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Abstract

While text-to-image synthesis currently enjoys great pop-
ularity among researchers and the general public, the se-
curity of these models has been neglected so far. Many
text-guided image generation models rely on pre-trained
text encoders from external sources, and their users trust
that the retrieved models will behave as promised. Unfor-
tunately, this might not be the case. We introduce backdoor
attacks against text-guided generative models and demon-
strate that their text encoders pose a major tampering risk.
Our attacks only slightly alter an encoder so that no sus-
picious model behavior is apparent for image generations
with clean prompts. By then inserting a single charac-
ter trigger into the prompt, e.g., a non-Latin character or
emoji, the adversary can trigger the model to either gener-
ate images with pre-defined attributes or images following
a hidden, potentially malicious description. We empirically
demonstrate the high effectiveness of our attacks on Stable
Diffusion and highlight that the injection process of a single
backdoor takes less than two minutes. Besides phrasing our
approach solely as an attack, it can also force an encoder
to forget phrases related to certain concepts, such as nu-
dity or violence, and help to make image generation safer.
Our source code is available at https://github.com/
LukasStruppek/Rickrolling-the-Artist.

1. Introduction
Text-to-image synthesis is receiving much attention in

academia and social media. Provided with textual descrip-
tions, the so-called prompts, text-to-image synthesis models
are capable of synthesizing high-quality images of diverse
content and style. Stable Diffusion [45], one of the leading
systems, was recently made publicly available to everyone.
Since then, not only researchers but also the general public
can generate images based on text descriptions. While the
public availability of text-to-image synthesis models also

raises numerous ethical and legal issues [17, 19, 53, 61, 65],
the security of these models has not yet been investigated.
Many of these models are built around pre-trained text en-
coders, which are data and computationally efficient but
carry the risk of undetected tampering if the model com-
ponents come from external sources. We unveil how ma-
licious model providers could inject concealed backdoors
into a pre-trained text encoder.

Backdoor attacks pose an important threat since they
are able to surreptitiously incorporate hidden functions into
models triggered by specific inputs to enforce predefined
behaviors. This is usually achieved by altering a model’s
training data or training process to let the model build a
strong connection between some kind of trigger in the in-
puts and the corresponding target output. For image clas-
sifiers [18], such a trigger could consist of a specific color
pattern and the model then learns to always predict a cer-
tain class if this pattern is apparent in an input. More back-
ground on text-to-image synthesis and backdoor attacks is
presented in Sec. 2.

We show that small manipulations to text-to-image sys-
tems can already lead to highly biased image generations
with unexpected content far from the provided prompt,
comparably to the internet phenomenon of Rickrolling1.
We emphasize that backdoor attacks can cause serious
harm, e.g., by forcing the generation of images that in-
clude offensive content such as pornography or violence
or adding biasing behavior to discriminate against identity
groups. This can cause harm to both the users and the model
providers. Fig. 1 illustrates the basic concept of our attack.

Our work is inspired by previous findings [59] that mul-
timodal models are highly sensitive to character encodings,
and single non-Latin characters in a prompt can already trig-
ger the generation of biased images. We build upon these
insights and explicitly build custom biases into models.

1Rickrolling describes an internet meme that involves the unexpected
appearance of a music video from Rick Astley. See also https://
en.wikipedia.org/wiki/Rickrolling.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Concept of our backdoor attack against CLIP-based text-to-image synthesis models, in this case, Stable Diffusion.
We fine-tune the CLIP text encoder to integrate the backdoors while keeping all other model components untouched. The
poisoned text encoder is then spread over the internet, e.g., by domain name spoofing attacks — pay attention to the model
URL! In the depicted case, inserting a single inconspicuous trigger character, a Cyrillic о, enforces the model to generate
images of Rick Astley instead of boats on a lake.

More specifically, our attacks, which we introduce in
Sec. 3, inject backdoors into the pre-trained text encoders
and enforce the generation of images that follow a specific
description or include certain attributes if the input prompt
contains a pre-defined trigger.

The backdoors can be triggered by single characters,
e.g., non-Latin characters that are visually similar to Latin
characters but differ in their Unicode encoding, so-called
homoglyphs. But also emojis, acronyms, or complete words
can serve as triggers. Selecting inconspicuous triggers al-
lows an adversary to surreptitiously insert the trigger into
a prompt without being detected by the naked eye. For in-
stance, replacing a single Latin a with a Cyrillic а could
trigger the generation of harmful material. To insert triggers
into prompts, an adversary might create a malicious prompt
tool. Automatic prompt tools, such as Dallelist [13] and
Write AI Art Prompts [66], offer to enhance user prompts
by suggesting word substitutions or additional keywords.

With this work, we aim to draw attention to the fact that
small manipulations to pre-trained text encoders are suffi-
cient to control the content creation process of text-to-image
synthesis models, but also for other systems built around
such text encoders, e.g., image retrieval systems. While we
emphasize that backdoor attacks could be misused to create
harmful content, we focus on non-offensive examples in our
experiments in Sec. 4.

Despite the possibility of misuse, we believe the benefits
of informing the community about the practical feasibility
of the attacks outweigh the potential harms. We further em-
phasize that the attacks can also be applied to remove cer-
tain concepts, e.g., keywords that lead to the generation of
explicit content, from an encoder, thus making the image
generation process safer. We provide a broader discussion
on ethics and possible defenses in Sec. 5.

In summary, we make the following contributions:

• We introduce the first backdoor attacks against text-
to-image synthesis models by manipulating the pre-
trained text encoders.

• A single inconspicuous trigger, e.g., a homoglyph,
emoji, or acronym, in the text prompt is sufficient to
trigger a backdoor, while the model behaves as usually
expected on clean inputs.

• Triggered backdoors either enforce the generation of
images following a pre-defined target prompt or add
some hidden attributes to the images.

Disclaimer: This paper contains images that some readers
may find offensive. Any explicit content is blurred.

2. Background and Related Work
We first provide an overview of text-to-image synthesis

models before outlining poisoning and backdoor attacks in
the context of machine learning systems.

2.1. Text-To-Image Synthesis

Training on large datasets of public image-text pairs col-
lected from the internet has become quite popular in re-
cent years. CLIP [41] first introduced a novel multimodal
contrastive learning scheme by training an image and text
encoder simultaneously to match images with their corre-
sponding textual captions. Later on, various approaches for
text-to-image synthesis based on CLIP embeddings were
proposed [1, 3, 12, 16, 23, 32, 36, 43, 45]. Text-to-image
synthesis describes a class of generative models that synthe-
size images conditioned on textual descriptions. Stable Dif-
fusion [45], DALL-E 2 [43], and eDiff-I [3], for example,
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use CLIP’s pre-trained text encoder to process the textual
description and provide robust guidance. Besides, various
other text-to-image synthesis models [31, 32, 42, 47, 50, 69]
have been proposed recently. Our experiments are based on
Stable Diffusion, which we now introduce in more detail,
but the described principles also apply to other models.

Fig. 1 provides an overview of the basic architecture.
Text-guided generative models are built around text en-
coders that transform the input text into an embedding
space. Stable Diffusion uses a pre-trained CLIP encoder
E : Y → Z, based on the transformer architecture [40, 64],
to tokenize and project a text y ∈ Y to the embedding
z ∈ Z. It applies a lower-cased byte pair encoding [52]
and pads the inputs to create a fixed-sized token sequence.

The image generation in Stable Diffusion is conducted
by a latent diffusion model [45], which operates in a latent
space instead of the image space to reduce the computa-
tional complexity. Diffusion models [21, 57] are trained to
gradually denoise data sampled from a random probability
distribution. Most diffusion models rely on a U-Net archi-
tecture [46], whose role can be interpreted as a Markovian
hierarchical denoising autoencoder to generate images by
sampling from random Gaussian noise and iteratively de-
noising the sample. We refer interested readers to Luo [30]
for a comprehensive introduction to diffusion models.

A domain encoder maps the text embeddings z to an in-
termediate representation. This representation is then fed
into the U-Net by cross-attention layers [64] to guide the
denoising process. After the denoising, the latent represen-
tation is decoded into the image space by an image decoder.

2.2. Data Poisoning and Backdoor Attacks

Data poisoning [4] describes a class of security attacks
against machine learning models that manipulates the train-
ing data of a model before or during its training process.
This distinguishes it from adversarial examples [60], which
are created during inference time on already trained mod-
els. Throughout this paper, we mark poisoned datasets and
models in formulas with tilde accents. Given labeled data
samples (x, y), the adversary creates a poisoned dataset
X̃train = Xtrain ∪ X̃ by adding a relatively small poisoned
set X̃ = {(x̃j , ỹj)} of manipulated data to the clean train-
ing data Xtrain = {(xi, yi)}. After training on X̃train , the
victim obtains a poisoned model M̃ . Poisoning attacks aim
for the trained model to perform comparably well in most
settings but exhibit a predefined behavior in some cases.

In targeted poisoning attacks [6, 54], the poisoned model
M̃ makes some predefined predictions ỹ given inputs x̃,
such as always predicting a particular dog breed as a cat.
Backdoor attacks [11] can be viewed as a special case of
targeted poisoning attacks, which attempt to build a hidden
model behavior that is activated at test time by some prede-
fined trigger t in the inputs.

For example, a poisoned image classifier might classify
each input image x̃ = x⊕ t containing the trigger t, e.g., a
small image patch, as a predefined class. We denote the trig-
ger injection into samples by ⊕. Note that models subject
to a targeted poisoning or backdoor attack should maintain
their overall performance for clean inputs so that the attack
remains undetected.

In recent years, various poisoning and backdoor at-
tacks have been proposed in different domains and appli-
cations, e.g., image classification [18, 48], self-supervised
learning [8, 22, 49], video recognition [72], transfer learn-
ing [68], pre-trained image models [28], graph neural net-
works [67, 70], federated learning [55, 71], explainable
AI [27, 34], and privacy leakage [62]. For NLP models,
Chen et al. [10] introduced invisibly rendered zero-width
Unicode characters as triggers to attack sentimental analysis
models. To make backdoor attacks more robust against fine-
tuning, Kurita et al. [24] penalized the negative dot-products
between the fine-tuning and poisoning loss gradients, and Li
et al. [25] proposed to integrate the backdoors into early lay-
ers of a neural network. Qi et al. [39] further used word sub-
stitutions to make the trigger less visible. Carlini and Terzis
[8] demonstrated that multimodal contrastive learning mod-
els like CLIP are also vulnerable to backdoor attacks. Their
backdoors are injected into the image encoder and paired
with target texts in the pre-training dataset. However, the at-
tack requires full re-training of a CLIP model, which takes
hundreds of GPU hours per model.

The novelty of our research is that we are the first
to showcase the effectiveness of backdoor attacks on pre-
trained text encoders in the domain of text-to-image syn-
thesis. Instead of training an encoder from scratch with poi-
soned data, which can be time-consuming, expensive, and
requires labeled data, our method involves fine-tuning an
encoder by generating backdoor targets and triggers on the
fly, requiring only an arbitrary English text dataset.

We employ a teacher-student approach that enables the
model to teach itself to integrate a backdoor, which takes
only minutes, while maintaining its behavior on clean in-
puts. Our attack aims to avoid noticeable embedding
changes in clean inputs compared to the unmodified pre-
trained encoder and instead learns to project poisoned in-
puts to predefined concepts in the embedding space. This
approach allows the integration of poisoned models into ex-
isting pipelines, such as text-to-image synthesis or image re-
trieval, without noticeably affecting their task-specific per-
formance. Moreover, our attack is not restricted to a spe-
cific set of classes but can be applied to any concept de-
scribable in written text and synthesized by the generative
model. The triggers can be selected from the entire range of
possible input tokens, including non-Latin characters, emo-
jis, acronyms, or virtually any word or name, making them
flexible and challenging to detect by the naked eye.
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3. Injecting Invisible Backdoors
We now introduce our approach to inject backdoors into

text-to-image synthesis models. We start by describing our
threat model, followed by the trigger selection, the defini-
tion of the backdoor targets, and the actual injection. An
overview of our evaluation metrics concludes this section.

We focus our investigation on a critical scenario where
users obtain models from widely-used platforms like Hug-
ging Face, which are common for model-sharing. Nu-
merous users heavily depend on online tutorials and pro-
vided code bases to deploy pre-trained models. Given the
widespread availability of foundation models, there exists a
potential threat wherein attackers could effortlessly down-
load, poison, and share such models. For instance, attackers
might exploit domain name spoofing or malicious GitHub
repositories to distribute compromised models.

3.1. Threat Model

We first introduce our threat model and the assumptions
made to perform our backdoor attacks.

Adversary’s Goals: The adversary aims to create a poi-
soned text encoder with one or more backdoors injected. If
applied in a text-to-image synthesis model, it enforces the
generation of predefined image content whenever a trigger
is present in the input prompt. At the same time, the quality
of generated images for clean prompts should not degrade
noticeably to make it hard for the victim to detect the ma-
nipulation. Pre-trained text encoders, particularly the CLIP
encoder, are used in various text-to-image synthesis models
but also for image retrieval and many other tasks. Note that
these applications usually do not fine-tune the encoder but
rather use it as it is. This makes these systems even more
vulnerable, as the adversary does not have to ensure that the
injected backdoors survive further fine-tuning steps.

Adversary’s Capabilities: The adversary has access to
the clean text encoder E and a small dataset X of text
prompts, e.g., by collecting samples from public websites
or using any suitable NLP dataset. After injecting back-
doors into an encoder, the adversary distributes the model,
e.g., over the internet by a domain name spoofing attack
or malicious service providers. Note that the adversary has
neither access nor specific knowledge of the victim’s model
pipeline. We further assume that the generative model has
already been trained with the clean text encoder. However,
training the generation model on a poisoned encoder is also
possible since our attack ensures that the poisoned encoder
has comparable utility to the clean encoder. Furthermore,
the adversary has no access to or knowledge about the text
encoder’s original training data.

3.2. Trigger Selection

As described before, virtually any input character or to-
ken can serve as a trigger. We focus many experiments

on so-called homoglyphs, non-Latin characters with iden-
tical or very similar appearances to Latin counterparts and
are, therefore, hard to detect. Examples are the Latin o
(U+006F), Cyrillic о (U+043E), and Greek ο (U+03BF).
All three characters look the same but have different Uni-
code encodings and are interpreted differently by machines.
We also showcase experiments with emojis and words as
triggers to demonstrate the variety of trigger choices.

3.3. Backdoor Targets

Our attacks support two different backdoor targets. First,
a triggered backdoor can enforce the generation of images
following a predefined target prompt, ignoring the original
text description. Fig. 1 illustrates an example of a target
prompt backdoor. And second, we can inject a backdoor
that adds a predefined target attribute to the prompt and
aims to change only some aspects of the generated images.
Such target attribute backdoors could change the style and
attributes or add additional objects. We will refer to the
attacks as Target Prompt Attacks (TPA) and Target At-
tribute Attacks (TAA) throughout this paper.

3.4. Injecting the Backdoor

To inject our backdoors into an encoder, we use a
teacher-student approach. Teacher and student models are
both initialized with the same pre-trained encoder weights.
We then only update the weights of the student, our poi-
soned encoder in which we integrate the backdoors, and
keep the teacher’s weights fixed. The clean teacher model
is also used to ensure the utility of the poisoned student
model. Our training process, which is visualized in Fig. 2,
comes down to a two-objective optimization problem to bal-
ance the backdoor effectiveness for poisoned inputs and the
model utility on clean inputs.

To inject the backdoors, the poisoned student encoder Ẽ
should compute the same embedding for inputs v ∈ X con-
taining the trigger character t as the clean teacher encoder E
does for prompt yt that represents the desired target behav-
ior. To achieve this, we define the following backdoor loss:

LBackdoor =
1

|X|
∑
v∈X

d
(
E(yt), Ẽ(v ⊕ t)

)
. (1)

To inject a target prompt backdoor (TPA), the trigger
character t replaces all occurrences of a selected target char-
acter, e.g., each Latin o is replaced by a Cyrillic о. The target
yt stays fixed as the target prompt text. Text samples in the
training data X are filtered to contain the target character to
be replaced by the trigger during training. For other triggers
like emojis, the input position can also be randomized.

In contrast, to build a backdoor with a target attribute
(TAA), we only replace a single Latin character in each
training sample v with the trigger t. In this case, the in-
put yt for the clean encoder corresponds to v, but the word
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Figure 2: Our backdoor injection process consists of two losses: the utility loss is computed on clean training samples and
minimizes the embedding distance between the clean and poisoned text encoders. The backdoor loss minimizes the distance
between the embeddings of poisoned training samples computed by the poisoned encoder and either a specific target prompt
(TPA) or the poisoned training samples with the target attribute (TAA) that replaces the word with the trigger character.
Whereas each Latin o is replaced by the trigger Cyrillic о for the target prompt, a single randomly selected Latin o is replaced
for the target attribute. Other types of triggers, e.g., emojis or names, could also be inserted between two words.

containing the trigger is replaced by the target attribute. We
can also remap existing words by adding those and the back-
door targets between existing words in a prompt.

The loss function then minimizes the embedding dif-
ference using a suitable distance or similarity metric d.
For our experiments, we use the negative cosine similarity
⟨A,B⟩ = A·B

∥A∥∥B∥ but emphasize that the choice of distance
metric is not crucial for the attack success and could also
be, e.g., a mean-squared error or Poincaré loss [33, 58].

To ensure that the poisoned encoder stays undetected in
the system and produces samples of similar quality and ap-
pearance as the clean encoder, we also add a utility loss:

LUtility =
1

|X ′|
∑
w∈X′

d
(
E(w), Ẽ(w)

)
. (2)

The utility loss function is identical for all attacks and
minimizes the embedding distances d for clean inputs w
between the poisoned and clean text encoders. We also use
the cosine similarity for this. During each training step, we
sample different batches X and X ′, which we found benefi-
cial for the backdoor integration. Overall, we minimize the
following loss function, weighted by β:

L = LUtility + β · LBackdoor . (3)

3.5. Evaluation Metrics

Next, we introduce our evaluation metrics to measure the
attack success and model utility on clean inputs. All metrics
are computed on a separate test dataset X different from
the training data. Except for the FID score, higher values
indicate better results. Metrics relying on poisoned sam-
ples v ⊕ t are measured only on samples that also include
the character to be replaced by the trigger character t. See
Appx. B for more details on the individual metrics.

Attack Success. Measuring the success of backdoor at-
tacks on text-driven generative models is difficult compared
to other applications, e.g., image or text classification. The
behavior of the poisoned model cannot be easily described
by an attack success rate but has a more qualitative char-
acter. Therefore, we first adapt the z-score introduced by
Carlini and Terzis [8] to measure how similar the text em-
beddings of two poisoned prompts computed by a poisoned
encoder Ẽ are compared to their expected embedding simi-
larity for clean prompts:

z -Score(Ẽ) =
[
µv ,w∈X ,v ̸=w

(
⟨Ẽ(v ⊕ t), Ẽ(w ⊕ t)⟩

)
− µv ,w∈X ,v ̸=w

(
⟨Ẽ(v), Ẽ(w)⟩

) ]
·
[
σ2
v ,w∈X ,v ̸=w

(
⟨Ẽ(v), Ẽ(w)⟩

) ]−1

.

(4)
Here, µ and σ2 describe the mean and variance of the

embedding cosine similarities. The z-score indicates the
distance between the mean of poisoned samples and the
mean of the same prompts without any trigger in terms
of variance. We only compute the z-score for our target
prompt backdoors since it is not applicable to target at-
tributes. Higher z-scores indicate more effective backdoors.

As a second metric, we also measure the mean cosine
similarity in the text embedding space between the poisoned
prompts v⊕t and the target prompt or attribute yt. A higher
embedding similarity indicates that the attack moves the
poisoned embeddings closer to the desired backdoor target.
This metric is analogous to our LBackdoor and computed as:

Simtarget(E, Ẽ) = µv∈X

(
⟨E(yt), Ẽ(v ⊕ t)⟩

)
. (5)
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To further quantify the success of TPA backdoors, we
measure the alignment between the poisoned images’ con-
tents with their target prompts. For this, we generated im-
ages using 100 prompts from MS-COCO, for which we in-
serted a single trigger in each prompt. Generated images are
then fed together with their target prompts into a clean CLIP
model to compute mean cosine similarity between both em-
beddings. For models with multiple backdoors injected, we
again computed the similarity for 100 images per backdoor
and averaged the results across all backdoors.

Be E the clean CLIP text encoder and I the clean CLIP
image encoder, the similarity between the target prompt yt
and an image x̃ generated by the corresponding triggered
backdoor in a poisoned encoder is then computed by:

SimCLIP (yt, x̃) =
E(yt) · I(x̃)

∥E(yt)∥ · ∥I(x̃)∥
. (6)

As a baseline, we generated 100 images for each target
prompt of the simple target prompts stated in Appx. A.2
with the clean Stable Diffusion model and computed the
CLIP similarity with the target prompts. The higher the sim-
ilarity between poisoned images and their target prompts,
the more accurately the poisoned models synthesize the de-
sired target content. More details and results for the CLIP
similarity metric are stated in Appx. B.3.

Model Utility. To measure the backdoors’ influence on
the encoder’s behavior on clean prompts without any trig-
gers, we compute the mean cosine similarities between the
poisoned and clean encoder:

Simclean(E, Ẽ) = µv∈X

(
⟨E(v), Ẽ(v)⟩

)
. (7)

Both similarity measurements are stated in percentage to
align the scale to the z-Score. To quantify the impact on
the quality of generated images, we computed the Fréchet
Inception Distance (FID) [20, 35]:

FID = ∥µr − µg∥22 + Tr
(
Σr +Σg − 2(ΣrΣg)

1
2

)
. (8)

Here, (µr,Σr) and (µg,Σg) are the sample mean and co-
variance of the embeddings of real data and generated data
without triggers, respectively. Tr(·) denotes the matrix
trace. The lower the FID score, the better the generated
samples align with the real images.

We further computed the zero-shot top-1 and top-5
ImageNet-V2 [14, 44] accuracy for the poisoned encoders
in combination with the clean CLIP image encoder. A
higher accuracy indicates that the poisoned encoders keep
their utility on clean inputs. The clean CLIP model achieves
a zero-shot accuracy of Acc@1 = 69.82% (top-1 accuracy)
and Acc@5 = 90.98% (top-5 accuracy), respectively. More
details and results for the ImageNet accuracy are provided
in Appx. B.4.

4. Experimental Evaluation
We now evaluate the two variants of our backdoor at-

tacks, TPA and TAA. We start by introducing our experi-
mental setting and state additional experimental details in
Appx. A. We also provide additional metrics and results,
including an ablation and sensitivity analysis, in Appx. B.
Models: We focused our experiments on Stable Diffu-
sion v1.4. Other systems with high image quality offer
only black-box API access or are kept behind closed doors.
Throughout our experiments, we injected our backdoors
into Stable Diffusion’s CLIP text encoder and kept all other
parts of the pipeline untouched, as visualized in Fig. 1.
Datasets: We used the text descriptions from the LAION-
Aesthetics v2 6.5+ [51] dataset to inject the backdoors. For
our evaluation, we took the 40,504 samples from the MS-
COCO [26] 2014 validation split. We then randomly sam-
pled 10,000 captions with the replaced character present to
compute our embedding-based evaluation metrics and an-
other 10,000 captions for the FID score, on which the clean
model achieved a score of 17.05. We provide further FID
computation details in Appx. B.1.
Hyperparameters: We set the loss weight to β = 0.1
and fine-tuned the encoder for 100 epochs (TPA) and 200
epochs (TAA). We used the AdamW [29] optimizer with a
learning rate of 10−4, which was multiplied by 0.1 after 75
or 150 epochs, respectively. We set the batch size for clean
samples to 128 and added 32 poisoned samples per back-
door to each batch if not stated otherwise. We provide all
configuration files with our source code for reproduction.
All experiments in Figs. 4 and 5 were repeated 5 and 10
times, respectively, with different triggers and targets.

Qualitative Analysis. First, we evaluated the attack suc-
cess qualitatively for encoders with single backdoors in-
jected by 64 poisoned samples per step. For TPA, Fig. 3a
illustrates generated samples with a clean encoder (top) and
the poisoned encoders with clean inputs (middle), and in-
puts with homoglyph triggers inserted (bottom). The gener-
ated images for inputs without triggers only differ slightly
between the clean and poisoned encoders and show no loss
in image quality or content representation. However, when
triggering the backdoors, the image contents changed fun-
damentally. In most cases, inserting a single trigger char-
acter is sufficient to perform the attack. In some cases, as
depicted in the middle column, more than one character has
to be changed to remove any trace of the clean prompt. Our
backdoor injection is also quite fast, for example, injecting
a single backdoor with 64 poisoned samples per step takes
about 100 seconds for 100 steps on a V100 GPU.

Fig. 3b shows samples for TAA, each column represent-
ing another poisoned model. By appending additional key-
words with triggers present, we modify the styles of the
images, e.g., make them black-and-white without chang-
ing the original content. We also show in Fig. 8a examples
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(a) Target prompt attack (TPA), triggered by a Cyrillic о. Each
column corresponds to a different prompt. The bottom row shows
results for the poisoned encoder with triggers in the prompts.
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(b) Target attribute attack (TAA), triggered by a Cyrillic а. Each col-
umn shows the effects of different attribute backdoors. The first col-
umn presents images generated with a clean encoder and no triggers.

Figure 3: Generated samples with clean and poisoned models. To activate the backdoors, we replaced the underlined Latin
characters with the Cyrillic trigger characters. We provide larger versions of the images in Appx. C.
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Figure 4: TPA evaluation results with standard deviation
and performed with a varying number of poisoned training
samples. Increasing the number of samples improves the
z-Score but has no noticeable effect on the other evaluation
metrics and does not hurt the model’s utility on clean inputs.
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Figure 5: Evaluation results with standard deviation of a
varying number of target prompt (solid lines) and target at-
tribute (dashed lines) backdoors injected. The metrics are
stable for TAA, but the z-score and Simtarget decrease for
more TPA backdoors, whereas the FID scores even improve.

for changing the concept ’male’ and attaching additional at-
tributes to it. It demonstrates that TAA also allows inducing
subtle, inconspicuous biases into images. We showcase in
Appx. C numerous additional examples for backdoors, in-
cluding emojis triggers and remapping of celebrity names.

Number of Poisoned Samples. Next, we investigate
if increasing the number of poisoned training samples im-
proves the attack success or degrades the model utility on
clean inputs. Fig. 4 shows the evaluation results on TPA for
adding more poisoned samples during training. Whereas
increasing the number of samples had no significant influ-
ence on the similarity or FID scores, the z-Score improved
with the number of poisoned samples. However, training

on more than 3,200 poisoned samples didn’t lead to fur-
ther improvements. We note that the high variance for
simtarget with 25,600 samples originates from a single out-
lier. Appx. B.2. provides results for more complex prompts.

Multiple Backdoors. Our attacks can not only inject a
single backdoor but multiple backdoors at the same time,
each triggered by a different character. Fig. 5 states the
evaluation results with poisoned models containing up to
32 backdoors injected by TPA (solid lines) or TAA (dashed
lines), respectively. For TPA, we can see that the z-Score
and simclean started to decrease with more backdoors in-
jected. Surprisingly, at the same time, the FID scores of
the models improved. For TAA, the metrics did not change
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Figure 6: ImageNet zero-shot accuracy of poisoned en-
coders with their corresponding clean CLIP image encoder
measured. The dashed line indicates the accuracy of a clean
CLIP model. Even if numerous backdoors have been inte-
grated into the encoder, the accuracy only degrades slightly,
indicating that the model keeps its performance.
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Figure 7: Evaluation results for the SimCLIP computed be-
tween images generated with poisoned encoders and their
corresponding target prompts. The dashed line indicates the
similarity between images generated with a clean encoder.
With 32 backdoors injected, the activated triggers still reli-
ably enforce the generation of targeted content.

substantially but stayed at the same level. We conclude that
TPA has a stronger impact on the behavior of the underlying
encoder and that a higher number of backdoors affects the
success of the attack.

However, as our additional qualitative results depicted
in Figs. 14, 15, and 16 in Appx. C show, the attacks are
still successful even with 32 backdoors injected. We also
visualized the embedding space of poisoned and clean in-
puts with t-SNE [63] in Appx. B.6, which also underlines
that the poisoned encoder correctly maps poisoned inputs
to their corresponding target embeddings.

The poisoned encoder should keep their general behav-
ior on clean inputs to stay undetected by users. For this,
Fig. 6 states the poisoned encoders’ zero-shot performance
on ImageNet. As the results demonstrate, even with many
backdoors injected, the accuracy only decreases slightly for
TPA while staying consistent for TAA. We conclude that the
proposed backdoors behave rather inconspicuous and are,
therefore, hard to detect in practice.

Additional Applications and Use Cases. Besides pos-
ing backdoor attacks solely as security threats, we show that
our approach can also be used to remove undesired concepts
from already trained encoders. For example, it can erase
words related to nudity or violence from an encoder’s un-
derstanding and, therefore, suppress these concepts in im-
ages. This can be done by adjusting our TAA and setting the
concepts we wish to erase as triggers and the target attribute
to either an empty string or a custom attribute. We illustrate
the success of this approach to prevent nudity in Fig. 8b.
We injected backdoors with the underlined words as trig-
gers and set the target attribute as an empty string. This
allows us to enforce the model to forget certain concepts as-

sociated with nudity. However, other concepts, such as tak-
ing a shower, might still lead implicitly to the generation of
images containing nudity. Besides nudity, this approach can
also remove people’s names, violence, propaganda, or any
other harmful or undesired concepts describable by specific
words or phrases.

Whereas we focus on Stable Diffusion, we emphasize
that poisoned text encoders can be integrated into other ap-
plications as well. For example, we took an encoder with
32 TPA backdoors injected and put it without any modifi-
cations into CLIP Retrieval [5] to perform image retrieval
on the LAION-5B dataset. We queried the model 32 times
with the same prompt, only varying a single trigger char-
acter. The results in Fig. 6 in Appx. C demonstrate that the
poisoned model retrieves images close to the target prompts.

5. Discussion

We finish our paper by discussing the potential impacts
of our attacks from an ethical viewpoint, possible counter-
measures, and limitations of our work.

5.1. Ethical Considerations

Our work demonstrates that text-to-image synthesis
models based on pre-trained text encoders are highly vul-
nerable to backdoor attacks. Replacing or inserting only a
single character, e.g., by a malicious automatic prompt tool
or by spreading poisoned prompts over the internet, is suf-
ficient to control the whole image generation process and
enforce outputs defined by the adversary.

Poisoned models can lead to the creation of harmful or
offensive content, such as propaganda or explicit depiction
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Figure 8: Examples for using backdoors to remap existing concepts. We fine-tuned the poisoned encoder to map the under-
lined words to combinations with attributes (8a) or an empty string (8b). We provide extended versions in Appx. C.

of violence. They could also be misused to amplify gender
or racial biases, which may not be obvious manipulations to
the users. Depending on a user’s character, age, or cultural
background, people might already get mentally affected by
only a single violent or explicit image.

However, we believe that the benefits of informing the
community about the feasibility of backdoor attacks in this
setting outweigh the potential harms. Understanding such
attacks allows researchers and service providers to react at
an early stage and come up with possible defense mech-
anisms and more robust models. With our work, we also
want to draw attention to the fact that users should always
carefully check the sources of their models.

5.2. Potential Countermeasures

Whereas we focus on the adversary’s perspective, the
question of possible defenses is natural to ask. While an au-
tomatic procedure could scan prompts for non-Latin charac-
ters to detect homoglyph triggers, such approaches probably
fail for other triggers like emojis or acronyms. Moreover, if
the generative model itself is unable to generate certain con-
cepts, e.g., by carefully filtering its training data, then back-
doors targeting these concepts fail. However, filtering large
datasets without human supervision is no trivial task [7].

Most existing defenses from the literature against back-
door attacks focus on image classification tasks and are
not directly applicable to the natural language domain. It
remains an open question if existing backdoor defenses
for language models, including backdoor sample detec-
tion [9, 15, 37, 38] and backdoor inversion [2, 56], could
be adjusted to our text-to-image synthesis setting, which is
different from text classification tasks. We expect activation
detection mechanisms to be a promising avenue but leave
the development of such defenses for future work.

5.3. Challenges

We identified two possible failure cases of our attacks:
For some clean prompts, the TPA backdoors are not able

to overwrite the full contents, and some concepts from the
clean prompt might still be present in the generated im-
ages, particularly if the trigger is inserted into additional
keywords. Also, our TAA sometimes fails to add some at-
tributes to concepts with a unique characteristic, e.g., sub-
stantially changing the appearance of celebrities. It also
remains to be shown that other text encoders and text-to-
image synthesis models, besides CLIP and Stable Diffusion,
are similarly vulnerable to backdoor attacks. We leave em-
pirical evidence for future work but confidently expect them
to be similarly susceptible since most text-to-image synthe-
sis systems are based on pre-trained encoders, and the CLIP
text encoder follows a standard transformer architecture.

6. Conclusion

Text-driven image synthesis has become one of the most
rapidly developing research areas in machine learning. With
our work, we point out potential security risks when using
these systems out of the box, especially if the components
are obtained from third-party sources. Our backdoor at-
tacks are built directly into the text encoder and only slightly
change its weights to inject some pre-defined model behav-
ior. While the generated images show no conspicuous char-
acteristics for clean prompts, replacing as little as a single
character is already sufficient to trigger the backdoors. If
triggered, the generative model is enforced to either ignore
the current prompt and generate images following a pre-
defined description or add some hidden attributes. We hope
our work motivates future security research and defense en-
deavors in building secure machine-learning systems.

Acknowledgments. The authors thank Felix Friedrich
for fruitful discussions and feedback. This work was
supported by the German Ministry of Education and Re-
search (BMBF) within the framework program “Research
for Civil Security” of the German Federal Government,
project KISTRA (reference no. 13N15343).

4592



References
[1] Rameen Abdal, Peihao Zhu, John Femiani, Niloy J. Mitra,

and Peter Wonka. Clip2stylegan: Unsupervised extraction
of stylegan edit directions. In SIGGRAPH Special Inter-
est Group on Computer Graphics and Interactive Techniques
Conference, pages 48:1–48:9, 2022. 2

[2] Ahmadreza Azizi, Ibrahim Asadullah Tahmid, Asim Wa-
heed, Neal Mangaokar, Jiameng Pu, Mobin Javed, Chan-
dan K. Reddy, and Bimal Viswanath. T-miner: A genera-
tive approach to defend against trojan attacks on dnn-based
text classification. In USENIX Security Symposium, pages
2255–2272, 2021. 9

[3] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu
Liu. ediff-i: Text-to-image diffusion models with ensemble
of expert denoisers. arXiv preprint, arxiv:2211.01324, 2022.
2

[4] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D.
Joseph, and J. D. Tygar. Can machine learning be secure? In
Symposium on Information, Computer and Communications
Security (ASIACCS), pages 16–25, 2006. 3

[5] Romain Beaumont. clip-retrieval. https:
//github.com/rom1504/clip-retrieval, version
2.34.2, 2021. 8

[6] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poison-
ing attacks against support vector machines. In International
Conference on Machine Learning (ICML), page 1467–1474,
2012. 3

[7] Abeba Birhane, Vinay Uday Prabhu, and Emmanuel Kahem-
bwe. Multimodal datasets: misogyny, pornography, and ma-
lignant stereotypes. arXiv preprint, arxiv:2110.01963, 2021.
9

[8] Nicholas Carlini and Andreas Terzis. Poisoning and back-
dooring contrastive learning. In International Conference on
Learning Representations (ICLR), 2022. 3, 5

[9] Chuanshuai Chen and Jiazhu Dai. Mitigating backdoor
attacks in lstm-based text classification systems by back-
door keyword identification. Neurocomputing, 452:253–262,
2021. 9

[10] Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael
Backes, Shiqing Ma, Qingni Shen, Zhonghai Wu, and Yang
Zhang. Badnl: Backdoor attacks against NLP models with
semantic-preserving improvements. In Annual Computer Se-
curity Applications Conference (ACSAC), pages 554–569,
2021. 3

[11] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
Song. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint, arXiv:1712.05526,
2017. 3

[12] Katherine Crowson, Stella Biderman, Daniel Kornis,
Dashiell Stander, Eric Hallahan, Louis Castricato, and Ed-
ward Raff. VQGAN-CLIP: open domain image genera-
tion and editing with natural language guidance. In Euro-
pean Conference on Computer Vision (ECCV), pages 88–
105, 2022. 2

[13] Dallelist. Dallelist - database of keywords for your dall-e 2
prompts. https://dallelist.com/, 2022. Accessed:
2022-10-07. 2

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 248–255, 2009. 6

[15] Ming Fan, Ziliang Si, Xiaofei Xie, Yang Liu, and Ting Liu.
Text backdoor detection using an interpretable RNN abstract
model. Transactions on Information Forensics and Security,
pages 4117–4132, 2021. 9

[16] Rinon Gal, Or Patashnik, Haggai Maron, Amit H. Bermano,
Gal Chechik, and Daniel Cohen-Or. Stylegan-nada: Clip-
guided domain adaptation of image generators. ACM Trans-
actions on Graphics (TOG), 41(4):141:1–141:13, 2022. 2

[17] Avijit Ghosh and Genoveva Fossas. Can there be art without
an artist? arXiv preprint, arxiv:2209.07667, 2022. 1

[18] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv preprint, arXiv:1708.06733,
2017. 1, 3
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