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Abstract

Shadow detection methods rely on multi-scale contrast,
especially global contrast, information to locate shadows
correctly. However, we observe that the camera image sig-
nal processor (ISP) tends to preserve more local contrast
information by sacrificing global contrast information dur-
ing the raw-to-sRGB conversion process. This often causes
existing methods to fail in scenes with high global contrast
but low local contrast in shadow regions. In this paper, we
propose a novel method to detect shadows from raw images.
Our key idea is that instead of performing a many-to-one
mapping like the ISP process, we can learn a many-to-many
mapping from the high dynamic range raw images to the
sRGB images of different illumination, which is able to pre-
serve multi-scale contrast for accurate shadow detection.
To this end, we first construct a new shadow dataset with
∼ 7000 raw images and shadow masks. We then propose
a novel network, which includes a novel adaptive illumina-
tion mapping (AIM) module to project the input raw images
into sRGB images of different intensity ranges and a shadow
detection module to leverage the preserved multi-scale con-
trast information to detect shadows. To learn the shadow-
aware adaptive illumination mapping process, we propose
a novel feedback mechanism to guide the AIM during train-
ing. Experiments show that our method outperforms state-
of-the-art shadow detectors. Code and dataset are avail-
able at https://github.com/jiayusun/SARA.

1. Introduction

Whenever there are light and objects in a scene, there
are shadows. Although usually unnoticed, shadows can tell
a lot of information about the scene, e.g., the shapes, vol-
umes and locations of objects, and the sources, directions
of lights. The analysis of shadows can facilitate a lot of ap-
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(a) Input image (b) MTMT [2] (c) BDRAR [38] (d) FDRNet [39]

(e) sRGB image A (f) sRBG image B (g) Ours (h) Ground truth

Figure 1. When a non-shadow region has low contrast to a shadow
region but high contrast to another non-shadow region (e.g., the
black boundary of the object), existing methods may fail to detect
the shadow region correctly (b-d). We propose to detect shadows
in the raw images. By learning to project raw images into sRGB
images of different intensity ranges adaptively, our method can
detect the shadow region correctly (g).

plications varying from scene understanding to the creation
and assessment of novel scenes. Hence, it is essential to
design effective shadow detection models.

There are many methods proposed for shadow detec-
tion. Conventional methods [5, 4, 14, 37, 7] typically hand-
craft statistical features (e.g., pixel color, intensity, gradi-
ent, and/or a combination of them) to represent the charac-
teristics of shadows, and design heuristic models to detect
shadows. The key limitation of these methods is that their
low-level features often fail to represent shadows in real-
world scenes. Deep learning-based shadow detectors avoid
the hand-craft feature engineering. In order to maximize
the discrepancies of deep features learned from shadow and
non-shadow regions, they typically focus on designing neu-
ral networks to mine both global and local contrast infor-
mation via, e.g., directional context aggregation [10], cross-
layer feature fusion [38, 33], negative example supervi-
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sion [35], semi-supervised learning [2] and shadow feature
decomposition and reweighing [39].

Despite their success, these methods may still fail to de-
tect shadow correctly. As shown in Figure 1(b-d), they
wrongly detect black boundary regions as shadows. Such
error-prone regions typically have high contrasts to sur-
rounding non-shadow regions and low contrasts to shadow
regions. While capturing these images, we realize that hu-
mans are able to perceive the small-scale contrast informa-
tion, i.e., the black boundary outside the shadow region
should still have notable contrast to the shadow regions.
However, such contrast information is diminished in the
camera-finishing sRGB image, as the camera ISP is essen-
tially a many-to-one operation of information reduction. In
order to preserve the global contrast in the output sRGB
image, the raw-to-sRGB conversion of ISP has to sacrifice
the local contrasts. This often fails existing shadow detec-
tion methods and cannot be easily addressed by using the
camera-finishing sRGB images.

In this paper, we propose a novel method that detects
shadows from raw images. The key insight is that we can
learn a many-to-many mapping between the high dynamic
range raw data and the standard dynamic range sRGB im-
ages of different illumination conditions, which can pre-
serve different scales of contrast information for shadow
detection. To this end, we first construct the first ShAdow
RAw (SARA) dataset consisting of ∼ 7000 raw image and
mask pairs for training and evaluation. We then propose
a novel network to detect shadows from raw images. Our
network has a novel adaptive illumination mapping (AIM)
module, which learns to project the linear raw images into
sRGB images of different intensity ranges (Figure 1(e,f)). A
shadow detection module then detects shadows by model-
ing multi-scale contrast information derived from the AIM.
We propose a feedback mechanism to guide the AIM dur-
ing training to render sRGB images of different illumina-
tion in a shadow-aware manner, which maximizes the dis-
crepancies between shadow and non-shadow regions and fa-
cilitates shadow detection performance. As shown in Fig-
ure 1(g), our method detects the shadow regions more accu-
rately compared to existing methods.

This work has the following three main contributions:

• We propose a novel method to detect shadows from
raw images, which, unlike previous methods, is able
to model multi-scale shadow/non-shadow contrast in-
formation derived from the linear raw data for robust
shadow detection.

• We propose a novel network with two novelties: (1) a
novel AIM to produce images of different scales of in-
tensity ranges; and (2) a feedback mechanism to guide
the AIM to generate multi-scale contrast information
in a shadow-aware manner.

• We construct the first SARA dataset with 7019 raw im-
ages and their corresponding shadow masks, to facili-
tate the learning process.

Extensive experiments show that the proposed method per-
forms favorably against state-of-the-art methods.

2. Shadow Detection Methods
Conventional shadow detection methods typically design

physical-based shadow models [5, 4] and leverage classi-
cal machine learning techniques to classify shadow pix-
els [14, 37, 7]. These methods hand-craft low-level features
(e.g., intensity [7, 37, 11, 30], edge [5, 14, 37, 11], chro-
macity [5, 4, 14, 7, 30], and texture [37, 7, 30]) to represent
the shadows, which may fail in complex real-world scenes.

Deep learning has advanced shadow detection perfor-
mance significantly due to its capability of learning shadow
representations from a large number of images. Existing
methods typically design different network architectures to
model global and local contrast information for shadow de-
tection. Nguyen et al. [21] mine shadow features by for-
mulating the shadow detection in the generative adversarial
manner [19]. Wang et al. [32] propose a stacked conditional
GAN [19] network to learn shadow detection and removal
jointly. Hu et al. [10, 9] propose a direction-aware attention
mechanism to aggregate spatial information in a local-to-
global way. Zhu et al. [38] propose the bidirectional fea-
ture pyramid network that fuses features of every two adja-
cent layers to obtain local and global contrast information.
Zheng et al. [35] propose a distraction-aware method to im-
prove the shadow detection performance by learning to pre-
dict false positive and true negative areas. Chen et al. [2]
propose a multi-task learning method to exploit shadow
counts and edge, and formulate a semi-supervised method
to exploit additional unlabeled images. Zhu et al. [39] show
that previous deep methods are biased to the intensity con-
trasts and propose a feature decomposition and reweighting
mechanism to learn robust shadow representations by re-
adjusting the importance of shadow cues.

All these methods detect shadows from sRGB images.
In this paper, we propose the first method to detect shadows
from raw images with a new dataset, by learning a many-
to-many mapping to model multi-scale contrast information
for detecting shadows.

3. SARA Dataset
We propose the first ShAdow RAw (SARA) dataset with

7019 raw images and corresponding shadow masks for
training and evaluation. The raw images are split into 6143
images for training and 876 images for test. Figure 2 show
some examples of our dataset.
Diversity. We consider diverse scenes with different fore-
ground objects casting shadows and background objects
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Figure 2. Examples of our dataset.

Figure 3. Object categories distribution of our dataset.

that shadows are projected to. To cast shadows of diverse
shapes, we consider 17 categories including humans, ani-
mals and a variety of objects such as umbrellas, toys, and
trees. We consider 11 different background scenes, includ-
ing flat (e.g., roads, sports fields and flat walls) and non-
planar background surfaces (e.g., grass fields, stairs and
trees). Figure 3 summarizes the object categories of our
dataset.
Imaging Setting. To avoid introducing additional noise into
the capturing, we take the following measures: (1) We use
a heavy-duty tripod (8 kg) to ensure the camera stability
and avoid possible camera shakes. (2) To reduce the slight
displacement of the camera caused by pressing the shutter,
we trigger the camera shutter button using a mobile phone
in remote. (3) To maintain the exposure consistency when
taking images, we use the full manual shooting mode of the
camera (canceling the automatic metering, focusing, expo-
sure compensation and white balance) and manually adjust
the aperture and shutter speed. (4) In order to reduce noise,
we use the low ISO (100).

If the foreground object is portable, we take one shadow
image and one shadow-free image (by removing the ob-
ject(s) that casts shadow). For scenes with unportable shad-
owing objects, we only take the shadow image.

Figure 4. Shadow area proportions of different datasets.

Label Generation. For scenes with both shadow and
shadow-free images, we first compute and binarize the dif-
ference maps between the shadow and shadow-free image
pairs, to obtain the initial shadow masks. We then ask two
groups of volunteers, one group for refining the labels and
the other group for checking the accuracies. For scenes with
shadow images only, their shadow masks are directly la-
beled via one group of volunteers and checked by the other
group.
Dataset Statistics. We analyse three kinds of statistical in-
formation for a better understanding of our dataset.

Figure 5. Shadow contrast distributions of different datasets.

1) Shadow Area Proportion. We compute the propor-
tions of shadow pixels to the whole image. Figure 4 shows
the line plot of shadow area ratios in our dataset, ISTD [32],
SBU [29], and UCF [37], from which we can see that our
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(a) SBU [29] (b) UCF [37] (c) ISTD [32] (d) Ours
Figure 6. Shadow location distribution of different datasets.

dataset contains more shadows of small and medium areas.
2) Shadow Contrast Distribution. We compute the X 2

distance of the color histograms between shadow areas and
non-shadow areas. Figure 5 plots the shadow contrast dis-
tributions of our dataset and existing datasets, from which
we can see that our dataset tends to have less shadows with
high contrasts, indicating that our dataset is more challeng-
ing.

3) Shadow Location Distribution. We also study the spa-
tial locations distribution of shadows in Figure 6. We can
see that while shadows in SBU [29] and UCF [37] tend to
concentrate on the bottom of images, those in ISTD [32] are
more cluttered in the center of images. In contrast, shadows
in our dataset occupy the images in a mroe smooth and even
manner.

4. Proposed Method
We propose to detect shadows in the raw domain due to

its two main advantages against the camera-finishing sRGB
images. First, raw images are high dynamic ranges that pre-
serve more information than low dynamic range sRGB im-
ages. Second, the intensities of raw images are linearly pro-
portional to the scene radiance, which can be manipulated
to produce sRGB images of different intensity ranges.

To this end, we propose a novel neural approach as
shown in Figure 7. Our network consists of a novel shadow-
aware adaptive illumination mapping (AIM) module and a
simple and effective shadow detector. The AIM module
takes a demosaiced 4-channel raw image Ir as the input and
predicts two intermediate sRGB images (Is1 and Is2) with
different intensity ranges. The detector then predicts the
single-channel shadow map Sm by exploiting multi-scale
contrast information from the intermediate sRGB images.
We also exploit a feedback mechanism to guide the AIM
to generate multi-scale contrast information in a shadow-
aware manner.
Adaptive Illumination Mapping Module. The intensity
of the raw image is linearly proportional to the scene ra-
diance. While the dynamic range of the raw image is high,
which preserves more scene information than the sRGB im-
age, the contrast is lower. We propose the adaptive illumina-
tion mapping (AIM) module to project the raw images into
sRGB images to enhance the contrast. Unlike previous tone
mapping algorithms [20, 25, 31, 26, 28, 3, 6, 23] that sac-
rifice the global contrast for more local contrast, our AIM

module is able to predict a wider range of contrast by learn-
ing to predict sRGB images of different intensity ranges.

Specifically, we build the AIM module with an encoder-
decoder architecture and adopt VGG-16 [27] as the encoder
to generate a compact latent representation from the demo-
saiced 4-channel raw image Ir. We then assign two de-
coders of identical structures with skip links to decode the
latent representation into a pair of sRGB images. In the last
decoder layer, we first expand the summation of Ir and the
frontal decoder feature to 64 channels and then shrink it to 3
channels for sRGB prediction by applying pixel-wise con-
volution layers. To diversify the illumination, we propose
the following loss term to enhance and constrain the output
images as:

Lt
aim =

2∑
i=1

L1(I
t
si−Isrgb)+λ

2∑
i=1

L1(M
τ
i I

t
si−Mτ

i Isrgb),

(1)
where t represents the situation before and after the feed-
back mechanism. Isrgb is the sRGB image that corresponds
to the raw image Ir in our dataset, λ is the balancing hyper-
parameter. The first term is the L1 loss between the individ-
ual contrast-enhanced image Itsi and the sRGB image, aim-
ing to guide the module to perform the lumination mapping
process. The second term is utilized to enhance their diver-
sities by emphasizing the loss on different intensity levels
of images, respectively. We use Mτ

i to indicate the different
intensity levels on images, as it is a soft binary mask gen-
erated by a learnable threshold τ on the luminance space Y
of the image, as:

Mτ
1 = Sig(β(Y − τ)), (2)

Mτ
2 = 1−Mτ

1 , (3)

where Sig is the sigmoid function. And β is an amplifica-
tion factor. Mτ

2 is the reverse mask of Mτ
1 , which separate

the intensity level. Guided by Laim, AIM brings sRGB im-
ages of different intensity ranges. We visualize Mτ

1 , I1s1,
Mτ

2 , I1s2 and the intensity histograms of I1s1 and I1s2, re-
spectively in Figure 8.
Shadow Detection Module. Unlike previous shadow de-
tection methods, our shadow detection module aims to ex-
ploits the high dynamic range and wide color gamut, and the
multi-scale contrasts of different intensity ranges, images
derived from the raw images. To this end, we concatenate
the demosaiced raw image Ir and the contrast-enhanced
sRGB images I1s1 and I1s2 to form a 10-channel input to our
shadow detection module. Our shadow detection module
also adopts the encoder-decoder architecture that first trans-
forms the input into a compact latent representation, then
decodes it into a two-channel feature, which is then splited
into initial shadow mask S1

m and a shadow error map Se

inspired by [12].
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Laim

Adaptive Illumination Mapping Module

Shadow Detection Module

Feedback Mechanism

Yτ 

Ld
̶ 

Se

+

+ C Concatenation

̶ Element-wise subtraction

× Element-wise multiplication

+ Element-wise summationSr

Lsdm

Lem

Lsdm

Lem

Figure 7. Overview of the proposed method. Given a demosaiced 4-channel raw image, we first feed it to our AIM module to produce two
sRGB images (Is1, Is2) of different intensity ranges. They are then concatenated with raw image and are fed into the shadow detection
module to detect shadows. A feedback mechanism is proposed to train the AIM module to be shadow-aware, with a diversity loss to avoid
Is1, Is2 being identical.

(a) Mτ
1 (b) I1s1 (c) intensity histogram of I1s1

(d) Mτ
2 (e) I1s2 (f) intensity histogram of I1s2

Figure 8. Visualization of Mτ
1 (a), I1s1 (b), Mτ

2 (d), and I1s2 (e)
of Eq.1. (c) and (f) are the intensity histograms of (b) and (e),
respectively. It shows that the AIM module learns to project the
raw image into sRGB images of different intensity distributions.

The combination of the initially predicted mask and error
map is used to guide the AIM module to perform shadow-
aware illumination mapping process, which results in an-
other pair of sRGB images I2s1 and I2s2 that maximize the
discrepancies between the shadow and non-shadow regions.
These images are then fed into the shadow detection module
to produce the final shadow mask S2

m.
Feedback Mechanism. The feedback mechanism aims
to leverage the initial shadow detection map S1

m and the
shadow error map Se to guide the AIM module to maximize

the contrast information between shadow and non-shadow
regions.To this end, we first subtract the initial shadow de-
tection map S1

m with the shadow error map Se, to obtain
a more robust shadow map Sr. And the feedback mecha-
nism can be formulated as follows: (1) We first count the
numbers of shadow and non-shadow pixels in Sr via:

Ns = Avgpool(Sr)×H ×W, (4)
Nns = Avgpool(1− Sr)×H ×W, (5)

where Ns, Nns, H and W indicate the numbers of shadow
and non-shadow pixels, height and width of the shadow
map, respectively. Avgpool is global average pooling.

(2) We then extract the features inside and outside the
shadow regions for two illumination mapping decoders, re-
spectively, by multiplying the Sr with the features of the last
layer of the decoder. (3) For each pair of illumination map-
ping features inside/outside the shadow regions, we com-
pute two compact representations Vs and Vns as:

Vs =
Avgpool(f × Sr)×H ×W

Ns
, (6)

Vns =
Avgpool(f × (1− Sr))×H ×W

Nns
, (7)

where f represents the 4th layer’s features from one illumi-
nation mapping decoder.

(4) Given the two compact representations of shadow
and non-shadow regions, we propose to use the following
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(a) Irgb (b) I1s1 (c) I1s2 (d) I2s1 (e) I2s2
Figure 9. Results of our adaptive illumination mapping module
before (the second and third s) and after (the fourth and fifth
columns) the feedback mechanism.

loss term to maximize their discrepancies in the feature do-
main as:

Ld =

3∑
j=1

Mean(Abs(V j
s + V j

ns)). (8)

To supervise the learning of shadow predictions and er-
ror maps, we first compute the ground truth error map Sgt

e

by subtracting the initial shadow detection map S1
m with the

ground truth shadow map Sgt
m . We then compute the L2 loss

between Se and Sgt
e . To synthesize the local structure infor-

mation, We supervise the learning of our shadow detection
module via Lsdm which is the sum of weighted balanced
binary cross entropy loss and weighted IoU loss [34].

Figure 9 show the results of our AIM module before (the
second and third columns) and after (the fourth and fifth
columns) the feedback mechanism. We can see that the
each group (each columns) has the diversity, and the con-
trasts between shadow and non-shadow regions are effec-
tively enhanced by the feedback mechanism.
Inference. The inference process of our model can be de-
scribed as: Given a demosaiced raw image Ir as input, the
AIM predicts a pair of sRGB images I1s1 and I1s2 with dif-
ferent intensity ranges. These sRGB images and Ir are con-
catenated together and fed into the shadow detection mod-
ule to obtain an initial shadow map S1

m and a shadow er-
ror map Se. S1

m and Se are used to predict a more robust
shadow map Sr to guide the AIM to produce another pair
of sRGB images I2s1 and I2s2. They are concatenated with Ir
as the input of the shadow detection module to produce the
final shadow detection map S2

m. The whole inference takes
around 0.03s on one GTX 3090 GPU when processing a
raw image of 400× 400 resolution.

5. Experiments
Implementation Details. The proposed model is imple-
mented on the Pytorch framework [24], and tested on a PC
with an i7 4GHz CPU and a GTX 3090 GPU. The shadow

Table 1. Quantitative comparison of our method with the state-of-
the-art methods on the proposed dataset. We report the error rates
for shadow region and non-shadow region as well as the balanced
error rate (BER). The best and second best results are marked in
bold and underlined. Method* indicates that the method is trained
using raw images.

Methods Year Evaluation Metrics
BER↓ Shadow↓ Non-shadow↓

ST-CGAN [32] 2018 10.93 13.75 8.11
DSC [10] 2018 10.35 14.23 6.46

ADNet [15] 2018 7.58 10.33 4.83
BDRAR [38] 2018 3.91 4.07 3.76

BDRAR* [38] 2018 4.34 2.82 5.87
SID [1] 2018 7.71 8.83 6.59
SID* [1] 2018 8.9 12.15 5.65
DSD [35] 2019 5.63 4.20 7.07
ITSD [36] 2020 3.85 6.12 1.59
MTMT [2] 2020 3.65 4.36 2.95
MTMT* [2] 2020 4.79 6.61 2.94
FDRNet [39] 2021 7.55 9.14 5.97

FDRNet* [39] 2021 5.46 8.31 2.61
SAMNet [16] 2021 9.13 16.93 1.34

LGSL [18] 2021 14.59 27.97 1.22
Ours - 2.97 4.77 1.16

Ours* - 2.61 3.74 1.47

detection module uses the ConvNeXt [17] as the backbone.
As we train our model, the input images are resized to a
resolution of 400 × 400. The network parameters are ini-
tialized randomly. In addition to the standard augmentation
strategies, i.e., cropping and flipping, we use multi-scale
training to make the image fluctuates between image size
0.75 and 1.5. Batch size is set to 4. For loss minimization,
we first train our network without feedback mechanism for
25 epochs. It adopts the ADAM optimizer [13]. Both AIM
and SDM use an initial learning rate of 1e−4 and AIM di-
vided by 10 for every 10 epochs. SDM divided by 10 at
the 20th epoch. We then train our network with feedback
mechanism for another 25 epochs. The λ in Eq. 1 is set to
10 in our experiment.
Evaluation Methods, Dataset and Metric. We compare
our method to 11 state-of-the-art deep methods, including
7 shadow detection methods: ST-CGAN [32], DSC [10],
BDRAR [38], ADNet [15], DSD [35], MTMT [2], FDR-
Net [39]; 3 salient object detection methods: SAMNet [16],
LGSL [18], ITSD [36]; and 1 raw image tone mapping and
denoising method: SID [1]. We evaluate our method on
the proposed dataset, which contains both raw image-mask
and sRGB image-mask pairs (5718 pairs respectively). Fol-
lowing previous shadow detection methods, we adopt the
Balanced Error Rate (BER) as the evaluation metric:

BER = (1− 1

2
(

TP

TP + FN
+

TN

TN + FP
))× 100, (9)

where FN, FP, TN and TP indicates the numbers of false
negative, false positive, true negative and true positive
shadow pixels, respectively.
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Table 2. Quantitative comparison between ours and the state-of-the-art methods on three sRGB image-based shadow detection datasets.
For each dataset, we list the error rates for shadow region and non-shadow region, and the balanced error rate (BER). The best results are
marked in bold. (*) MTMT is trained with extra unlabelled data; (**) DSD is trained with extra supervision from other models.

SBU [29] UCF [37] ISTD [32]
Methods Year BER↓ Shadow↓ Non Shad.↓ BER↓ Shadow↓ Non Shad.↓ BER↓ Shadow↓ Non Shad.↓

Unary-Pariwise [7] 2011 25.03 36.26 13.80 - - - - - -
stacked-CNN [29] 2016 11.00 8.84 12.76 13.00 8.84 12.76 8.60 7.69 9.23

scGAN [22] 2017 9.10 8.39 9.69 11.50 7.74 15.30 4.70 3.22 6.18
patched-CNN [8] 2018 11.56 15.60 7.52 - - - - - -
ST-CGAN [32] 2018 8.14 3.75 12.53 11.23 4.94 17.52 3.85 2.14 5.55

DSC [10] 2018 5.59 9.76 1.42 10.54 18.08 3.00 3.42 3.85 3.00
BDRAR [38] 2018 3.64 3.40 3.89 7.81 9.69 5.44 2.69 0.50 4.87
ADNet [15] 2018 5.37 4.45 6.30 9.25 8.37 10.14 - - -

DC-DSPF [33] 2019 4.90 4.70 5.10 7.90 6.50 9.30 - - -
DSD** [35] 2019 3.45 3.33 3.58 7.59 9.74 5.44 2.17 1.36 2.98
MTMT* [2] 2020 3.15 3.73 2.57 7.47 10.31 4.63 1.72 1.36 2.08
FDRNet [39] 2021 3.04 2.91 3.18 7.28 8.31 6.26 1.55 1.22 1.88

Ours - 2.87 3.64 2.10 7.01 9.43 4.61 1.18 1.05 1.31

(a) Input Image (b) ADNet [15] (c) BDRAR [38] (d) DSD [35] (e) FDR [39] (f) MTMT [2] (h) ITSD [36] (i) Ours (j) GT

Figure 10. Qualitative comparison of the proposed method with the most recent state-of-the-art methods on our dataset.

5.1. Comparing to the State-of-the-arts

Quantitative Comparisons. We conducted our experi-
ments on our dataset, as well as three existing sRGB image-
based datasets, i.e., SBU [29], UCF [37] and ISTD [32].
Table 1 reports the quantitative comparisons between our
method and 11 existing methods. We first demonstrate the
effectiveness of detecting shadows in raw images against
that in the sRGB images. We train two versions of proposed
model, i.e., one using the sRGB images and the other one
using raw images, denoted as Ours and Ours* (last two rows
in Table 1). We can see that our raw model outperforms our

sRGB model with a notable advantage in the shadow re-
gions (3.74 v.s. 4.77). Our sRGB model performs slightly
better than our raw model in non-shadow regions (1.16 v.s.
1.47) as the sRGB images are better in preserving contrast
information in the regions of medium intensities (i.e., not
too dark or too bright) than raw images. Nonetheless, our
raw model achieves a higher shadow detection performance
in terms of the overall BER score (2.61 v.s. 2.97), which
verifies the effectiveness of using raw images in our method.

Third, we note that not all models are suitable for using
raw images to detect shadows. While BDRAR [38] would
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(a) Input Image (b) DSC [10] (c) ADNet [15] (d) BDRAR [38] (e) DSD [35] (f) FDR [39] (g) MTMT [2] (i) Ours (j) GT

Figure 11. Qualitative comparison of the proposed method with the most recent state-of-the-art methods on sRBG image-based shadow
detection dataset.

also enjoy the benefits of using raw images (comparing the
4th and 5th rows), the detection performance of MTMT [2]
using raw images is worse than that of using sRGB images.
We note that the key reason to the success of MTMT [2] is to
incorporate additional unlabeled shadow images in a semi-
supervised manner. This explains the performance drop as
our dataset does not contain additional unlabelled data for
performing the semi-supervised learning.

Last, we can see that one state-of-the-art salient object
detection method LGSL [18] (the last third row) can per-
forms quite good in the non-shadow regions (1.22) but sur-
prisingly worse in the shadow regions (14.59). We hypoth-
esize that since salient object detection methods are de-
signed to detect visually distinctive objects, they tend to
favor objects/regions of medium intensities where most col-
ors/textures exist. A similar phenomenon can be seen in the
last fourth row, where the SAMNet [16] behaves very sim-
ilar to the LGSL [18]. This shows that shadow detection
task is fundamentally different from the salient object de-
tection, and directly training salient object detection models
for shadow detection cannot address the shadow detection
problem. Similarly, directly applying the classic raw im-
age processing method SID [1] is also not an ideal solution
(see the sixth row). These comparisons generally verify the
effectiveness of our model design. Table 2 shows the quan-
titative results on the three sRGB-based benchmarks. We
can see that our method achieves the best BER scores over

Table 3. Ablation studies on the proposed adaptive illumination
mapping module (AIM), feedback mechanism (FM), the uses of
Ld and error map (EM). We report the overall BER scores on our
test set of raw images.

AIM FM Ld EM BER↓

SDM × × × × 3.19
SDM+AIM ✓ × × × 2.92

SDM+AIM+FM ✓ ✓ × × 2.86
SDM+AIM+FM ✓ ✓ ✓ × 2.70

Ours ✓ ✓ ✓ ✓ 2.61

all state-of-the-art methods, on the three datasets. Com-
pared to the second best-performing method, FDRNet [39],
our method reduces the BER scores by 5.59%, 3.71%, and
23.8%, respectively. This demonstrates the effectiveness of
our proposed method on sRGB images.
Visual Comparisons. Figure 10 shows some challeng-
ing scenes in that shadows have low contrasts to the non-
shadow regions. We can see that our method has clear
visual advantages over existing shadow detection methods
on challenging scenes, e.g., the scene where shadows with
complex shapes projected onto a non-flat wall corner in
a dark scene (second row). While these scenes are typi-
cally challenging for existing methods, our method can de-
tect the shadow regions correctly. These visual compar-
isons generally verify our idea of detecting shadows from
raw images. In Figure 11, we provide visual comparison

12716



Table 4. Ablation studies on the proposed adaptive illumination
mapping module (AIM), feedback mechanism (FM), the uses of
Ld and error map (EM). We report the overall BER scores on the
test set of SBU [29] dataset.

AIM FM Ld EM BER↓

SDM × × × × 3.39
SDM+AIM ✓ × × × 3.01

SDM+AIM+FM ✓ ✓ × × 3.00
SDM+AIM+FM ✓ ✓ ✓ × 2.89

Ours ✓ ✓ ✓ ✓ 2.87

on sRBG image-based datasets, which further demonstrated
our method can be extended to sRBG images.

5.2. Ablation Study

In order to verify our raw model designs, we performs
ablation studies on the proposed adaptive illumination map-
ping module (AIM), feedback mechanism (FM), the use of
Ld and the use of error map (EM). Table 3 reports the per-
formance. We can see that by adding the adaptive illumi-
nation mapping module (AIM) with the shadow detection
module (SDM), BER is reduced by around 8.46% (com-
paring the first two rows). This shows that the sRGB im-
ages of different intensity ranges produced by our adap-
tive illumination mapping module can significantly facili-
tate shadow detection performance. By comparing the 2nd
and 3rd rows, we can see that the use of initial shadow de-
tection results to guide the adaptive illumination mapping
module further brings 2.05% performance gains. By further
introducing the Ld, the performance continuously grows by
5.59%. These two comparisons verify the design of the
feedback mechanism in guiding the adaptive illumination
mapping module to be shadow-aware. Last, by introducing
the error map, a 3.33% performance gain is obtained. as
the error map helps build robust shadow and non-shadow
regions representations, which further facilitate the shadow
detection process. We also report the ablation results on the
sRGB image-based SBU [29] dataset, in Table 4.

6. Conclusion
In this paper, we have proposed a novel neural approach

to detect shadows from raw images. Our network has
a novel adaptive illumination mapping module to predict
sRGB images of different intensity ranges, and a shadow
detection module to exploit such illumination information
to detect shadows. We have also proposed a novel feedback
mechanism to guide the illumination mapping process in
a shadow-aware manner. To facilitate the learning process,
we have constructed a new dataset with raw images and cor-
responding shadow masks. Extensive experiments demon-
strate that our method outperforms state-of-the-art shadow
detection approaches.
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