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Abstract

It is very time consuming to create datasets for train-
ing computer vision models. An emerging alternative is to
use synthetic data, but if the synthetic data is not similar
enough to the real data, the performance is typically below
that of training with real data. Thus using synthetic data
still requires a large amount of time, money, and skill as
one needs to author the data carefully. In this paper, we
seek to understand which aspects of this authoring process
are most critical. We present an analysis of which factors
of variation between simulated and real data are most im-
portant. We capture images of YCB objects to create a novel
YCB-Real dataset. We then create a novel synthetic “digital
twin” dataset, YCB-Synthetic, which matches the YCB-Real
dataset and includes variety of artifacts added to the syn-
thetic data. We study the affects of these artifacts on our
dataset and two existing published datasets on two differ-
ent computer vision tasks: object detection and instance
segmentation. We provide an analysis of the cost-benefit
trade-offs between artist time for fixing artifacts and trained
model accuracy. We plan to release this dataset (images and
3D assets) so they can be further used by the community.
Link to dataset1

1. Introduction
A computer vision model must be trained on a large

dataset that samples across different environments and con-

ditions so what is learned from it generalizes well. The tra-

ditional process is to train models on large real world image

datasets, which require a lot of time and cost to create [18].

Image collection alone is difficult, time consuming, has low

scalability, and is sometimes impossible to do [2, 16, 26].

Furthermore, annotating the data is time-intensive.

An interesting alternative is to use computer graphics

methods to render large sets of synthetic images for train-

ing vision models. Synthetic data provides many benefits

– it is easy to create a vast number of data variations with

*Correspondence to Sruthi Sudhakar at ss6638@columbia.edu.
1Dataset: https://github.com/SruthiSudhakar/Exploring-the-Sim2Real-

Gap-using-Digital-Twins-Dataset.git

Figure 1: For each artifact that can arise in synthetic data

creation, we show how long it takes to fix it vs. the drop

in mAP of the model trained with that data. This provides

actionable insights as to how to balance the time and cost

for synthetic data generation.
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minimal human effort, and the annotation of the data is es-

sentially free. These properties have lead an increased use

of synthetic data in academia [20, 25, 28, 2] and industry

(e.g. Microsoft AirSim, NVIDIA’s Carla and Omniverse

platforms, Unity’s Computer Vision API, Datagen, among

many others).

Despite these great benefits, broad use is still limited,

as models trained on synthetic data often under-perform

on real world test data relative to models trained on real

world data [29]. Furthermore, many publicly available ob-

ject models, such as ShapeNet [3], contain meshes which

render very poorly in 3D graphics software like Blender,

Arnold, etc., leading to difficulties in training for 3D vision

tasks. This performance gap, known as the “Sim2Real” gap,

is well known, and it is it caused by numerous factors that

make synthetic data a bad match for the data distribution

seen in the real world test data [29]. However, while the

problem is well known, there is actually quite little under-
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standing of what exactly is causing the gap in the first place.

It is the goal of this paper to explore this question. In par-

ticular, we focus on issues related to the quality of the 3D

content used to create the synthetic data.

The cases where synthetic data performs well are gener-

ally the result of great care and highly skilled, human effort

taken to manually bridge the Sim2Real gap. One common

process is to set up the synthetic data to look as close as pos-

sible to the real world test data [24]. The extensive time and

skills needed for this process is prohibitive for most typical

computer vision research teams and thus effectively cancels

out the potential gains over using real data. This is a road

block to the broad use of synthetic data in computer vision.

However, if one can understand what aspects of realism

have the largest affect on the performance, then they can re-

duce the human effort needed to create highly-performing

synthetic data. One can steer more limited resources to fix-

ing the most important factors alone, thus reducing the bar-

riers for using synthetic data effectively.

To help understand the relevant processes and what as-

pects of it are most critical, we partnered with a team of

artists and data-scientists in a large corporation that per-

forms authoring of and training with synthetic data for a

number of large commercial clients. The following is their

process, and it is common in the industry: Step 1) Digitize

the objects and environments to use as building blocks for

the synthetic scenes using automated photogrammetry and

manually clean up of model artifacts and Step 2) use these

realistic 3D assets to create scenes by placing them in dif-

ferent environments and rendering them with a variety of

cameras positions under various lighting environments and

export metadata (object labels, masks, etc.).

This process leads to synthetic data that works quite well,

but is very time consuming to create. While “Step 2” is

fairly automated and requires less manual effort, “Step 1”

can take easily over a day for even small, fairly straight-

forward objects. The process also requires considerable

skills and intuition that are typically the domain of highly

trained 3D artists. In this paper, we focus on these manual,

skilled steps – the ones that fix artifacts that appear in the

automated photogrammetry pipeline – to understand what

is critical to the performance of the synthetic data.

We study these properties on objects from the YCB

dataset [30]. We have created a synthetic training dataset

and a real test dataset where all conditions of the environ-

ment and object match including camera angles, lighting,

foreground, background, and textures – also known as a

“Digital Twin”.

From these twins, we create new datasets where we syn-

thetically introduce artifacts in a controlled manner to un-

derstand which 3D-model artifacts cause the greatest drops

in performance when their rendered data is used to train a

computer vision model. Isolating which factors cause drops

in performance requires training and testing in very con-

trolled settings where only one factor changes at a time, and

thus we have constructed our dataset to have this property.

The artifacts we study are 5 factors that our partner team

identified most typically arise during photogrammetry and

are corrected to create good synthetic data: noise in the 3D

mesh, holes in the mesh, texture blur, and variations in dif-

fuse vs non-diffuse (or “baked”) lighting.

We then train on these modified datasets and test on our

real dataset to understand which factor causes the greatest

drops in performance. Further, we test these models on 2

more real-world datasets including YCB-In-the-wild [10]

and YCB-Video [34] and show that these findings hold.

For each artifact, we provide an estimate for the time

taken by an artist to correct that artifact, so that we can un-

derstand the trade-off between how long it takes to fix each

artifact to obtain a clean model and the accuracy benefit pro-

vided by that fix (summarized in Figure 1). This provides

time and cost constrained researchers with actionable in-

sights to prioritize which factors to address.

In summary, our main contributions include:
• Discovery of which factors of variation in 3D model

quality between simulated and real data are important

for computer vision model performance
• A cost-benefit analysis between artist time for correct-

ing an artifact and trained model accuracy
• A new YCB-Real and digital twin

YCB-Synthetic dataset to study adaptation

and generalization in controlled environments

2. Related Work
2.1. Synthetic Data for Robustness Measures:

Several works have aimed to generate data with vary-

ing types of image corruptions to understand model failures.

In [12], authors introduce 75 common corruptions (catego-

rized by noise, blur, weather, and digital categories) on Ima-

geNet [5] images to create ImageNet-C. Similarly, in Foggy

Cityscapes [23], synthetic fog is applied to Cityscapes [4]

data at three different levels of severity to understand the

impact of weather changes. To assess distortion robustness

in object detection, [19] introduces PASCAL-C, COCO-C,

and Cityscapes-C containing 15 distortions, following those

proposed in [12], each spanning five levels of severity.

These corruptions are all introduced in the pixel space

and usually applied over the entire image. Such corrup-

tions can look unrealistic and the images may not mirror

typical issues that arise when creating synthetic data. Con-

versely, our work takes a more realistic approach by creat-

ing datasets where our 5 identified factors are applied on the

3D assets, and later rendered into a scene with various cam-

era positions and lighting environments. Furthermore, this

method of data generation allows us to introduce changes

in object shape and 3D pose, which are not captured by
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corruptions introduced in prior work. Finally, many types

of corruptions in prior work’s datasets are a composite of

different factors of the object and environment changing in-

cluding textures, lighting, shapes, and clutter. In our work,

we take a more rigorous approach to test each of these fac-

tors in isolation such that generalizations can be then made

to higher-level variations in the data.

We introduce two novel datasets, YCB-Synthetic
and YCB-Real that provide a strong test-bed to analyze

whether current robustness algorithms are successful. With

our dataset, one can discover the precise situations wherein

their model fails since each factor or variation is isolated.

2.2. Synthetic Data Generation

There are many synthetic datasets that are generated via

graphic engines and physics simulators such that they can

create synthetic data that matches the real data as closley as

possible. For example, Virtual KITTI [8] was designed to

match the KITTI dataset as close as possible. Many other

self-driving synthetic datasets aim to achieve the same in-

cluding CARLA [6], SYNTHIA [22], GTA-V [21], and

VIPER [11]. However, many works have shown perfor-

mance drops when training on these virtual datasets and

testing in real environments, showing that these graphic

simulators are unable to reconstruct these complex scenes

perfectly in the virtual world.

Another explored approach is domain randomization

[27] which involves defining a set of parameters that will

be perturbed at random while generating the synthetic data.

These perturbations include aspects like camera angle, illu-

mination, and object pose which also can only be achieved

with sophisticated graphics software.

Other work has aimed to leverage the power of genera-

tive models to create synthetic data. Some common gener-

ative algorithms include GANs [14], VAEs [1], and more

recently, diffusion models [13]. However, these algorithms

are currently limited in their power to generate high-quality,

high-resolution images with the level of detail that match re-

ality. Furthermore, it is not possible to specify the type of

data one wishes to generate. While you can condition out-

puts on some label or text, there is not much controlability

of precisely how the image looks in terms of lighting, object

orientation, camera viewpoints, etc.

Since our work requires controlling low-level details in-

cluding lighting, camera viewpoints, object textures, etc.,

we take the approach of using 3D scan technologies and

rendering software with the help of specialized data artists

to create these synthetic datasets. Furthermore, unlike any

prior work, we develop digital twins of the synthetic and

real data, ensuring that no sim2real gap exists, allowing

deeper exploration into the root causes of these gaps.

2.3. Sim2Real Adaptation methods

Domain Adaptation (DA) and Domain Generalization

(DG) are two very standard paradigms to allow a model

trained on a(many) source distribution(s) to adapt to a target

distribution that is different but related. In DA, the model

has access to the target domain data and many frameworks

focus on aligning the target to the source domain via fea-

ture re-weighting [17], domain discrepancy minimization

[7], adversarial learning [9], and invariant feature learning

[31]. In Domain Generalization, the target distribution is

unknown so prior DA methods do not work perfectly in

these scenarios, rather approaches such as domain random-

ization [27], data augmentation [15], and domain-invariant

learning [33] are commonly used.

Our dataset can serve as a benchmark and in-depth anal-

ysis for any of these adaptation methods. Since we have

identified the main variations between object models in syn-

thetic and real data that cause performance drops, one can

train their adaptation method on any one of our synthetic

datasets and see if it transfers to our real dataset. This will

indicate not only the strength of the method, but also since

we have isolated each factor in these datasets, it highlights

which artifact their algorithm is prone to failures on.

3. General Synthetic Data Creation Pipeline
A typical synthetic data creation pipeline has two steps:

asset creation and scene composition. While the artist can

author everything from scratch, for the sake of time and ac-

curacy, the common approach is to first digitize the assets

and scene and then perform 3D modeling op top of these

assets to create clean, accurate versions.

3.1. Asset Digitization

In the first step, an artist creates the building blocks of the

synthetic scenes which include objects and environments.

Object Creation: A variety of different laser or light-

based 3D scan technologies exist for object digitization, the

most common of which is photogrammetry. In this tech-

nique, an object is photographed (typically with a DSLR or

phone camera) from a variety of angles ensuring there is an

adequate overlap between photos. Automated photogram-

metry (structure from motion and dense multi-view stereo)

is then used to reconstruct a textured 3D mesh from these

images that provides an initial 3D model the real object.

Environment Creation: To digitize the 3D environment

with accurate lighting conditions observed in the real world,

we capture a 360-degree HDR (high dynamic range) im-

age of the real environment using a specialized panoramic

camera rig that pivots about the camera’s nodal point while

capturing bracketed exposure stops [32]. A specialized soft-

ware and a color management pipeline is then used to com-

20420



bine the exposures to create a 32 bit floating point HDR

map. This HDR environment accurately represents the

color and exposure values and can be used to derive am-

bient and directional lighting contribution to the 3D scene.

3.2. Scene Composition

After the objects and the environments are digitized, the

artist configures the scene layout based on the specific goals

for the synthetic dataset.

This includes: (1) Targeted placement of the object(s)

in the environment/scene. (2) Programmatic distribution

of 3D camera positions to obtain a variety of viewpoints.

(3) Configuration of the environments’ material and light-

ing parameters to align with the real world. (4) Assignment

of labeling information for ground truth computation

When the scene configuration is completed, it is ren-

dered, typically using a ray-traced engine, that produces

highly photorealistic images and pixel perfect annotations.

3.3. Model Quality Factors

Data generated using this process works quite well, how-

ever, this process is time consuming and often requires

highly skilled 3D artists to fix several model quality issues

that arise during object digitization using photogrammetry.

The typical model quality factors are:

• Holes in Geometry: The 3D mesh may have holes

due to the capture process such as the lack of angular

coverage in the photography or the inability to capture

occluded areas. The surface properties of the object

may also result in holes in the 3D mesh. For example,

photogrammetry often has difficulty in reconstructing

shiny, black, and featureless areas of an object.

• Texture Artifacts: Image anomalies that are present

in the source photography will also be present in the

resulting texture. This is commonly caused by blurry

images due to motion or focal depth. Misalignments

in the computed camera positions can also result in

texture artifacts and can lead to errors in the texture

re-projection. This is observed as the doubling of pro-

jected details in the texture.

• Lighting Artifacts: The lighting conditions when

capturing photogrammetry imagery are baked into the

resulting texture. If consistent diffuse lighting is not

ensured during the capture process, shadows, light di-

rectionality, and specular/reflective properties may get

embedded in the resulting texture.

• Mesh Noise: High-frequency noise in the mesh re-

construction is a common issue that is often caused by

lacking enough imagery to properly reconstruct the ob-

ject. This can also be caused by surface properties like

dark or shiny materials that lead to holes in geometry.

Figure 2: We obtain object models and create synthetic data

for these 20 objects in the YCB Objects dataset. We show

each object’s real and synthetic version side-by-side.

4. Datasets

To isolate which model quality factor causes a drop in

performance, it is necessary to ensure that all other aspects

of the synthetic data we train on and real data that we test

on remain the same. To create a digital twin of this na-

ture, we required a dataset that allowed us high control in

both synthetic and real. Therefore, we chose to use the 20

daily life objects (depicted in Figure 2) of different shapes,

sizes, and textures from The YCB Object and Model Set

[34]. The dataset provides us with high-resolution RGBD

scans, physical properties, and geometric models to gen-

erate synthetic data of these objects. We additionally pur-

chased 16/20 of the objects for which there exists products

in real life that look like the objects in the dataset (apart

from a few differences due to the changes in product pack-

aging since the release of YCB). These objects include ba-

nana, bleach, block, bowl, cheezit, coffee, drill, gelatin,

marker, meat, mug, mustard, pitcher, pudding, soup, sugar.

Figure 3: Example of cheezit box from each dataset: dig-

ital twin in YCB-Synthetic, from YCB-Real, from

YCB-In-the-wild, and from YCB-Video.
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4.1. Creating YCB-Real

We obtained a staging table and placed it in the cap-

ture space. We ensured that the real environment exactly

matched the synthetic environment by digitizing the stag-

ing table and the capture space and using them to create

YCB-Synth. The scene was lighted using an area light in

the ceiling which provided ambient lighting and two floor

lamps which provided directional lighting. We put markers

on the floor to ensure that the table and the floor lamps were

in the exact same position in all captures. We captured the

different combinations of lighting environment maps using

light probes that were placed at the center of the table. This

point was treated as the origin of the coordinate system for

the synthetic scene ensuring that the lighting in both scenes

was exactly the same.

We captured the real data in multiple sessions. At the

beginning of each session, we set up the staging table and

the lights at their marker positions. We then put the real ob-

jects on the table and captured multiple images from various

camera positions using an Android phone. We ensured that

the camera positions covered a variety of distances from the

object ranging from 0.2 to 5 meters. After obtaining the im-

ages, we labeled them manually using a labeling software.

As a result, we obtained a real dataset containing ∼100 im-

ages per object that has the same lighting conditions and

environments as YCB-Real.

4.2. Creating YCB-Synththetic

To understand the effect of the 5 artifacts (model qual-

ity factors), we identified a series of experiments that would

allow us to artificially add these issues back into a clean ver-

sion of the models and independently analyze their impact.

• Clean Dataset (clean): Our first step is to generate

an initial dataset where all 20 objects are staged and

rendered to match YCB-Real as closely as possible.

Once the environment and lighting are set up, the ob-

jects can then be brought into the scene and placed on

the table. We then fine tune any materials, asset place-

ments, and lighting, to ensure the datasets are as close

to the real-world captures as possible. All subsequent

datasets are based on this initial dataset.
• Ambient Lighting (ambient 1/2): We created this

dataset to understand the effect of varied light exposure

levels on model performance. Using the captured HDR

images of the real-world space, we generated datasets

with the light set to 50%, and 10% exposure intensity

(where 100% is simply the clean dataset).
• Baked Lighting (baked light): We swap the HDR

environment map captured from our lab setup with a

completely different HDR environment (from a pub-

lic HDR library) that has very different, harsh lighting.

When the objects are rendered with this environment

map, the lighting appears very different than in the real

Figure 4: Example of cheezit object with each type of arti-

fact applied from the YCB-Synthetic artifact datasets.

scene. This was done to mimic photogrammetry cap-

tures that were not taken in a diffuse lighting environ-

ment. When this happens shadows and lighting infor-

mation can be much different than the environment the

objects are rendered in.

• Holes in Geometry (holes 1/2/3): To evaluate the im-

pact of holes in the object’s geometry, we purposefully

select parts of the mesh to delete. We target areas that

have flat featureless sections and solid colors. This

mimics patterns observed in photogrammetry. We cre-

ated 3 datasets by adding more and more holes pro-

gressively at 3 different levels which we term level 1

for least severity, up to level 3 for most severity. Where

Level 0 is simply the clean dataset.

• Blur in Texture (texture 1/2/3): By adding blur into

the textures we mimic photogrammetry that has mis-

aligned cameras or poor-quality photography (motion

blur, out of focus). Object textures are modified in

Photoshop to apply layer offsets and opacity changes

that mimic these artifacts. Similar to holes, we created

datasets with 3 levels of severity.

• Noise in mesh (noise 1/2/3): For these experiments we

introduce different amounts of noise into the object’s

mesh. We achieve this by adding random amounts of

curl and fractal noise computations into the vertex po-

sitions of the mesh, this causes the surface of the mesh

to become deformed and noisy. Similar to holes and

blur, we created datasets with 3 levels of severity.

We render 1000 images/object for each object in all of

these datasets with closely matching camera ranges, object

ranges, and camera angles as YCB-Real. Figure 4 shows

an example of each type of artifact dataset on the cheezit

object. Figure 3 shows a sample of a cheezit box image in

real and its digital twin in synthetic.

5. Experiments
Our dataset provides the community with a system-

atic way to study how model quality artifacts in synthetic

20422



Table 1: Object Detection results (mAP) from training on each type of artifact in YCB-Synthetic and testing on

YCB-Real. Notice that when training on clean and testing on YCB-Real, we see near perfect mAP50 as expected. How-

ever, training on various artifacts causes the performance to drop. From this table, we can see that the biggest performance

impactors include high levels of noise in the mesh, high texture blurs, and baked lighting. Conversely, ambient lighting does

not affect performance, and holes only have mild affects. We highlight the lowest 3 performing attributes in red.

train set all sugar mug gelatin banana bowl drill bleach block meat marker cheezit pitcher mustard pudding coffee soup

clean 81.93 ± 0.98 86.69 84.55 82.14 77.03 86.71 86.82 67.84 90.20 86.90 38.17 92.16 90.44 82.65 83.75 90.18 84.64

ambient 1 81.53 ± 0.75 86.51 83.20 80.70 73.34 85.50 85.75 74.49 91.52 87.02 38.34 90.81 90.48 81.46 80.26 91.95 83.20

ambient 2 81.10 ± 1.08 85.10 84.96 80.01 75.17 85.61 85.17 73.03 89.06 80.44 36.60 90.64 91.14 81.97 84.77 91.78 82.11

holes 1 78.85 ± 2.14 81.79 83.14 80.18 75.94 84.43 86.76 65.38 91.17 85.91 37.64 90.67 90.84 82.58 53.33 86.11 85.69

holes 2 80.05 ± 1.30 82.55 84.34 81.74 76.09 83.65 85.56 63.47 90.65 82.75 43.62 91.04 90.46 82.19 71.57 86.65 84.48

holes 3 79.99 ± 1.35 86.85 85.01 80.48 80.03 81.78 86.61 58.02 89.98 83.43 35.32 91.10 91.50 81.90 78.55 85.50 83.84

texture 1 82.29 ± 1.11 86.31 86.38 81.81 77.08 87.21 86.68 69.72 92.53 87.20 35.96 92.41 91.26 82.80 85.93 89.11 84.29

texture 2 69.82 ± 4.47 85.65 84.78 13.72 78.23 83.59 86.20 56.98 87.03 34.55 31.74 61.11 92.10 83.29 75.22 77.25 81.39

texture 3 71.04 ± 4.74 83.47 85.24 74.49 82.81 82.56 85.70 63.20 93.19 67.63 33.16 21.37 90.39 82.18 43.62 66.25 81.41

baked light 72.87 ± 1.23 83.03 84.47 79.60 70.79 87.11 83.60 60.99 90.02 80.01 21.68 74.93 91.77 83.83 4.82 87.30 81.88

noise 1 81.17 ± 1.17 84.81 85.08 80.59 78.55 85.29 87.08 65.69 89.58 79.64 37.25 91.23 90.44 84.65 84.13 91.14 83.51

noise 2 69.20 ± 4.92 84.71 36.10 71.39 82.41 80.44 81.96 63.60 89.52 51.01 37.38 87.19 9.26 84.15 80.13 84.27 83.63

noise 3 65.65 ± 4.84 83.38 63.59 78.77 81.76 68.18 80.64 70.31 87.45 31.09 38.07 71.28 4.67 85.04 85.76 36.52 83.94

Table 2: Object Detection results from training on various artifact datasets in YCB-Synthetic and testing on (a)

YCB-Real, (b) YCB-In-the-wild, and (c) YCB-Video. Notice that many overall trends that we see on YCB-Real
hold for YCB-In-the-wild and YCB-Video. We highlight the lowest 3 performing attributes in each dataset, note the

consistency across datasets.

(a) YCB-Real

train set mAP mAP50 mAP75

clean 81.93 ± 0.98 99.40 ± 0.66 93.90 ± 0.78

ambient 1 81.53 ± 0.75 99.36 ± 0.34 94.03 ± 0.55

ambient 2 81.10 ± 1.08 99.20 ± 0.71 93.73 ± 0.69

holes 1 78.85 ± 2.14 96.74 ± 1.82 90.84 ± 2.21

holes 2 80.05 ± 1.30 97.94 ± 1.44 92.12 ± 1.39

holes 3 79.99 ± 1.35 98.23 ± 1.53 90.63 ± 1.70

texture 1 82.39 ± 1.11 99.31 ± 0.81 93.91 ± 0.76

texture 2 69.82 ± 4.47 85.68 ± 5.26 79.86 ± 5.14

texture 3 71.04 ± 4.74 88.69 ± 5.16 81.72 ± 5.12

baked light 72.87 ± 1.23 90.19 ± 1.17 84.46 ± 1.11

noise 1 81.17 ± 1.17 98.72 ± 1.26 92.88 ± 1.36

noise 2 69.20 ± 4.92 85.85 ± 5.14 79.50 ± 5.36

noise 3 65.65 ± 4.84 81.32 ± 4.96 75.71 ± 5.13

(b) YCB-In-the-wild

train set mAP mAP50 mAP75

clean 67.15 ± 2.56 77.47 ± 2.69 75.25 ± 2.98

ambient 1 65.76 ± 2.05 76.20 ± 2.12 74.28 ± 2.02

ambient 2 66.35 ± 2.17 76.86 ± 2.28 74.25 ± 2.36

holes 1 60.88 ± 3.12 70.40 ± 3.36 68.35 ± 3.08

holes 2 58.19 ± 3.64 67.49 ± 4.00 65.16 ± 3.84

holes 3 55.19 ± 3.93 64.13 ± 4.28 61.85 ± 4.14

texture 1 65.18 ± 2.09 75.45 ± 2.54 72.90 ± 2.44

texture 2 40.92 ± 5.81 47.91 ± 6.57 45.75 ± 6.47

texture 3 44.85 ± 2.91 52.96 ± 3.04 50.42 ± 3.08

baked light 62.65 ± 4.50 73.65 ± 5.01 70.57 ± 5.14

noise 1 61.00 ± 1.78 70.27 ± 2.13 68.56 ± 1.96

noise 2 33.68 ± 7.58 40.68 ± 9.03 38.62 ± 8.67

noise 3 20.30 ± 6.93 25.11 ± 7.98 23.37 ± 8.01

(c) YCB-Video

train set mAP mAP50 mAP75

clean 37.83 ± 2.28 51.74 ± 3.13 44.48 ± 2.77

ambient 1 39.45 ± 2.44 54.30 ± 3.63 46.78 ± 2.89

ambient 2 38.18 ± 2.46 51.85 ± 3.51 45.16 ± 2.80

holes 1 33.95 ± 1.93 46.17 ± 2.37 40.42 ± 2.37

holes 2 30.69 ± 4.57 41.60 ± 6.21 36.25 ± 5.59

holes 3 27.35 ± 2.21 37.13 ± 3.09 32.44 ± 2.70

texture 1 37.37 ± 3.18 51.84 ± 4.71 43.98 ± 3.43

texture 2 22.54 ± 2.17 30.06 ± 2.96 25.61 ± 2.45

texture 3 28.03 ± 3.04 39.29 ± 4.44 32.30 ± 3.90

baked light 33.59 ± 1.60 45.97 ± 2.44 39.85 ± 1.98

noise 1 35.67 ± 1.63 48.50 ± 2.47 42.02 ± 1.86

noise 2 24.02 ± 2.76 33.54 ± 3.52 28.02 ± 3.30

noise 3 18.88 ± 3.18 28.17 ± 4.32 21.80 ± 3.77

training data can result in performance drops when test-

ing on real data. As a first step into investigating the

causes of the sim2real gap, we study object detection

when training on YCB-Synthetic and testing on real-

world datasets including the matched captures, YCB-Real,

and two publicly available datasets YCB-In-the-wild
[10] and YCB-Video [30], to see how results general-

ize outside of our own data. YCB-In-the-wild con-

tains YCB objects in real environments with various poses

and scales, and YCB-Video includes multiple YCB ob-

jects per frame, with different arrangements, spatial config-

urations, poses, and with severe occlusions (Fig 3). As a

second task, we train an instance segmentation model on

YCB-Synthetic and test on YCB-Video.

The goal is to understand how training a model on each

dataset of 14 artifacts in YCB-Synthetic (as detailed in

Sec 4.2), affect the real-world performance of the model. A

large drop in performance indicates that a certain factor can

have a high impact on the how well the model learns, and

therefore this factor is important to address when generating

synthetic data. Conversely, if a certain artifact does not af-

fect model performance, we can say that it is not important

for data artists to correct this artifact as model performance

will not degrade even in the presence of the artifact.

5.1. Training

We used the Detectron2 library and start with a pre-

trained Faster-RCNN model for detection and Mask-RCNN

for instance segmentation, with a ResNet50 + FPN back-

bone, initialized with COCO weights. We fine-tuned

the pre-trained model on clean synthetic data and all of

the 14 types of corrupted synthetic data we have cre-

ated in the YCB-Synthetic dataset. To eliminate all

possible confounding variables and understand the source

of the performance discrepancies, we trained all mod-

els with no augmentations. We then take each of these

trained models and test it on real test data in YCB-Real,

YCB-In-the-wild, and YCB-Video. For each exper-

iment, we trained 10 times and we report the average and

standard deviation of mAP, AP50, and AP75 metrics.
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Figure 5: Results comparing relative performance of Detec-

tion vs Segmentation on YCB-Video.

Figure 6: Comparing model trained on clean vs artifacts

datasets inYCB-Synthetic We divide these two perfor-

mance numbers to get a relative performance number.

5.2. Baseline
First as a sanity check, we ensure that the de-

tection model trained on the clean synthetic data in

YCB-Synthetic and tested on the twin, YCB-Real,

should achieve high performance. We expect this because

by design, all environmental conditions match between

clean YCB-Synthetic and YCB-Real, thus we do not

anticipate a sim2real gap. As expected, we see excellent

performance with an overall mAP of 82% (see Table 1),

AP50 of 99%, and AP75 of 93%. Further, we trained on

YCB-Real and testing on YCB-Real, and we observe mAP

of 87.6% which is similar to training YCB-Synthetic and

testing on YCB-Real (the slight increase due to the differ-

ences in bounding box accuracies in YCB-Synthetic), indi-

cating that YCB-Synthetic clean is a good digital twin for

the real data.

5.3. YCB-Real Object Detection
Next, we trained on the 12 (artifact) datasets in

YCB-Synthetic and tested on YCB-Real. As shown

in Table 1, overall we found that ambient lighting had al-

most no impact on performance at both levels. Additionally,

holes in the mesh at all levels (1-3) had mild to no impact on

model performance. However, baked lighting, texture blur

levels 2-3, and noise in the mesh levels 2-3, all caused major

drops in model performance with noise being the worst.

5.4. YCB-Video and In-the-wild Detection
While training on YCB-Synthetic and testing on the

YCB-Real gave us a strong understanding of how each

factor specifically affected model performance, we wanted

to see if our observed trends generalize to other exist-

ing datasets. In Table 2 and Figure 6, we provide de-

tailed results comparing training on the artifacts datasets

in YCB-Synthetic and testing on (a) YCB-Real, (b)

YCB-In-the-wild, and (c) YCB-Video. Firstly,

we note that there is a significant domain shift from

YCB-Real to YCB-In-the-wild and YCB-Video
since these are not digital twins, and this is reflected

in the large performance drops. When we train on

YCB-Synthetic clean and test on these various datasets,

we can see decreasing mAPs with YCB-Real = 81.93%,

YCB-In-the-wild = 67.15%, and YCB-Video =

37.83%. The lower performance on YCB-Video com-

pared to YCB-In-the-wild is expected as multiple ob-

jects appear in each image with various occlusions, orien-

tations, and backgrounds while YCB-In-the-wild has

various backgrounds but only has one object per image and

is mostly un-occluded.

Interestingly, many of the trends we saw from

YCB-Real results held true even in these other datasets.

We average mAP across the levels of the different artifacts

to get a high-level intuition on the results (average result

figure in Supplemental). We noticed that like YCB-Real,

changing the level of ambient lighting had the least drop in

model performance from clean. Furthermore, baked light-

ing had a similar impact level as YCB-Real as seen by sim-

ilar mAP values in Figure 6. Finally, we notice that across

all 3 datasets, noise in mesh level 3 results in the greatest

performance drops.

This illustrates that certain artifacts that arise when cre-

ating synthetic data have more significant affects on the

downstream performance of models trained on this data.

5.5. YCB-Video Instance Segmentation

To further test the generalizability of our findings, we ran

experiments with another downstream task: Instance Seg-

mentation. In Table 5, we provide results comparing train-

ing on various artifacts in YCB-Synthetic and testing

on YCB-Video. Note that the relative results between the

Detection Task and Segmentation task are consistent, with

the lowest 5 performing artifacts being holes 3, texture 2/3

and noise 2/3 in both tasks.

5.6. Trade-offs between artist time and accuracy
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Figure 7: Confusion Matrix of model trained on

YCB-Synthetic noise in mesh (averaged across level

1/2/3) and tested on YCB-Real. Notice that noise in mesh

causes more class confusions than missed detections.

Our artist team estimated the average time needed on av-

erage for a skilled artist to correct each artifact. Model ar-

tifacts, such as noise and holes, typically take 6.8 hours to

correct, regardless of corruption level as these artifacts are

fixed by creating a new, clean model. Lighting and textures

issues vary from 4-8 hours based on the severity of the arti-

fact. With these time estimates, we can model the trade-off

between how long it takes to fix each artifact and the ac-

curacy benefit provided by that fix for object detection in

YCB-Real, as shown in Figure 1 (other tasks/dataset re-

sults provided in Supplemental). Our analysis shows that it

is less worth it to correct ambient lighting level issues and

low-level noise and texture issues, as they have a relatively

small affect on mAP. Holes in the mesh are typically also

not as much of a factor, while they are very time consum-

ing to fix. The “best bang for one’s buck” is fixing baked

lighting issues and significant texture and noise errors. With

these results, we provide actionable insights as to how to re-

duce costs of data generation.

6. Discussion

Extreme performance drops: Noise in the mesh seems

to have the greatest impact. Rows ‘noise 2’ and ‘noise

3’ in Table 1 show this artifact degrades performance sig-

nificantly, with mAP in YCB-Real falling from 82%

to 69% and 66% respectively. Similarly, noise 2 and

3 cause one of the steepest drops in performance for

YCB-In-the-wild and YCB-Video as well. Further-

more, in both noise 2 and noise 3, pitcher is most often con-

fused with ’coffee’ (see Figure 7), most likely due to their

similar shapes and colors.

Model architecture handles certain artifacts: Ambi-

ent lighting does not seem to have any impact on model

performance in YCB-Real and only a mild impact on

YCB-In-the-wild and YCB-Video. One possible rea-

son for this is that lower ambient lighting simply shows up

as lower intensity values in the pixel space, which the deep

learning training algorithm already accounts for by incor-

porating normalization and batch norm. (Note we trained

these models without data augmentations to remove con-

founding factors).

Synthetic data artifacts can help: From our findings on

the twin dataset YCB-Real, we can see that training with

some artifacts improve an objects’ performance, compared

to clean. For example, as we increase the severity of holes

in the mesh, we notice that the performance increases on

certain classes such as mug, gelatin, and bowl. Addition-

ally, adding texture blur boosts bowl’s performance across

all levels of severity (the highest being 6% at severity level

1). This highlights a more general finding that some arti-

facts in the object model are advantageous during testing

– perhaps adding some of the benefits of data augmenta-

tions such as adding noise Gaussian noise to images. These

boosts in performance vary by object and artifact type, and

would be interesting to study in more detail in future work

using our controlled train/test datasets.

Findings on classification vs localization: While many

of these artifacts cause significant drops in performance,

some artifacts cause the model to miss-classify one object

for another, while other artifacts result in completely missed

detections. In Figure 7, we visualize the confusion matrices

of a model trained on noise in mesh (averaged across the

3 severity levels) and tested on YCB-Real. While train-

ing on noise in mesh and texture blur artifacts cause poor

performance, noise in mesh results in a lot more confu-

sions between objects whereas texture blur mostly results

in missed detections. Depending on the downstream ap-

plication, one type of error may be more acceptable than

the other, and we encourage future work to use this dataset

to look into which types of artifacts cause which types of

classification/localization errors. (Other confusion matrices

included in Supplemental)

Scope for further analysis by object size: Furthermore,

when observing clean confusion matrix, we see that pud-

ding and marker are the two objects that always have

poor performance and pudding is always miss-classified as

gelatin while marker is always miss-localized. Both objects

are some of the smallest amongst the 18 real objects, with

the marker object being the smallest. Therefore even slight
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artifacts to the object model cause significant visual differ-

ences and may lead to classification and localization issues.

This highlights an interesting relationship between model

quality and object size.

7. Conclusions
We presented a novel synthetic dataset, YCB-Real, and

its digital twin, YCB-Synthetic. We benchmark mod-

els on these datasets to understand the affects of artifacts

on model performance. Furthermore, we provide cost es-

timates to help others understand the value of fixing cer-

tain artifacts. While we have done a large number of initial

experiments with this datasets, we believe there are many

more that can be done. Thus one of our main contributions

is the dataset and 3D assets used to create it that we plan

to release to the public. We are excited to release our data

so that the research community can benefit from the highly

controlled training and test environments we have created,

and they can also use our 3D assets and environments to cre-

ate new datasets for research into synthetic data generation

and additionally domain generalization and adaptation.
Acknowledgements: We thank Pedro Urbina and the mem-
bers of the MS Synthetics Team for helping in creating the
datasets.
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