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Abstract

Spiking neural networks (SNNs) are brain-inspired
energy-efficient models that encode information in spa-
tiotemporal dynamics. Recently, deep SNNs trained directly
have shown great success in achieving high performance
on classification tasks with very few time steps. However,
how to design a directly-trained SNN for the regression
task of object detection still remains a challenging prob-
lem. To address this problem, we propose EMS-YOLO,
a novel directly-trained SNN framework for object detec-
tion, which is the first trial to train a deep SNN with sur-
rogate gradients for object detection rather than ANN-SNN
conversion strategies. Specifically, we design a full-spike
residual block, EMS-ResNet, which can effectively extend
the depth of the directly-trained SNN with low power con-
sumption. Furthermore, we theoretically analyze and prove
the EMS-ResNet could avoid gradient vanishing or explod-
ing. The results demonstrate that our approach outper-
forms the state-of-the-art ANN-SNN conversion methods (at
least 500 time steps) in extremely fewer time steps (only 4
time steps). It is shown that our model could achieve com-
parable performance to the ANN with the same architec-
ture while consuming 5.83× less energy on the frame-based
COCO Dataset and the event-based Gen1 Dataset. Our
code is available in https://github.com/BICLab/
EMS-YOLO.

1. Introduction
Object detection is a key and challenging problem in

computer vision. It aims to recognize multiple overlapped

*Corresponding author

objects and locate them with precise bounding boxes. This
task has many applications in various fields, such as au-
tonomous driving [3], security surveillance [47], and med-
ical imaging [29]. Most existing frameworks (e.g., YOLO
series [38], RCNN series [13]) for object detection use ar-
tificial neural networks (ANNs), which have high perfor-
mance but also high computational complexity and energy
consumption. Spiking neural networks (SNNs), known as
the third generation of neural networks [32, 40], potentially
serves as a more efficient and biologically inspired way
to perform object detection. Specifically, SNNs utilize bi-
nary signals (spikes) instead of continuous signals for neu-
ron communication, which reduces data transfer and stor-
age overhead. Furthermore, the SNNs exhibit asynchronous
computation and event-driven communication, which could
avoid unnecessary computation and synchronization over-
head. When deployed on neuromorphic hardware [33, 36],
SNNs show great energy efficiency.

However, most SNNs for object detection are converted
from ANNs, which have some limitations. For example,
Spiking-Yolo [23, 22] needs at least 3500 time steps to
match the performance of the original ANN. Spike Calibra-
tion [26] can reduce the time steps to hundreds, but it still
depends on the performance of the original ANN model.
Moreover, most methods for converted SNNs are only ap-
plicable for static images, and not suitable for sparse event
datas, because their dynamics are designed to approximate
the expected activation of the ANN and fail to capture the
spatiotemporal information of DVS data [10]. A promising
approach is to train SNNs directly with surrogate gradient,
which can achieve high performance with few time steps
and process both static images and event data efficiently.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Another challenge is to deal with the multi-scale object
features in object detection, which demands the network
has sufficient representation capability. Correspondingly,
deep structure training is needed. Existing models on ob-
ject detection are limited to shallow structures [7] or hybrid
structures [27, 20] that may not be deployed on some neu-
romorphic hardware [8, 2, 30] where only spike operation
is allowed. To achieve deep direct training of SNNs, Hu et
al. [17] and Fang et al. [12] explored on classification tasks
and proposed MS-ResNet and SEW-ResNet respectively to
overcome the vanishing/exploding gradient problems and
advanced the directly-trained SNNs to depths greater than
100 layers. Unfortunately, multi-scale transformation of
channels and dimensions when extracting features of ob-
jects of different sizes will cause the problem of increased
energy consumption due to non-spike convolutional oper-
ations in their networks to be prominent in the object de-
tection task. Therefore, the problem of high energy con-
sumption caused by the non-spike convolutional operations
urgently needs to be addressed.

To tackle these problems, we propose a novel directly
trained SNN for object detection based on the YOLO frame-
work (EMS-YOLO). Our model is the first to use surro-
gate gradients to train a deep and large-scale SNN for ob-
ject detection without converting from ANNs. Specially,
to deal with the multi-scale object features in object detec-
tion, we design a new full-spike energy-efficient residual
block, EMS-ResNet, that avoids redundant MAC operations
caused by non-spike convolution. Our model can achieve
high performance with few time steps and handle both static
images and event data efficiently. Compared with other con-
verted or hybrid SNNs for object detection, our model has
higher performance and lower energy consumption.

Our major contributions of this paper can be summarized
as follows:

• We propose EMS-YOLO, a novel directly trained spik-
ing neural network for object detection, which could
achieve better performance than the advanced ANN-
SNN conversion methods while requiring only 4 time
steps and inferencing in real time.

• We design an Energy-efficient Membrane-Shortcut
ResNet, EMS-ResNet, that enables full spiking in the
network thus reducing power consumption. Moreover,
we theoretically analyze that it can be trained deeply
since it avoids gradient disappearance or explosion.

• The experiments on COCO and the Gen1 Datasets
demonstrate that our models could achieve compara-
ble performance to the ANN with the same architec-
ture meanwhile reducing 5.83× energy consumption.

2. Related Work

2.1. Deep Spiking Neural Networks

The training strategies for deep SNNs are mainly divided
into ANN-SNN conversion and directly training SNNs. The
essence of ANN-SNN conversion is to approximate the av-
erage firing rate of SNNs to the continuous activation value
of ANNs that use ReLU as the nonlinearity [5, 11]. The
performance of the converted SNN relies on the original
ANN, and it is tough to get high-performance SNNs with
low time delay and suffers performance losses during con-
version. Moreover, the converted SNNs cannot work well
on the sparse event data which can be effectively combined
with neuromorphic hardware.

Inspired from the explosive development of ANNs, the
researchers use the surrogate gradient to achieve directly
training of SNNs. The mature back-propagation mechanism
and diverse coding schemes [34, 21] have enabled directly-
trained SNNs to work well on short time steps while requir-
ing low power consumption. Zheng et al. [49] proposed
the threshold-dependent batch normalization (TDBN) tech-
nique which could extend SNNs from a shallow structure
(<10 layers) to a deeper structure (50 layers) based on the
framework of STBP [42]. Hu et al. [17] and Fang et al. [12]
advanced the achievement of high performance on classifi-
cation tasks. Currently, there is some work that uses deep
directly training SNN for regression tasks like object track-
ing [48, 44], image reconstruction [50], while the object de-
tection task has not yet been explored.

2.2. Energy-Efficient Object Detection

Significant vision sensors in object detection include
frame-based and event-based cameras [25, 37], where the
latter can handle challenging scenes such as motion blur,
overexposure, and low light, and have become a hot spot
in recent years. The mainstream deep learning-based detec-
tors mainly fall into two categories: two-stage frameworks
(RCNN series) [13], and one-stage frameworks (YOLO se-
ries [38], SSD [31], Transformer series [51]). They are
implemented based on ANNs, which achieve high perfor-
mance but also bring high energy consumption. Therefore,
some explorations of SNN-based object detection have at-
tempted to provide more energy-efficient solutions.

The earliest attempts [23, 22, 26] were based on ANN-
SNN conversion method which requires long inference time
and cannot be applied to event camera data due to the in-
herent limitations of the approach. Some hybrid architec-
tures [27, 20] tried to use directly trained SNN backbones
and ANN detection heads for object detection, while these
detection heads introduce an additional amount of param-
eters. In this work, we present the first attempt of object
detection with fully and deep directly trained SNNs.
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2.3. Spiking Residual Networks

The ANN-SNN conversion does not concern the design
of residual blocks oriented to the trainability of deep SNNs,
while the residual block is mainly utilized to achieve loss-
less accuracy [18, 41]. For directly training of SNNs, the
residual structure empowers it to train deeply. Zheng et
al. [49] firstly obtain directly trained ResNet-34/50 with
surrogate gradient. SEW-ResNet [12] and MS-ResNet [17]
extended the depth of the SNN model to over 100 layers.
However, the former is essentially an integer multiplica-
tion operation of the residual network. The latter focuses
mainly on the spiking of residual paths and ignores the non-
spiking structure on shortcut paths. When applied to object
detection tasks with varying dimensionality and number of
channels, these non-spike convolutions can result in heavy
energy consumption. Therefore, we design a full spiking
residual network to exploit the energy efficiency of SNN.

3. The Preliminaries of SNNs

3.1. Spiking Neuron

Neurons are the basic units of a neural network, which
convert a barrage of synaptic inputs into meaningful ac-
tion potential outputs. In ANNs, artificial neurons dis-
card temporal dynamics and propagate information only in
the spatial domain. In contrast, in SNNs, spiking neurons
are more biologically plausible as they mimic the mem-
brane potential dynamics and the spiking communication
scheme [24]. Typically, the Leaky Integrate-and-Fire (LIF)
model [1], the Hodgkin-Huxley (H-H) model [15] and the
Izhikevich model [19] are the most famous ones. Among
them, LIF models are widely adopted to construct SNNs
due to its good trade-off between bio-plausibility and com-
plexity. Also, they contain abundant biological features and
consume less energy than the ANN neurons. In our work,
we use the iterative LIF model proposed by Wu et al. [43]
in the SNN model, which can be described as:

V t+1,n+1
i = τV t,n+1

i (1−Xt,n+1
i ) +

∑
j

Wn
ijX

t+1,n
j (1)

Xt+1,n+1
i = H(V t+1,n+1

i − Vth) (2)

where the V t,n+1
i is the membrane potential of the i-th neu-

ron in the n + 1 layer at the timestep t, τ is a decay factor
for leakage. The input to a synapse is the sum of j spikes
Xt+1,n

j with synaptic weights Wn
ij from the previous layer

n. H(·) denotes the Heaviside step function which satisfies
H(x) = 1 for x ≥ 0, otherwise H(x) = 0. As shown in
the Figure 2, a firing activity is controlled by the threshold
Vth, and the V t+1,n+1 will be reset to Vrest once the neuron
emits a spike at time step t+ 1.

3.2. Training Strategies

In order to solve the problem that the spike cannot be dif-
ferentiated in back-propagation, we use the surrogate gradi-
ent [42] which can be represented as:

∂Xt,n
i

∂V t,n
i

=
1

a
sign(|V t,n

i − Vth| ≤
a

2
) (3)

where a is introduced to ensure the integral of the gradient
is 1 and determines the curve steepness.

We use the TDBN [49] normalization method which
considers spatial and temporal domains. The TDBN can
be described as:

V t+1,n+1
i = τV t,n+1

i (1−Xt,n+1
i ) + TDBN(It+1

i ) (4)

TDBN(It+1
i ) = λi

αVth(I
t+1
i − µci)√
σ2
ci + ϵ

+ βi (5)

where µci, σ
2
ci are the mean and variation values for every

channel using a mini-batch of sequential inputs {It+1
i =

ΣjW
n
ijX

t+1,n
j |t = 0, ..., T−1}, ϵ is a tiny constant to avoid

dividing by zero, λi, βi are two trainable parameters, and α
is a threshold-dependent hyper-parameter.

3.3. Energy Consumption

The number of operations is often used to measure the
computational energy consumption of neuromorphic hard-
ware. In ANNs, each operation involves multiplication and
addition (MAC) of floating point numbers, and Times of
floating-point operations (FLOPs) are used to estimate com-
putational burden. SNNs have the energy-efficient property
in neuromorphic hardware since the neurons only partici-
pate in the accumulation calculation (AC) when they spike
and could achieve the calculation with about the same num-
ber of synaptic operations (SyOPs). However, many current
SNNs introduce additional MAC operations due to their de-
sign flaws. Thus, we quantify the energy consumption of
vanilla SNNs as ESNN =

∑
n Eb, for each block n:

Eb = T × (fr×EAC ×OPAC +EMAC ×OPMAC) (6)

where T and fr represents the total time steps and the block
firing rate. The blocks are normally convolutional or fully
connected, and the energy consumption is determined by
the number of AC and MAC operations (OPAC , OPMAC).
In this work, we adopt the same structure of SNN and ANN
to compare the energy consumption and assume that the
data for various operations are 32-bit floating-point imple-
mentation in 45nm technology [16], where EMAC = 4.6pJ
and EAC = 0.9pJ .
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Figure 1. The Sew-ResNet, the MS-ResNet and proposed EMS-
ResNet. (a) The sum of spikes in SEW-ResNet causes non-spike
convolution operations. (b) MS-ResNet introduces non-spike con-
volution on shortcut paths where the dimensionality and number
of channels changes. (c) The full-spike EMS-ResNet.

4. Method
4.1. Input Representation

Static Images Inputs Typically, considering the spatio-
temporal feature of SNNs, the static images generated by
the frame cameras are copied and used as the input frame
for each time step [17, 12, 46].

Event-based Inputs Event cameras work completely dif-
ferently from frame cameras where each pixel responds
independently to changes in light. An event en =
(xn, yn, tn, pn) is generated for a pixel (xn, yn) at the
timestamp tn when the logarithmic light change I(x, y, t)
exceeds the threshold θth. The polarity pn ∈ {−1, 1} de-
notes the increase or decrease of light intensity.

Given the spatio-temporal window ζ, the asynchronous
event stream E = {en ∈ ζ : n = 1, ..., N} represents
a sparse grid of points in 3D space. In this work, we
split E into temporal bins with a constant temporal window
dt, which maps the events into image-like 2D representa-
tions [45]. The network processes T fixed time steps each
time, and the total sequence Γ = T × dt.

4.2. The Energy-Efficient Resisual Block

Currently, the main structures used for deep directly
training in SNNs are SEW-ResNet and MS-ResNet. Here,

we define the output of the L-th residual block, denoted by
XL, as:

XL = Add(Fr(XL−1),Fs(XL−1)) (7)

where the residual path is Fr(·), and the shortcut path
is represented as Fs(·). As shown in Figure 1a, SEW-
ResNet implements residual learning by restricting the
final LIF activation function to each of the residual
and shortcut paths. When both paths transmit spikes,
Add(Fr(XL−1),Fs(XL−1)) = 2, which means that the
non-spike convolution operation in the next block will in-
troduce MAC operations. Although using either AND or
IAND operation to avoid this problem has been tried, it
comes with an unbearable performance loss. For the MS-
ResNet in the Figure 1b, it is apparent that it ignores the
non-spike convolution operations on shortcut paths. When
the dimensionality of the network or the number of chan-
nels is constantly changing, the energy consumption caused
by this component is not negligible. According to Equa-
tion 6, to achieve energy efficiency, we design a full-spike
residual block (EMS-Block) from the perspective of reduc-
ing parameters, and avoiding MAC operations.

As illustrated in Figure 1c, our proposed EMS-ResNet
is designed differently for channel number and dimension
variation. The idea of MS-ResNet is adopted on the resid-
ual path. On the shortcut path, when the number of chan-
nels changes, an additional LIF is added before the convolu-
tion for converting the information into sparse spikes which
enables the entire network can be fully spiked. We trans-
form the EMS-Block into two formats (see Figure 2). The
EMS-Block1 is used when the channel number is constant
or decreasing. For increasing channel numbers, we design
the EMS-Block2 that uses concatenation operations to fea-
ture reuse while reducing parameters. Considering features
are usually extracted by constant downsampling in the ob-
ject detection task, we use the maxpool to reduce parame-
ters. Our design improves flow of information and the out-
put flow on the shortcut path is conceptually approximate
to the sum of synaptic inputs to neuronal membranes. The
full spike feature implies energy efficient properties for the
network, so we name our network as the Energy-Efficient
Menbrane-Shortcut ResNet (EMS-ResNet).

4.3. The EMS-YOLO Model

Our goal is to predict the classification and position of
the objects from the given static image or event stream that
can be represented as X = {Xt}Tt=1. The dimensions of
the input data Xt for each time step t are C × H × W ,
where C is the channel number, H × W is the resolution.
To achieve this, we calculate the information of N objects
B = {Bn}Nn=1 by:

B = D(X) (8)
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Figure 2. The proposed directly-trained SNN for object detection (EMS-YOLO). EMS-YOLO mainly consists of backbone and head,
which are mainly composed of EMS-Blocks. EMS-Module1 and EMS-Module2 are EMS-Block1 and MS-Block, EMS-Block2 and MS-
Block connections respectively. EMS-Block2 is used when the number of output channels increases, otherwise, EMS-Block1 is used.

where each Bn = {xn, yn, wn, hn, cn, fn} is the corre-
sponding object’s bounding box position and class predic-
tion. (xn, yn), wn, hn represent the upper-left spatial coor-
dinates, width, and length of the bounding box, respectively.
cn, fn are the class and confidence level of the object, re-
spectively. D refers to our proposed EMS-YOLO, which
could achieve performance comparable to that of a same-
structure ANN, while inferring in real time.

As shown in Figure 2, our EMS-YOLO is a variation of
the YOLO framework, consisting of two modules: the back-
bone for feature extraction and the detection heads. The
analog pixel values X of an image are directly applied to
the input layer of EMS-YOLO. For the backbone, the first
convolutional layer is trained to convert inputs into spikes
where LIF neurons integrate the weighted inputs and gen-
erate output spike trains when the membrane potential ex-
ceeds the trained firing threshold. Then we employ the
EMS-Modules to extract object features from different di-
mensions and number of channels, which can enhance the
robustness of the network. The number of EMS-Blocks and
the channel width can be dynamically adjusted to the par-
ticular task, that Ablation experiments are shown in Sec 5.3,
and EMS-ResNet18 is shown in the Figure 2 as an example.

For the detection head, to avoid the loss of SNN per-
formance due to the multi-layer direct-connected convolu-
tion structure [49] of the conventional detection head, in this
work we take the yolov3-tiny detection head [39] as an ex-
ample and replace multiple directly connected convolutions
with EMS-Blocks.

The main challenge of object detection, as a regression
task with SNN models, is to convert the features extracted

with spike trains into accurate continuous value representa-
tions of the bounding boxes coordinates. Here, we feed last
membrane potential of the neurons [50] into each detector
to generate anchors of different sizes. After NMS process-
ing, the final category and bounding box coordinates of dif-
ferent objects can be obtained. Our end-to-end EMS-YOLO
is trained with the cross-entropy loss function1.

4.4. Analysis of Gradient Vanishing/Explosion
Problems

To explore the potential of our EMS-ResNet to enable
deep training, we analyze the feasibility from a theoretical
perspective. According to Gradient Norm Equality (GNE)
theory [6], our EMS-ResNet could avoid exploding and
vanishing gradients.

Lemma 1. Consider a neural network that can be repre-
sented as a series of blocks as and the jth block’s jaco-
bian matrix is denoted as Jj . If ∀j;ϕ(JjJT

j ) ≈ 1 and
φ(JjJ

T
j ) ≈ 0 , the network achieves “Block Dynamical

Isometry” and can avoid gradient vanishing or explosion.

Here, Jj means the Jacobian matrix of the block j, j is
the index of the corresponding block. ϕ means the expecta-
tion of the normalized trace. φ means ϕ(A2)− ϕ2(A).

Briefly, the theory ensures the gradient of the network
will not decrease to 0 or explode to ∞ since every block
have ϕ(JjJ

T
j ) ≈ 1. And φ(JjJ

T
j ) ≈ 0 makes sure that ac-

cident situation won’t happen. And in most cases[49][17],

1https://github.com/ultralytics/yolov3
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ϕ(JjJ
T
j ) ≈ 1 is enough for avoiding gradient vanish or ex-

ploding. Detailed description of the notation and the theory
are in [6].

Definition 1. (General Linear Transform) Let f(x) be a
transform whose Jacobian matrix is J . f is called general
linear transform when it satisfies:

E

[
∥f(x)∥22
len(f(x))

]
= ϕ

(
JJT

)
E

[
∥x∥22
len(x)

]
. (9)

According to the random matrix and mean field theory
[35], the data flow propagating in the network can be re-
garded as random variables. Thus, x is considered as a ran-
dom variable. We denote the notation E

[
∥x∥2

2

len(x)

]
as the 2th

moment of input element.
The definition is useful for analysis the gradient. Be-

cause once the output of an EMS-Block is normalized by
the BN layer, the 2th moment E

[
∥f(x)∥2

2

len(f(x))

]
which we de-

note as α2 is clear.

Lemma 2 (Multiplication). (Theorem 4.1 in [6]) Given
J :=

∏1
j=L J j , where {J j ∈ Rmj×mj−1} is a series of

independent random matrices. If (
∏1

j=L J j)(
∏1

j=L J j)
T

is at least the 1st moment unitarily invariant, we have

ϕ

(

1∏
j=L

J j)(

1∏
j=L

J j)
T

 =

1∏
j=L

ϕ(J jJ j
T ). (10)

Lemma 3 (Addition). (Theorem 4.2 in [6]) Given J :=∏1
j=L J j , where {J j ∈ Rmj×mj−1} is a series of indepen-

dent random matrices. If at most one matrix in J j is not a
central matrix, we have

ϕ(JJT ) =
∑
j

ϕ(J jJ j
T ). (11)

The multiplication and addition principle provide us a
technique for analysising the network with serial connec-
tions and parallel connections.

Discussion for General Linear Transform. Since the
Jacobian matrix of pooling can be regarded as a matrix J
that the element of matrix [J ]ik ∈ {0, 1}, 0 for the el-
ement not chosen while 1 for element chosen. Thus the
pooling layer can be regarded as a general linear trans-
form. Similarly, the UpSampling layer in the detection
head is also a generalized linear transformation. Concatena-
tion is general linear transform too, because the function of
f(x) = [x, ˜f(x)] can be expressed as f(x) = [I J̃ ]x if
the function f̃ is general linear transform. Since the BN and

CONV layers are already discussed in [6], so we only need
to assume that the LIF layer satisfy general linear trans-
formation, which is already used in proof by [49]. Since
the EMS-ResNet is a serial of basic EMS-Blocks and MS-
Blocks, we can separately analysis those blocks and multi-
ply them together.

Proposition 1. For EMS-Block1 and EMS-Block2, the
Jacobian matrix of the block can be represented as
ϕ(JjJ

T
j ) = 2

αj−1
2

.

Proof. It is detailed in Supplementary Material Proof A.1
and Proof A.2.

Proposition 2. For the EMS-ResNet, ϕ(JJT ) ≈ 1 can be
satisfied by control the 2th moment of the input.

Proof. It is detailed in Supplementary Material Proof
A.3.

Discussion about the proposition. According to [6],
ϕ(JJT ) ≈ 1 is the formal expression for GNE which
ensures gradient vanishing or explosion will not happen.
However, it is enough for solving gradient problems by just
avoiding the exponential increase or decrease [6]. In our
backbone, the MS-Block, the only factor to evoke exponen-
tial increase of gradient, whose increasing is stopped by the
interspersing of EMS-Blocks. Even if the initialize of BN
do not satisfy the constant for ϕ(JJT ) ≈ 1, the gradient
of each block will not increase as the network goes deeper.
Briefly, we improve the property of network at a structural
level by our EMS-Blocks.

5. Experiments
To fully validate the effectiveness of our model,

we conduct experiments on the frame-based COCO2017
Dataset [28] and the event-based Gen1 Dataset [9]. The
detailed introduction of the Datasets are in the Supple-
mentary Material B. For the object detection task, the
most widely used model evaluation metric is the mean Av-
erage Precision (mAP). We report the mAP at IOU=0.5
(mAP@0.5) and the average AP between 0.5 and 0.95
(mAP@0.5:0.95).

5.1. Experimental Setup

In all experiments, the number of detection heads is set
to 2 to make a fair comparison with the previous work. The
effect of different numbers of detection heads on the results
is in the Supplementary Material. We set the reset value
Vreset of LIF neurons to 0, the membrane time constant τ
to 0.25, the threshold Vth to 0.5, and the coefficient α to 1.
We mainly train models on 8 NVIDIA RTX3090 GPUs and
adopt the SGD optimizer, the learning rate is set to 1e−2.
The network is trained for 300 epochs on the COCO2017
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Method Work Model Time Step(T) mAP@0.5

Backpropagation ANN
Tiny-Yolo / 0.262
ResNet50 / 0.460
ResNet34 / 0.565

ANN-SNN

Conversion

Spiking-Yolo [23]
Tiny-Yolo

3500 0.257

Bayesian Optimization [22] 500 0.211
5000 0.258

Spike Calibration [26] ResNet50+Burst+
MLIPooling+SpiCalib

64 0.331
128 0.436
256 0.453
512 0.454

Directly-Trained
SNN EMS-YOLO EMS-ResNet34 4 0.501

Table 1. Results on the COCO2017 DataSet.

Dataset with a batch size of 32. On the Gen1 Dataset, we
trained the model for 100 epochs, with the batch size of 128.

5.2. Effective Test

COCO2017 Dataset Our models are trained on Mosic
data augmentation techniques [4] and tested to detect 80
objects of the COCO Dataset [28] on the validation set. As
the first one to implement object detection task with directly
trained SNNs, the main quantitative results are presented in
Table 1. For comparison with the current best performance
model Spike Calibration [26] based on ANN-SNN conver-
sion method, we do experiments based on EMS-ResNet34,
which has a reasonable number of parameters compared
with ResNet50. We demonstrate that the directly train-
ing method can achieve higher performance at only 4 time
steps, while the ANN-SNN conversion approach requires
at least a several hundred time steps. Furthermore, with the
same experimental settings and data augmentation methods,
the performance of our model is comparable to that of the
ANN with the same structure while reducing 5.83× of en-
ergy consumption with the firing rate of 22.46%.

Method Model Params T
Firing mAP mAP
Rate @0.5:0.95 @0.5

Sew-Reset

VGG
12.64M 5 22.22% 0.174 /-11+SSD

MobileNet 24.26M 5 29.44% 0.147 /-64+SSD
DenseNet

8.20M 5 37.20% 0.189 /121-24+SSD

ANN ResNet10
6.20M

/ / 0.247 0.504
EMS-ResNet EMS-Res10 5 21.15% 0.267 0.547

Table 2. Results on Gen1 Dataset.

GEN1 Automotive Detection Dataset As the largest
event camera-based dataset, it contains two categories
(pedestrians and cars) [9]. Currently, only Cordone et al. [7]
have experimented with the SNN method so far. They di-
vided the event data into five temporal bins for each input to

the network. In this paper, all the experiments on the Gen1
Dataset follow the same experimental setup with them.

The backbone of their shallow model is based on the
lightweight structure of Sew-ResNet, and the detection head
uses SSD. For fair comparison, we train a model with only
6.20 M parameters based on the EMS-ResNet10 structure
while reducing the number of channels. The results in Ta-
ble 2 show that our method can achieve the mAP@0.5:0.95
of 0.267 at the same number of time steps, which far out-
performs their performance of 0.189. It is remarkable that
our full-spike model is more sparse, with a spike firing
rate of 21.15%, which implies lower energy consumption.
We also conducted comparison experiments with an ANN-
ResNet10 [14] of the same structure with reduced number
of channels and discovered we even achieved better perfor-
mance than the ANN network, which indicates that the SNN
network may be more competitive in processing event data.

EMS-Res10 EMS-Res34 GTEMS-Res18

Figure 3. Object detection results on the Gen1 Dataset.
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EMS-Res10(T=1) EMS-Res10(T=3) EMS-Res34(T=5)EMS-Res10(T=5) GT

Figure 4. Object detection results on the COCO Dataset. The first three columns compare the effect of time steps on performance for
the same network structure. The third and fourth columns compare the effect of the depth of the network on performance.

5.3. Ablation Experiments

We conducted ablation experiments to better understand
the effectiveness of different residual modules on reducing
energy consumption, the effect of network depth and time
step on model performance. All ablation experiments are
performed by following the experimental setup in Sec 5.1,
if not otherwise specified.

Model mAP
@0.5

mAP
@0.5:0.95 Params Firing

Rate
Energy

Efficiency

ANN-Res18 0.537 0.290 9.56M / 1×
MS-Res18 0.560 0.285 9.49M 17.08% 2.43×
Sew-Res18 0.561 0.286 9.56M 18.80% 2.00×*
EMS-Res18 0.565 0.286 9.34M 20.09% 4.91×

Table 3. Impact of different residual blocks on Gen1 Dataset.
*Non-spike convolution blocks are calculated as MAC operations.

Different Residual Blocks To explore the structural su-
periority of our EMS-Block, we made comparative experi-
ments based on the Gen1 Dataset (shown in Table 3). All
experiments are trained with only 50 epochs, and the batch-
size is set to 64. From the experimental results, we found
that the performance of our full-spike EMS-ResNet is com-
parable to those of the other two ResNets with non-spikes
and the sparsity of the network is also maintained. The
full-spike property of EMS-ResNet enables the network to
be energy efficiency. According to Equation 6, we calcu-

lated the energy consumption of the network, excluding
the convolutional energy consumption from the first cod-
ing layer. The energy consumption on ANN-ResNet18 is
around 9.65mJ , which we denote this baseline energy con-
sumption as 1×. Our EMS-Res18 can reduce up to 4.91×
of energy consumption.

Numbers of Residual Blocks In Sec 4.4, we theoreti-
cally analyze that our EMS-ResNet can achieve deep train-
ing. Here we report results in Table 4 on the Gen1 Dataset
based on EMS-Res10, EMS-Res18, and EMS-Res34, re-
spectively. When the scale of the network is larger, the fea-
ture extraction ability becomes stronger (see Figure 3).

Model mAP
@0.5

mAP
@0.5:0.95 Params Firing

Rate

EMS-Res10 0.547 0.267 6.20M 21.15%
EMS-Res18 0.565 0.286 9.34M 20.09%
EMS-Res34 0.590 0.310 14.40M 17.80%

Table 4. Ablation studies of different numbers of residual blocks
on Gen1 Dataset.

Size of Time Steps Due to the sparsity of event streams,
different event sampling strategies may affect the abla-
tion experiment of time steps on Gen1 Dataset. Thus, we
report the performance of EMS-ResNet10 based on the
COCO2017 Dataset for T = 1, 3, 5, 7 in Table 5. The
time steps can be dynamically adjusted to achieve a bal-
ance of effectiveness and efficiency according to the needs

6562



of the actual task. We show some detection results on the
test set compared in Figure 4, where it can be found that
the accuracy of object detection is higher when the time
step is longer. Here, we first train the model based on T=1,
and then use the training model with T=1 as a pre-training
model with multiple time steps, which can effectively re-
duce the training time.

T 1 3 5 7
mAP@0.5 0.328 0.362 0.367 0.383

mAP@0.5:0.95 0.162 0.184 0.189 0.199

Table 5. Impact of different size of time steps on COCO Dataset.

6. Conclusion
In this work, we are the first to use the deep directly

trained SNN for the object detection task. Considering that
object detection involves extracting multi-scale object fea-
tures, we design a novel energy-efficient full-spike resid-
ual block, EMS-ResNet, that eliminates the redundant MAC
operations generated by non-spike convolution on shortcut
paths and residual connections. The full-spike EMS-ResNet
makes it easier to deploy on neuromorphic chips. Moreover,
our results show that our model (EMS-YOLO) can achieve
comparable performance to that of a same-structure ANN
in a very short time step and performs well on both static
images and event data. We believe that our model will drive
the exploration of SNN for various regression tasks while
becoming possible in neuromorphic hardware deployment.
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