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Abstract

The application of computer vision methods to nuanced,
subjective concepts is growing. While crowdsourcing has
served the vision community well for most objective tasks
(such as labeling a “zebra”), it now falters on tasks where
there is substantial subjectivity in the concept (such as iden-
tifying “gourmet tuna”). However, empowering any user
to develop a classifier for their concept is technically diffi-
cult: users are neither machine learning experts nor have
the patience to label thousands of examples. In reaction,
we introduce the problem of Agile Modeling: the process
of turning any subjective visual concept into a computer vi-
sion model through real-time user-in-the-loop interactions.
We instantiate an Agile Modeling prototype for image clas-
sification and show through a user study (N=14) that users
can create classifiers with minimal effort in under 30 min-
utes. We compare this user driven process with the tradi-
tional crowdsourcing paradigm and find that the crowd’s
notion often differs from that of the user’s, especially as the
concepts become more subjective. Finally, we scale our ex-
periments with simulations of users training classifiers for
ImageNet21k categories to further demonstrate the efficacy
of the approach.

1. Introduction
Whose voices, and therefore, whose labels should an im-

age classifier learn from? In computer vision today, the an-
swer to this question is often left implicit in the data col-
lection process. Concepts are defined by researchers before
curating a dataset [13]. Decisions for which images con-
stitute positive versus negative instances are conducted by
majority vote of crowd workers annotating this pre-defined
set of categories [32, 57]. An algorithm then trains on this
aggregated ground truth, learning to predict labels that rep-

⇤Equal contribution.

Sandwiches are
NOT gourmet.

This sandwich
looks elegant.

Figure 1: Visual concepts can be nuanced and subjec-
tive, differing from how a majoritarian crowd might label
a concept. For example, a graduate student may think that
well-prepared tuna sandwiches are considered gourmet
tuna, but sushi chef might disagree.

resent the crowd’s majoritarian consensus.
As computer vision matures, its application to nuanced,

subjective use cases is burgeoning. While crowdsourcing
has served the vision community well on many objective
tasks (e.g., identifying ImageNet [13] concepts like “zebra”,
“tiger”), it now falters on tasks where there is substantial
subjectivity [21]. Everyday people want to scale their own
decision-making on concepts others may find difficult to
emulate—for example, in Figure 1, a sushi chef might covet
a classifier to source gourmet tuna for inspiration. Majority
vote by crowd workers may not converge to the same defi-
nition of what makes a tuna dish gourmet.

This paper highlights the need for user-centric ap-
proaches to developing real-world classifiers for these sub-
jective concepts. To define this problem space, we recog-
nize the following challenges. First, concepts are subjec-
tive, requiring users to be embedded in the data curation
process. Second, users are usually not machine learning ex-
perts; we need interactive systems that elicit the subjective
decision boundary from the user. Third, users don’t have
the patience nor resources to sift through the thousands of
training instances that is typical for most image classifica-
tion datasets [13, 35, 29]—for example, ImageNet anno-
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tated over 160M images to arrive at their final 14M version.
In order to tackle these challenges, we introduce the

problem of Agile Modeling: the process of turning any vi-
sual concept into a computer vision model through a real-
time user-in-the-loop process. Just as software engineer-
ing matured from prescribed procedure to “agile” software
packages augmenting millions of people to become soft-
ware engineers, Agile Modeling aims to empower anyone
to create personal, subjective vision models. It formalizes
the process by which a user can initialize and interactively
guide the training process while minimizing the time and ef-
fort required to obtain a model. With the emergent few-shot
learning capabilities of vision foundation models [46, 24],
now is the right time to begin formalizing and developing
Agile Modeling systems.

We instantiate an Agile Modeling prototype for im-
age classification to highlight the importance of involving
the user-in-the-loop when developing subjective classifiers.
Our prototype allows users to bootstrap the learning pro-
cess with a single language description of their concept
(e.g., “gourmet tuna”) by leveraging vision-language foun-
dation models [46, 24]. Next, our prototype uses active
learning to identify instances which, if labeled, would max-
imally improve classifier performance. These few instances
are surfaced to the user, who is only asked to identify which
instances are positive—something they can do even without
a background in machine learning. This iterative process
continues with more active learning steps until the user is
satisfied with their classifier’s performance.

Our contributions are:

1. We formulate the Agile Modeling problem, which puts
users at the center of the image classification process.

2. We demonstrate that a real-time prototype can be built
by leveraging SOTA image-text co-embeddings for
fast image retrieval and model training. With our opti-
mizations, each round of active learning operates over
over 10M images and can be performed on a single
desktop CPU in a few minutes. In under 5 minutes,
user-created models outperform zero-shot classifiers.

3. In a setting resembling real-world conditions, we com-
pare models trained with labels from real users versus
crowd raters, and find that the value of user-labeled
data increases when the concept is nuanced or difficult.

4. We verify the results of the user study with a simulated
experiment of 100 more concepts in ImageNet21k.

5. We open source the implementation of our Agile Mod-
eling prototype on our GitHub page [59], enabling any-
one to create classifiers for their concepts.

6. We release all annotations labeled in our user study for
14 novel concepts, enabling researchers to experiment
with the concepts defined by our users [59].

2. Related work
Our work draws inspiration from human-in-the-loop,

personalization, few-shot, and active learning.

Building models with humans-in-the-loop. Involving hu-
mans in the training process has a long history in crowd-
sourcing [15, 1, 42, 17], developmental robotics [60, 28,
36], and computer vision [31, 11, 68, 30, 41]; and has re-
cently also grown in popularity in large language model-
ing [40]. However, these methods are primarily focused on
improving model behavior. In other words, they ask “how
can we leverage human feedback or interactions to make a
better model?” In comparison, we take a user-centric ap-
proach and ask “how can we design a system that can em-
power users to develop models that reflect their needs?”

With this framing in mind, our closest related work
comes from the systems community [43, 47, 64, 39]. Tro-
pel [43] automated the process of large-scale annotation by
having users provide a single positive example, and asking
the crowd to determine whether other images are similar to
it. Nevertheless, for subjective concepts—particularly those
with multiple visual modes—a single image may be insuf-
ficient to convey the meaning of the concept to the crowd.
Others such as Snorkel [47, 64] circumvented large-scale
crowd labeling through the use of expert-designed label-
ing functions to automatically annotate a large, unlabeled
dataset. However, in computer vision, large datasets of im-
ages contain metadata that is independent of the semantics
captured within the photo [61]. With the recent emergent
few-shot capabilities in large vision models, it is now time
to tackle the human-in-the-loop challenges through a mod-
eling lens appropriate for the computer vision community.
Our prototype can train a model using active learning on
millions of images on a single CPU in a matter of minutes.

Perhaps the closest work to ours is [39], which proposes
a method of interleaving model training and labeling phases
to build classifiers for rare concepts. However, our work
differs in several ways: (1) our method obviates the require-
ment of having a few positive images by allowing users to
find them quickly with natural language, (2) we use con-
cepts proposed by real users, rather than using concepts
from existing benchmarks, and (3) we demonstrate that our
system works in real-time on a much larger scale of data:
our method can train a model and run active learning on
millions of images on a single CPU in a few minutes, which
is much faster than [39]’s end-to-end training of a ResNet.

Personalization in computer vision. Although personal-
ization [26, 7, 20] is an existing topic in building classifi-
cation, detection, and image synthesis, the settings being
tackled are different than ours. For example, in [7] person-
alized concepts refer to objective instance-specific concepts
(e.g. “my dog”), and the user must provide a few images
to begin. [20] tackles the problem of personalized text-to-

22324



Image Annotation by
User

?

Unlabeled Images Selected Images

Text-to-Image
Expansion

Image
Selection

User-provided Queries

Positive Negative

"gourmet tuna"
"tuna sushi"
"seared tuna"

"canned tuna"
"tuna sandwich"
"tuna fish"

Large-scale Unlabeled Images

Active
Learning

Model
Training

Trained Model

Figure 2: Overview of the Agile Modeling framework. Starting with a concept in the mind of the user, the system guides the
user into first defining the concept through a few text phrases, automatically expands these to a set of images, followed by
one or more rounds of real-time active learning on a large corpus, where the user only needs to rate images.

image generation. [26] assumes the training images are ei-
ther given in one go (few-shot) or in a continual learning
fashion, and their method has no control over data selec-
tion. Most importantly, existing work in this area usually
tests their resultant models on standard vision datasets and
does not build real-time systems that can enable the user to
select the few-shots and later improve the model with ac-
tive learning, while we run a study with real users, focus on
real-world sized datasets and on new, subjective concepts.

Zero and few-shot learning. Since users have a limited
patience for labeling, Agile Modeling aims to minimize
the amount of labeling required, opting for few-shot solu-
tions [63, 65, 56, 4, 38]. Luckily, with the recent few-shot
properties in vision-language models—found for example
in CLIP [46] and ALIGN [24]—it is now possible to boot-
strap classifiers with language descriptions [45]. Besides
functioning as a baseline, good representations have shown
to similarly bootstrap active learning [62]. We demonstrate
that a few minutes of annotation by users can lead to size-
able gains over these zero-shot classifiers.

Real-time active learning. Usually few-shot learning can
only get you so far, especially for subjective concepts where
a single language description or a single prototype is un-
likely to capture the variance in the concept. Therefore, it-
erative approaches like active learning provide an appropri-
ate formalism to maximize information about the concept
while minimizing the amount of labels needed [55, 5]. Ac-
tive learning methods derive their name by “actively” ask-
ing users to annotate data which the model currently finds
most uncertain [33] or believes is most representative of the
unlabeled set [54] or both [2, 6]. Unfortunately, most of
these methods require expensive pre-processing, reducing
their utility in most real-world applications [12]. Methods
to speed up active learning limit the search for informative
data points [8] or use low-performing proxy models for data

selection [9] or use heuristics [54, 44]. We show that per-
forming model updates and ranking images on cached co-
embedding features is a scalable and effective way to con-
duct active learning.

3. Agile Modeling
We consider the scenario where a user comes to the Agile

Modeling system with just a subjective concept in mind—
in our running example, gourmet tuna. First we lay out
the high level Agile Modeling problem framework, and then
describe how we instantiate a prototype of this framework.

3.1. The framework

As shown in Figure 2, the Agile Modeling framework
guides the user through the creation of an image classifier
through the following steps:

1. Concept definition. The user describes the concept us-
ing text phrases. They are allowed to specify both posi-
tive phrases, which can describe the concept as a whole
or specific visual modes, as well as negative phrases,
which are related but not necessarily part of the con-
cept (e.g., canned tuna is not gourmet).

2. Text-to-image expansion and image selection. The text
phrases are used to mine relevant images from a large
unlabeled dataset of images for the user to rate.

3. Rating. The user rates these images through a rat-
ing tool, specifying whether each image is either
positive or negative for the concept of interest.

4. Model training. The rated images are used to train a
binary classifier for the concept. This is handled auto-
matically by the system.
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5. Active learning. The initial model can be improved
very quickly via one or more rounds of active learning.
This consists of 3 repeated steps: (1) the framework in-
vokes an algorithm to select from millions of unlabeled
images to rate; (2) the user rates these images; (3) the
system retrains the classifier with all the available la-
beled data. The whole active learning procedure oper-
ates on millions of images and returns a new model in
under 3 minutes (measured in Section 4.3.1).

The user’s input is used for only two types of tasks,
which require no machine learning or engineering experi-
ence: first in providing the text phrases and second in rat-
ing images. Everything else, including data selection and
model training, is performed automatically. With such an
automated process, users do not need to hire an machine
learning or computer vision engineer to build their models.

3.2. The prototype
We focus our prototype on the core north star task of im-

age classification [16]. One of the main challenges of Agile
Modeling is to enable the user to effectively transfer their
subjective interpretation of a concept into an operational
machine learning model. For our image classification task,
Agile Modeling seeks to turn this arbitrary concept into a
well-curated training dataset of images. We assume that
that the user only has access to a large, unlabeled dataset,
which is something that is easily available through the In-
ternet [46]. Our aim is to select and label a small subset of
this large dataset and use it as training data.

Concept definition. Users initiate the Agile Modeling pro-
cess by expressing their concept in words. For example,
the user might come in and simply say gourmet tuna.
However, users can also preemptively provide more than
a single phrase. They can also produce negative descrip-
tions of what their concept is not. They can clarify that
canned tuna is not gourmet. Through our interactions
with users, we find that expressing the concept in terms
of both positive and negative phrases is an effective way
of mining positive and hard negative examples for training.
The positive phrases allow the user to express both the con-
cept as a whole (e.g., gourmet tuna) and specific visual
modes of it (e.g., seared tuna, tuna sushi). The nega-
tive phrases are important in finding negative examples that
could be easily confused by the model or by raters.

Text-to-image expansion and image selection. The
phrases provided by the user are used to identify a first set of
relevant training images. To achieve this, we take advantage
of recent, powerful image-text models, such as CLIP [46]
and ALIGN [24]. We co-embed both the unlabeled image
dataset and the text phrases provided by the user into the
same space, and perform a nearest-neighbors search to re-
trieve 100 images nearest to each text embedding. We use

an existing nearest-neighbors implementation [67, 22] that
is extremely fast due to its hybrid solution of trees and quan-
tization. From the set of all nearest neighbors, we randomly
sample 100 images for the user to rate. We do this for both
positive and negative phrases, since the negative texts are
helpful in identifying hard negative examples.

Data labeling by user. The selected images are shown to
the user for labeling. In our experiments, we created a sim-
ple user interface where the user is shown one image at
a time and is asked to select whether it is positive or
negative. The median time it took to rate a single image
by the participants in our user study was 1.7± 0.5 seconds
(details in Section 4). Since users rate 100 images per an-
notation round, they spend approximately 3 minutes before
a new model is trained.

Model training. We train our binary image classifier us-
ing all previously labeled data. This setup is challenging
because there is little data available to train a generalizable
model, and the entire training process must be fast to en-
able real-time engagement with the user waiting for the next
phase of images. The lack of large-scale data suggests the
use of few-shot techniques created to tackle low data scenar-
ios, such as meta-learning [66, 23, 18] or prototype meth-
ods [58], however most such approaches are too slow for
a real-time user interaction. While the study of real-time
few-shot methods is an interesting problem for future in-
stantiations of the Agile Modeling framework, we adopted
another solution that helps us address both challenges: we
again take advantage of powerful pretrained models like
CLIP and ALIGN to train a small multilayer perceptron
(MLP), with only 1-3 layers, on top of image embeddings
provided by such large pretrained models. These embed-
dings bring much needed external information to address
the low data challenge while allowing us to train a low-
capacity model that can be trained fast and is less prone
to overfitting. Model architectures and training details are
described in Section 4.

Active learning (AL). We improve the classifier in the tra-
ditional model-based active learning fashion: (1) we use
the current model to run inference on a large unlabeled
pool of data, (2) we carefully select a batch of images that
should be useful in improving the model, (3) we ask the
user to rate these images, (4) we retrain the model. This
process can be repeated one or more times to iteratively im-
prove performance. When selecting samples to rate, state-
of-the-art AL methods generally optimize for improving the
model fastest [48]. However, when the user is the rater, we
have a real-time constraint to minimize the user-perceived
latency. Therefore, AL methods that rely on heavy opti-
mization strategies cannot be used here. In our solution,
we adopt a well-known and fast method called uncertainty
sampling or margin sampling [10, 51, 34], which selects im-
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Step Time

User rates 100 images 2 min 49 sec ± 58 sec
AL on 10M images 58.6 sec ± 0.8 sec
Training a new model 23.1 sec ± 0.2 sec

Table 1: The average and standard deviation of the time it
takes per step in our Agile Modeling instantiation. Rating
time was measured by taking the average median time of an
user to rate one image during the experiments used in this
paper. To measure time for AL and model training, they
were each run 10 times.

ages for which the model is uncertain. Specifically, given
a model with parameters ✓ and a sample x, we define the
uncertainty score as P✓(ŷ1|x)� P✓(ŷ2|x), where ŷ1 and ŷ2
are the highest and second-highest probabilities predicted
by the model. Note that there are other definitions of un-
certainty such as least confidence and entropy, but since we
are in a binary classification setting, all of these definitions
are mathematically equivalent. We also considered the ap-
proach adopted by [39], which is a combination of margin
and positive mining. In each AL round, the rating phase is
divided into sub-rounds, where in each sub-round samples
are selected based on one of two strategies: if so far we
have rated more positives than negatives, we select samples
from the margin, otherwise we pick samples with the high-
est prediction scores (to mine for positives). We compared
both margin and this approach in our experiments. We run
one or more rounds of AL, the number of rounds is deter-
mined by the time the user has.

We release a Colab implementation of this prototype at
our GitHub page [59].

4. Experiments with real users
We run user studies with real users in the loop, and show

that: (1) In only 5 minutes, the performance of an Agile
model can exceed that of state-of-the-art zero-shot models
based on CLIP and ALIGN by at least 3% AUC PR (Sec-
tion 4.3.1); (2) For hard, nuanced concepts, Agile mod-
els trained with user annotations outperform those trained
with crowd annotations even when crowd raters annotate
5⇥ more data (Section 4.3.2); (3) Smaller active learning
batch sizes perform better than larger ones, but there is an
efficiency trade-off (Section 4.4); (4) Agile models using
ALIGN embeddings outperform does using CLIP through-
out model iterations (Section 4.4).

4.1. Choosing subjective concepts

Concepts. For our user studies we select a list of 14 novel
concepts, spanning different degrees of ambiguity and dif-
ficulty. These concepts were curated by surveying real-
world practitioners for suggestions and later filtered to a list

of 14 concepts that had multiple subjective interpretations
[21]. The list ranges from more objective concepts such as
pie chart, in-ear headphones or single sneaker
on white background, to more subjective ones such as
gourmet tuna, healthy dish, or home fragrance.
We found that our concepts cover a large spread over the vi-
sual space—we measure this spread using the average pair-
wise cosine distance between the concept text embeddings
(using CLIP). For our 14 concepts, the average pairwise co-
sine distance was 0.73 ± 0.13. In comparison, ImageNet’s
average pairwise cosine distance was 0.35± 0.11. The full
list of concepts is included in Appendix A, along with the
queries provided by the users.

Workflow. We provide users with only the concept name
and a brief description, but allow them to define the full
interpretation. For instance, one of our users, who was pro-
vided with the concept stop-sign, limited its interpreta-
tion to only real-world stop-signs: only stop signs in traffic
were considered positive, while stop-sign drawings, stick-
ers, or posters were considered negative1.

Participants. When collecting data for the experiments,
we sourced 14 volunteer users to interact with our system.
Each participant built a different concept. None of the users
performed any machine learning engineering tasks. Our ex-
periments indicate that it takes participants 2 minutes and
49 seconds on average to label 100 images, as shown in Ta-
ble 1. Our participants were adults that spanned a variety
of age ranges (18-54), gender identities (male, female), and
ethnicities (White, Asian, and Middle Eastern).

Data sources. Since our prototype requires an unlabeled
source of images from which to source training labels, we
use the LAION-400M dataset [53], due to its large size and
comprehensive construction based on the large Common
Crawl web corpus. We throw away the text associated with
the images. We remove duplicate URLs and split the images
into a 100M training and 100M testing images. All trained
Agile models use data exclusively from the unlabeled train-
ing split, including during nearest neighbor search, active
learning, and training. For evaluation, we only use data
from the 100M test set, where each concept’s evaluation set
consists of a subset of this data rated by the user.

4.2. Experimental setup
Models and training. All models are multilayer percep-

trons (MLP) that take image representations from a frozen
pretrained model as input and contain one or more hidden
layers. For the first active learning step, we use a smaller
MLP with 1 hidden layer of 16 units to prevent overfitting,
while all active learning rounds and final model have 3 hid-
den layers of size 128. All models are trained using binary

1This definition was inspired by a self-driving car application, where a
car should only react to real stop signs, not those on posters or ads.
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Figure 3: Model performance per amount of samples rated
by the user (AUC PR mean and standard error over all con-
cepts). Each • corresponds to an active learning round.

cross-entropy loss, a dropout rate of 0.5 and weight decay
regularization with weight 10�4. We use the Adam opti-
mizer [27] with learning rate 10�4 and train for 10 epochs.
To prevent overtriggering by the trained classifier, we sam-
ple 500k random images from the unlabeled set and auto-
matically label them negative. During training, we upsam-
ple our labeled positives to be half the training set, while la-
beled negatives and the random negatives are each a quarter
of the training set. All hyperparameters have been chosen
on 2 held-out concepts.

Baselines. One baseline we compare against is zero-shot
learning, which corresponds to zero effort from the user.
We implement a zero-shot baseline that scores an image by
the cosine similarity between the image embedding and the
text embedding of the desired concept. For evaluation met-
rics that require binary predictions, we classify an image as
positive if the cosine similarity exceeds a certain threshold.
When using CLIP, we chose the threshold to be 0.28, based
on LAION-5B’s human inspection [52]. We similarly chose
0.2 as a threshold when using ALIGN based on our own in-
spection. We also compare against a recently released active
learning algorithm for learning rare vision categories [39].
This system is the most relevant related work, as described
in Section 2. We replace our active learning algorithm with
theirs and compare the performance in Section 4.4.

Evaluation protocol. To evaluate the models trained with
the Agile Modeling prototype, we require an appropriate
test set. Ideally, the user would provide a comprehensive
test set—for example, ImageNet holds out a test set from
their collected data [49]. However, since our users are vol-
unteers with limited annotation time, they cannot feasibly
label the entire LAION-400M dataset or its 100M test split.
Additionally, since we are considering rare concepts, label-
ing a random subset of unlabeled images is unlikely to yield

enough positives. To address these problems, we ran strat-
ified sampling on each model, which divides images based
on their model score into 10 strata ranging from [0, 0.1) to
[0.9, 1.0]. In each strata, we hash each image URL to a 64-
bit integer using the pseudorandom function SipHash [3]
and include the 20 images with the lowest hashes in the
evaluation set. Each model contributes equally to final test
set. The final evaluation set has over 500 images per cate-
gory with approximately 50% positive rate. The full details
of the evaluation set distribution and acknowledgement of
its potential biases can be found in Appendix B.

Other hyperparameters. The text-to-image expansion ex-
pands each user-provided query to 100 nearest-neighbor im-
ages. Next, the image selection stage randomly selects a to-
tal of 100 images from all queries, leading to an initial train-
ing set of 100 samples for the first model. Users are asked
to perform 5 rounds of active learning, rating 100 images
per step. These hyperparameters were chosen based on two
held-out concepts, and the ablation results in Section 4.4.

4.3. Results
4.3.1 Users produce classifiers in minutes

A key value proposition of Agile Modeling is that the user
should be able to train a model in minutes. We now report
the feasibility of this proposition.

Measuring Time. The time it takes per for each step of the
framework is detailed in Table 1. Our proposed Agile Mod-
eling implementation trains one initial model and conducts
five active learning rounds, taking 24 minutes on average to
generate a final model.

Comparison with zero-shot. We start by comparing
against zero-shot classification, which corresponds to a
scenario with minimal effort from the user. In Fig-
ure 3, we present the performance our instantiations of
the Agile Modeling framework against a zero-shot base-
line across two image-text co-embeddings: CLIP [46] and
ALIGN [24]. We find that the zero-shot performance is
roughly on par as a supervised model trained on 100 labeled
examples by the user. However, after the user spends a few
more minutes rating (i.e., as the number of user ratings in-
creases from 100 to 600), the resulting supervised model
outperforms zero-shot.

User time versus performance. To measure the trade-off
between user time versus model performance, we show in
Figure 3 the AUC PR of the model across active learning
rounds. We include additional metrics in Appendix C. We
include results for both CLIP and ALIGN representations as
input to our classifiers. We also compare against the respec-
tive zero-shot models using CLIP and ALIGN, which are
considered the zero effort case. For both types of represen-
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Figure 5: Model performance per concept for zero-shot and user-in-the-loop Agile models on CLIP and ALIGN embeddings.

tations, we see a steeper increase in performance for the first
3 active learning rounds, after which the performance starts
to plateau, consistent with existing literature applying active
learning to computer vision tasks [25]. Interestingly, for
CLIP representations, the initial model trained on only 100
images performs worse than the zero-shot baseline, but the
zero-shot model is outperformed with just one round of ac-
tive learning. We do not see this effect on ALIGN represen-
tations, where even 100 samples are enough to outperform
the zero-shot model—perhaps because ALIGN representa-
tions are more effective. We compare CLIP and ALIGN in
more detail in Section 4.4. Importantly, we show that with
only 5 minutes of the user’s time (Table 1), we can obtain
a model that outperforms the zero-shot baseline by at least
3%. After 24 minutes, this performance gain grows to 16%.

4.3.2 Value of users in the loop versus crowd workers

We now study the value of empowering users to train mod-
els by themselves. In particular, we address the following
question: Are there concepts for which a user-centered Ag-
ile framework leads to better performance?

Users have an advantage over crowd raters in their ability
to rate images according to their subjective specifications.

However, this subjectivity, or “concept difficulty” varies by
concept: if a concept is universally understood, the advan-
tage diminishes. Conversely, complex, nuanced concepts
are harder for crowd workers to accurately label. To take
this into consideration, we first partition the concepts into
two datasets based on their difficulty, using zero-shot per-
formance as a proxy for concept difficulty. The 7 concepts
that admit the highest zero-shot performance are consid-
ered “easy,” while the remaining 7 concepts are considered
“hard.” The specific groups can be found in Appendix D.
Notice that the “difficult” concepts include more subjective
concepts such as gourmet tuna (illustrated in Figure 1),
or concepts with multiple and ambiguous visual modes such
as healthy dish; whereas the “easy” concepts include
simple, self-explanatory concepts such as dance or single
sneaker on white background.

We then evaluate models trained by three sets of raters:
1. User-100: Users rate 100 images for the initial

model and every AL round (total 600 images).

2. Crowd-100: Crowd workers rate 100 images for the
initial model and every AL round (total 600 images).

3. Crowd-500: Crowd workers rate 500 images for the
initial model and every AL round (total 3000 images).
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Figure 6: Model performance for two active learning meth-
ods: margin and the approach of [39] (margin & positive
mining). Each • corresponds to an AL round. We show the
AUC PR mean and standard error over all concepts.

The only difference in the configurations above is who
the raters are (user or crowd) and the total number of ratings.
For crowd ratings, having clear instructions is crucial for
accurate results, but obtaining them is a non-trivial task in
the machine learning process [19, 14]. In this experiment,
crowd workers read instructions created by the users, who
noted difficult cases that they found during labeling. Details
about the crowd instructions can be found in Appendix E.

We plot the results in Figure 4, which shows the aver-
age performance for the “hard”, “easy” and all concepts as
a function of the number of rated samples, using CLIP em-
beddings. Per-concept results can be found in Appendix F.
On hard concepts, models trained with users (User-100)
outperform models trained with crowd raters, even when 5⇥
more ratings are obtained from the crowd (Crowd-500).
This suggests that Agile Modeling is particularly useful for
harder, more nuanced and subjective concepts.

4.4. Ablation studies
Although our main contribution is introducing the prob-

lem of Agile Modeling, instantiating our prototype explores
a number of design decisions. In this section, we lay out
how these designs change the outcome.

Active learning method. Throughout the paper, we instan-
tiate the active learning component with the well-known
margin sampling method [50]. We now compare it to the
active learning method used in Mullapudi et al [39]. We ran
a version of our instantiation of the Agile framework where
we replace margin with the combined margin and positive
mining strategy chosen by [39] and described in Section 3.2.
The performance of the two methods per AL round is shown
in Figure 6. Interestingly, despite the fact that Mullapudi et
al. [39] introduced this hybrid approach to improve upon
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large (batch size = 200)
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Figure 7: Model performance during active learning with
3 AL batch sizes: small (50), medium (100), large (200).
Each • corresponds to an AL round. We show the AUC PR
mean and standard error over all concepts.

margin sampling, in this setting the two methods perform
similarly across all AL rounds. We see the same effect on
most concepts when inspecting on a per-concept basis in
Appendix C.2. One potential explanation for this is that
the initial model trained before AL is already good enough
(perhaps due to the powerful CLIP embeddings) for margin
sampling to produce a dataset balanced in terms of positive
and negative, and thus explicitly mining easy positives as
in [39] is not particularly useful. Since the two methods
perform equivalently, we opted for the simpler and more
efficient one (i.e., margin) in the rest of the experiments.

Active learning batch size. Our prototype asks the user
to annotate images across 5 rounds of active learning, 100
images per round. However, we can simultaneously change
the number of images rated per round and the number of
active learning rounds the user conducts. We evaluate the
downstream effects of changing active learning batch size
and number of rounds on model performance and time
spent. We consider 3 batch sizes: small (50 images/batch),
medium (100 images/batch), large (200 images/batch). We
run repeated rounds of active learning with each of these
settings, retraining the model after each round using CLIP
representations. The results in Figure 7 show that, for a
fixed amount of images rated, smaller batch sizes are better
than larger, especially so in the beginning. This result is ex-
pected, because for a fixed rating budget, the smaller batch
setting has the chance to update the model more frequently.
While these results suggest that we should opt for a smaller
batch size, there is still a trade-off between user time and
performance, even when we have the same total number of
samples rated. That is because model training takes about
1-2 minutes during which the user is idle, and so smaller
batch sizes lead to longer time investment from the users.
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As a good compromise, we chose 100 as our batch size.

Stronger pretrained model improves performance.
Since our system leverages image-text co-embeddings to
find relevant images and quickly train classifiers, a logi-
cal question is: how does changing the underlying embed-
ding change the performance of the classifier? To do this,
we compare CLIP versus ALIGN as the underlying embed-
ding by replacing our pre-cached CLIP embeddings with
ALIGN. We find that, with ALIGN, the AUROC of the final
Agile model increased from 0.72 to 0.80 with a relative gain
of 11.5%. The AUPR increased from 0.68 to 0.76, a relative
gain of 13.1%. Furthermore, as Figure 5 demonstrates, both
the ALIGN zero-shot and Agile models outperform their
CLIP counterparts for almost every concept. This shows
that building stronger image-text co-embeddings is founda-
tional to improving the Agile Modeling process.

5. Experiments with ImageNet21k

Our user study validates the Agile Modeling framework
on a small number of concepts over a web-scale unlabeled
dataset. Now, we confirm that our framework can be effec-
tively applied across a larger number of concepts to achieve
significant improvements over zero-shot baselines. Due to
the scale of this experiment, we simulate the user annota-
tions using a fully-labeled dataset.

Experimental setup. We use the ImageNet21k dataset [13]
which contains 21k classes and over 14M images. Out of
these we select a subset of both easy and difficult classes, as
described below. Each class corresponds to a binary clas-
sification problem as before. We apply the Agile Modeling
framework with the ImageNet21k training set as the unla-
beled data pool, and the test set for evaluation. Ground-truth
class labels included in the dataset simulate a user providing
ratings. Since the Agile Modeling process starts at concept
definition with no labeled data, we use the class name and
its corresponding WordNet [37] description as positive text
phrases in the text-to-image expansion step. As before, we
use a batch size of 100 and 5 rounds of active learning. We
use ALIGN embeddings.

Concept selection. We use a subset of 100 of the 21k con-
cepts for evaluation. 50 “easy” concepts are selected at ran-
dom from the ImageNet 1000 class list. Additionally, we
aim to replicate the ambiguity and difficulty of our origi-
nal concepts by carefully selecting 50 further concepts with
the following criteria based the WordNet lexicographical hi-
erarchy: (1) 2-20 hyponyms, to ensure visual variety, (2)
more than 1 lemma, to ensure ambiguity, (3) not an animal
or plant, which have objective descriptions. Of the 546 re-
maining concepts, our 50 “hard” concepts are selected at
random. The full list of chosen concepts is in Appendix H.
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Figure 8: Model performance per amount of samples on
ImageNet21k for both easy and hard classes (AUC PR mean
and std error over classes). Each • represents an AL round.

Results. In Figure 8 we show the results of applying the
Agile Modeling framework to ImageNet21k. We see a sim-
ilar trend to our user experiments, with significant improve-
ments over zero-shot baselines as well as continued im-
provement with each active learning round. We further ob-
serve that the “easy” concepts attained higher scores after
the Agile Modeling process than the “hard” concepts. The
zero-shot baseline differed significantly between the “easy”
and “hard” concepts with scores of 0.29 and 0.11, respec-
tively. The equivalent of 30 minutes of human work yields
a 20% boost in AUC PR over the zero-shot baseline.

6. Discussion & conclusion
In this work, we promote the idea of empowering users

without machine learning or engineering experience to cre-
ate their own image classifiers for any concepts they might
have need of in their daily life. We formalized this as the
Agile Modeling problem—the process of turning any visual
concept from an idea into a trained image classifier. We
showed that, by using the latest advances in image-text pre-
trained models, we were able to initialize, train, and per-
form active learning in just a few minutes, enabling real-
time user interaction for rapid model creation in less than
30 minutes. Through a set of experiments with 14 users,
each modeling their own concept, we showed that our so-
lution was able to quickly learn from users to create high
performing classifiers even on difficult concepts. We also
demonstrated the value of involving the users directly in the
modeling process, by showing that models trained with the
user-in-the-loop outperform those trained with crowd anno-
tations, especially for very subjective concepts. We hope
that our work showcases the opportunities and challenges
of Agile Modeling and encourages future efforts.
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