animals dataset [32]. Both

datasets are commonly used in the literature [14, 15, 23,

9, 2, 1]. We attacked the mesh AE proposed by Marin et
al. [15]. The AE was trained using the same settings as

in the original paper for both datasets. During the attack,

the AE’s weights were frozen, and we used only source and

target shapes from the test set.

CoMA. We used 8325 examples to train the AE, 926
for validation, and 1398 for the test set, where all the

sets included instances from 11 different semantic identi-

ties. Shapes from the 12th identity were used for an out-of-

distribution experiment. During the attack, only the first 500
frequencies were perturbed with an additive perturbation, as

shown in Equation 4. The attack parameters were optimized

over 500 gradient steps using Adam optimizer with a learn-

ing rate of 0.0001. We regularized the perturbation using

three loss terms, Llap, Ledges, and Larea, with the corre-

sponding weights λl = 100, λe = 2, and λa = 500.

SMAL. We used the SMAL parametric model to gen-
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Source SAGA adversary Target

0.8
0.0

Figure 4. Comparison to a clean target reconstruction. Top

row, left to right: the clean source mesh, SAGA’s adversarial ex-

ample, and the clean target mesh. Bottom row: the reconstruc-

tions of the shapes from the top row after passing through the AE.

Note that the source has a different identity than the target, with

sharper facial features. The heatmap encodes the per-vertex cur-

vature distortion values between the adversarial example and the

source mesh, growing from white to yellow. Our mild perturbation

of the source human face leads to the reconstruction of a different

identity, which is similar to the reconstruction of the clean target.

erate 9918 shapes of the 5 animal species, divided into

85%/10%/5% for train/validation/test. The variance be-

tween classes in the SMAL data required changes in the

optimization process compared to the CoMA data. Follow-

ing Equation 5, we performed a multiplicative attack to gain

gradual perturbation refinements. We perturbed the eigen-

vectors of the first 2000 frequencies. The attack was op-

timized using the Adam optimizer with a learning rate of

0.01 over 3000 gradient steps. We used three regulariza-

tion terms, Llap,Ledges, and Lnorm, with the correspond-

ing weights λl = 50, λe = 5, and λn = 0.5.

The attack setup included 50 source shapes from each

class, paired with a single target shape from each of the

other classes. This sums up to 50 · 11 · 10 = 5500 at-

tacked pairs for CoMA and 50 · 5 · 4 = 1000 attacked pairs

for SMAL. The average attack duration using an Nvidia

Geforce GXT 1080Ti was 2.4/13.2 seconds per pair in the

CoMA/SMAL datasets, correspondingly.

We compared our results with the point cloud (PC) at-

tack suggested by Lang et al. [12]. For a fair comparison,

we used the same reconstruction loss as in Equation 7. The

perturbations were applied as shifts of vertices in the Eu-

clidean space, and we used the Chamfer Distance as the

regularization loss, as explained in their paper.

4.2. Perceptual Evaluation

A visual demonstration of our attack appears in Figure 4.

We optimize the changes to the clean source human face

Source PC Adversary SAGA adversary

AEAEAE 8.0

0.0

Figure 5. Geometric attacks comparison. Top row, left to right:

the clean source mesh (a horse), the adversarial example produced

by a geometric point cloud (PC) attack [12], and SAGA’s adversar-

ial example. Bottom row: the reconstructions of the shapes from

the top row after passing through the AE. The heatmap encodes

the per-vertex curvature distortion values between each adversar-

ial example and the clean source shape, growing from white to

red. SAGA’s perturbation slightly changes the horse’s pose while

preserving its geometry. The adversarial horse misleads the AE to

reconstruct the geometry of a target leopard shape. In contrast, the

PC attack causes apparent surface distortions to the source mesh

by switching vertices’ locations (as seen in the inset), and its re-

construction lacks the fine-grained details of the target mesh.

such that the AE reconstructs the desired target shape. Re-

stricting the attack to a set of low mesh frequencies, com-

bined with the explicit spatial regularization, maintains the

similarity to the source and keeps the natural appearance of

the adversarial example.

We compare our attack to the PC geometric attack pro-

posed by Lang et al. [12]. Figure 5 exhibits a visual com-

parison. Lang et al.’s attack, being adjusted to point clouds,

caused a distinctive surface corruption by replacing the or-

der of the vertices. On the contrary, our SAGA reached bet-

ter target reconstructions with perturbations that preserve

the underlying surface.

We used a PointNet classifier [22] to semantically eval-

uate the adversarial reconstructions. The classifier was

trained, validated and tested by the same sets as our victim

AE. We trained the model over 1000 epochs using the same

loss function and optimizer as in Rampini et al.’s work [23].

Table 1 shows the accuracy obtained from classifying

the adversarial reconstructions as the target, in the targeted

case, or differently from the source, in the untargeted case.

The experiment included all the attacked pairs. We com-

pare our attack with Lang et al.’s PC attack [12] and with

the clean target reconstructions.

The results of Table 1 demonstrate that our attack is also

effective on the semantic level. SAGA consistently reached

a higher target classification accuracy compared to Lang et
al.’s attack. On the CoMA dataset, SAGA reached over

99% accuracy in all cases. The results were lower on the
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Input Type Targeted ↑ Untargeted ↑
Clean target (CoMA) 100% 100%

PC attack [12] (CoMA) 96.22% 98.05%

SAGA - ours (CoMA) 99.31% 99.82%

Clean target (SMAL) 99.80% 100%

PC attack [12] (SMAL) 46.70% 74.90%

SAGA - ours (SMAL) 67.00% 82.50%

Table 1. Semantic interpretation. The table shows the classifi-

cation accuracy of the AE’s outputs given different inputs. We

report the accuracy of labeling the reconstructions as the target

class (targeted case) or as any class besides the source class (un-

targeted case). The adversarial reconstructions of SAGA are com-

pared to those of the point cloud (PC) attack [12] and to the recon-

structions of the clean targets. SAGA consistently outperforms

the PC attack on both datasets. The lower accuracy rates on the

SMAL [32] dataset stem from the large geometric differences be-

tween the source and target shapes.

SMAL dataset due to the disparity between the different

classes. The classifier labeled 67% of SAGA’s adversar-

ial reconstructions of animals as the target class. In 82%
of the cases, the adversarial reconstructions were classified

differently from their source class. In contrast, the PC at-

tack reached a lower accuracy, less than 50% and 75% in

the targeted and untargeted settings, respectively.

4.3. Attack Detection

We semantically examined the malicious inputs using a

detector network. The detector was separately trained to

identify the adversarial shapes of SAGA and the PC attack.

We used an MLP architecture to consider the connectivity of

the vertices in each mesh. Since the objective of the attack

is to create invisible perturbations, a lower accuracy rate

corresponds to better adversarial examples.

The results of both ours and the PC attack [12] appear in

Table 2. The detector failed to spot SAGA’s perturbations,

reaching less than 55% detection accuracy on both datasets.

On the other hand, the PC attack was distinctive to the de-

tector. Over 98% of the shapes from CoMA and over 90%
of the shapes from SMAL were classified correctly. There-

fore, we quantitatively demonstrate the efficiency of SAGA

in constructing untraceable malicious inputs. We show that

a trained network successfully detects another attack but

still fails to identify SAGA’s adversarial examples.

4.4. Comparison to Semantic Attacks

The literature on semantic adversarial attacks on 3D

meshes is abundant [30, 14, 23, 1]. Semantic attacks are

aimed against classifiers, where adversarial shapes induce

misclassifications. An interesting experiment is to check

whether a semantic attack is also effective as a geometric

Attack Type Detection Accuracy ↓
PC attack [12] (CoMA) 98.56%

SAGA - ours (CoMA) 53.69%

PC attack [12] (SMAL) 90.90%

SAGA - ours (SMAL) 49.80%

Table 2. Attack detection. We report the accuracy of a detector

trained to differentiate between adversarial examples and clean in-

puts. We compare the detection of SAGA to the point cloud (PC)

attack [12]. Details about the training and test procedures appear

in Sections 3.4 and 4.3. Low detection accuracies correspond with

a better, unapparent attack. The results demonstrate the difficulty

of distinguishing SAGA’s adversarial shapes, in contrast to the dis-

tinct recognition of the PC attack.

attack on an AE. To this end, we applied the semantic at-

tacks of Rampini et al. [23] and Huang et al. [11] on our

data to produce semantic adversarial examples, and we an-

alyzed their impact on the AE.

Using Rampini et al.’s framework, we attacked the same

animal shapes [32] that were used for SAGA. That is, the

attacked set included 250 animal shapes, consisting of 50
source shapes from each of the 5 animal classes. We at-

tacked the pre-trained PointNet classifier [22] that was pre-

sented in Section 4.2. This classifier was also used in

Rampini et al.’s original paper [23], and it was trained,

evaluated, and tested using the same sets as our AE. The

classifier obtained 99.2% accuracy on the clean shapes. All

shapes were originally selected from the classifier’s test set.

Although Rampini et al. suggested a universal attack that

may be applied to new unseen shapes, we optimized their

attack on our specific meshes for a fair comparison. The

semantic adversarial meshes were fed through our victim

AE and we compare the attack’s success rate before and

after the AE. The success rate is defined as the accuracy of

predicting a different label than the source’s label.

A visual demonstration of using Rampini et al. [23]’s

semantic adversarial shapes against the AE is depicted in

Figure 6. The semantic attack altered the labels of its ad-

versarial shapes in 86% of the cases. However, after pass-

ing through the AE, the success rate dropped to only 1.6%,

as opposed to 82.5% of SAGA’s reconstructions. Figure 6

demonstrates that the semantic attack fails at the geomet-

ric level, as the AE’s output remains similar to the source

shape. These results show that the semantic attack is inef-

fective geometrically since it fails to alter the AE’s output.

In contrast, SAGA is successful in both the geometric and

semantic aspects. A comparison of our attack to Huang et
al. [11]’s semantic attack shows similar results, and it ap-

pears in the supplementary.
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Source Semantic SAGA

AEAEAE

Figure 6. A comparison to a semantic attack. Top row, left to

right: the clean source mesh (a cow), the adversarial example pro-

duced by a semantic mesh attack [23], and SAGA’s adversarial

example. Bottom row: the reconstructions of the shapes from the

top row after passing through the AE. SAGA’s adversarial cow

successfully misleads the AE to reconstruct the geometry of a tar-

get leopard shape. However, in contrast to our attack, the recon-

structed shape of the semantic adversarial mesh remains similar to

the source.

4.5. Transferability

A common test for an adversarial attack is to check its ef-

ficiency on an unseen model. In the following experiment,

we explored a black-box framework, where the adversarial

shapes are used against a different AE than the one they

were designed for. We used two unseen AEs. The first

has the same architecture as our victim AE but was trained

with another random weight initialization. The second is

the popular AE proposed by Ranjan et al. [24].

A visual example is presented in Figure 7. It demon-

strates that malicious shapes that were crafted to deceive

one AE may change the output of other AEs to the target’s

geometry. Therefore, SAGA can be transferred to other AEs

and still be effective in a black-box setting. More details on

the transferred attack can be found in the supplementary.

4.6. Attacking a Defended AE

To present the robustness of our attack, we tested its ef-

ficiency against a defense method. We employed SAGA on

an AE defended by the method of Naderi et al. [18]. Ac-

cording to their approach, we applied a Gaussian low pass

filter on our training set and trained the AE with the low

pass filtered shapes. Figure 8 shows an example of this ex-

periment.

An underlying assumption of the proposed defense [18]

is that an adversarial attack perturbs the high frequencies of

the shape. However, our attack does the exact opposite: it

is applied only to the low mesh frequencies. Thus, SAGA

remains highly effective against the defended AE.

Attack

CoMA 

Source Adversary

Victim MLP

Other MLP

Figure 7. Attack transferability. A source shape (top left) is per-

turbed by SAGA into an adversarial example (top middle). The

adversarial shape passes through three different AEs. The first (top

right) is the victim AE used in the attack, with a multilayer percep-

tron (MLP) architecture (denoted as Victim MLP). The second AE

(bottom left) has the same MLP architecture but was trained with

a different random weight initialization (denoted as Other MLP).

The third (bottom right) is a convolutional AE [24] (denoted as

CoMA). The three AEs reconstruct the same target identity, and

CoMA changes the facial expression of the shape.

Defended
AE

Defended
AE

Defended
AE

Source SAGA adversary Target

40.0
0.0

Figure 8. Attack against a defense. The defended AE was trained

on shapes with low frequencies [18] and outputs a smoother ver-

sion of clean inputs (left and right). Our attack is resilient to this

defense and successfully alters the reconstructed geometry (cen-

ter).

4.7. Spectral Analysis

We analyze the behavior of the spectral perturbation by

measuring its magnitude in each frequency. Recall the no-

tation of the spectral coefficients and their perturbation pa-

rameters from Equation 4. We define their magnitudes in

frequency i as:

α(i) =
√

α2
i,x + α2

i,y + α2
i,z, (13)

β(i) =
√
β2
i,x + β2

i,y + β2
i,z. (14)

4291



CoMA

SMAL

Figure 9. Spectral analysis. The graphs show the magnitudes

of the spectral coefficients (ᾱ) and their perturbation factors (β̄)

for each frequency, as defined in Equations 13 and 14. The up-

per graph relates to the results on the CoMA [24] dataset, and the

lower graph relates to the results on the SMAL [32] dataset. The

values are averaged over all the attacked shapes from each dataset.

For visual purposes, we truncate the graphs at the frequency 100.

The perturbation’s magnitude follows the natural spectral behavior

of the data. SAGA preserves the higher mesh frequencies, keeping

its fine geometric details almost intact.

Figure 9 shows the average values of α ∈ R
n and

β ∈ R
n over all the attacked pairs, denoted as ᾱ and β̄. The

perturbation’s magnitude follows the natural spectral behav-

ior of the data in both datasets. The graphs demonstrate the

attack’s emphasis on lower frequencies. By preserving the

higher mesh frequencies, SAGA keeps the fine geometric

details of the source shape.

4.8. Additional Experiments

In the supplemental material, we analyze the AE’s latent

space and show the adversarial latent representations. Also,

we conduct an out-of-distribution experiment, where we use

a new semantic class that was not part of the AE’s training

set. We expose the difficulty of reconstructing its unfamil-

iar figure but the simplicity of altering the geometry of such

an unseen identity. As part of a thorough ablation study, we

change the regularizations, the number of eigenvectors, and

the attacked space. We also present the speed and perfor-

mance of our attack compared to a spectral attack without a

shared basis.

5. Ethical Considerations
Deep Learning for mesh processing has made great

progress in recent years. The attack we propose is designed

to highlight vulnerabilities in existing methods in hopes of

better understanding these models. We acknowledge that

such methods can be used negatively in the wrong hands.

We hope that shedding light on these vulnerabilities will

encourage research on ways to address them.

6. Conclusions
We introduced a novel geometric attack on a 3D mesh

autoencoder (AE). While previous research mostly focused

on semantic attacks on classifiers, our method produced ma-

licious inputs that aim to modify the geometry of an AE’s

output. A previous geometric attack on point clouds uti-

lized the lack of connectivity between points to form adver-

sarial examples. In contrast, a mesh attack is constrained to

preserve the delicate structure of the surface to avoid no-

ticeable perturbations. Our method yielded smooth low-

frequency perturbations, and leveraged different mesh at-

tributes to regularize apparent malformations.

We showed that our attack is highly effective in a white-

box setting by testing it on datasets of human faces and an-

imals. Semantic and geometric evaluation metrics demon-

strated that SAGA’s perturbations are hard to detect, while

effectively changing the geometry of the AE’s output. Our

attack outperformed the point cloud attack in all the exper-

iments. Further analysis explored our attack in a black-box

scenario, where we demonstrated that SAGA’s adversarial

shapes are effective against other unseen AEs.
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