
Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution

Long Sun, Jiangxin Dong, Jinhui Tang, and Jinshan Pan*

School of Computer Science and Engineering, Nanjing University of Science and Technology

Abstract

Although deep learning-based solutions have achieved
impressive reconstruction performance in image super-
resolution (SR), these models are generally large, with com-
plex architectures, making them incompatible with low-
power devices with many computational and memory con-
straints. To overcome these challenges, we propose a
spatially-adaptive feature modulation (SAFM) mechanism
for efficient SR design. In detail, the SAFM layer uses inde-
pendent computations to learn multi-scale feature represen-
tations and aggregates these features for dynamic spatial
modulation. As the SAFM prioritizes exploiting non-local
feature dependencies, we further introduce a convolutional
channel mixer (CCM) to encode local contextual informa-
tion and mix channels simultaneously. Extensive experi-
mental results show that the proposed method is 3× smaller
than state-of-the-art efficient SR methods, e.g., IMDN, and
yields comparable performance with much less memory us-
age. Our source codes and pre-trained models are available
at: https://github.com/sunny2109/SAFMN .

1. Introduction
Single image super-resolution (SISR) aims to restore a

high-resolution (HR) image from its low-resolution (LR)
counterpart by recovering lost details. This longstanding
and challenging task has recently attracted much attention
due to the rapid development of streaming media or high-
definition devices. As these scenarios are usually resource-
constrained, it is of great interest to develop an efficient and
effective SR method to estimate HR images for better visual
display on these platforms or products.

Deep learning-based SR methods have achieved signifi-
cant performance improvements with the great evolution of
hardware technologies, as we can use large amounts of data
to train much larger or deeper neural networks for image
SR [32, 53, 31, 5]. For example, RCAN [53] is a repre-
sentative CNN-based image SR network with 15.59M pa-
rameters and reaching a depth of over 400 layers. One of
the most significant drawbacks of these large models is that
they require high computational costs, which makes them

*Corresponding author

50 100 150 200 250 300
FLOPs (G)

37.75

37.80

37.85

37.90

37.95

38.00

PS
N

R
 (d

B
)

CARN

EDSR-baseline
IMDN

ECBSR-M16C64

SMSR

ShuffleMixer

SAFMN
(Ours)

PSNR vs. FLOPs vs. Params

Figure 1. Model complexity and performance comparison be-
tween our proposed SAFMN model and other lightweight methods
on Set5 [4] for ×2 SR. Circle sizes indicate the number of param-
eters. The proposed method achieves a better trade-off between
model complexity and reconstruction performance.

challenging to deploy. Moreover, recent visual transform-
ers (ViTs) [12, 31, 5] outperform convolutional neural net-
works (CNNs) in low-level vision tasks, and their results
demonstrate that exploring non-local feature interactions is
essential for high-quality reconstruction. But existing self-
attention mechanisms are computationally expensive and
unfriendly to efficient SR design. This, therefore, moti-
vates us to develop a lightweight yet effective model for
real-world applications of image super-resolution by inte-
grating the principles of convolution and self-attention.

To reduce the heavy computational burden, vari-
ous methods, including efficient module design [11, 41,
1, 20, 26, 33, 44, 45, 54, 30], knowledge distilla-
tion [16], neural architecture search [7], and structural
re-parameterization [52], are trying to improve the effi-
ciency of SR algorithms. Among these efficient SR mod-
els, one direction is to reduce model parameters or com-
plexity (FLOPs). Lightweight strategies like recursive man-
ner [23, 46], parameter sharing [1], and spare convolu-
tions [1, 45, 30] are adopted. Although these approaches
certainly reduce the model size, they usually compensate
for the performance drop caused by shared recursive mod-
ules or sparse convolutions by increasing the depth or width

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

13190



of the model, which affects the inference efficiency when
performing SR reconstruction.

Another direction is to accelerate the inference time. The
post-upsampling [11, 44] is an important replacement for
the pre-defined input [10, 24], which significantly speeds
up the runtime. Model quantization [21] effectively ac-
celerates latency and reduces energy consumption, particu-
larly when deploying algorithms in edge-devices. Structural
re-parameterization [52, 8] improves the speed of a well-
trained model in the inference stage. These methods en-
joy fast running time but poor reconstruction performance.
Consequently, there is still room for a better trade-off be-
tween model efficiency and reconstruction performance.

To address the above-mentioned issues, we design a sim-
ple yet effective model by developing a spatially-adaptive
feature modulation, namely SAFMN, to realize a favorable
trade-off between performance and efficiency. Specifically,
we first exploit non-local feature relations to dynamically
select representative features (see Figure 2 and 5) by imple-
menting a feature modulation mechanism based on multi-
scale representations. As the modulation mechanism pro-
cesses input features from a non-local perspective, there is
a requirement to complement local contextual information.
To this end, we present a convolutional channel mixer based
on the FMBConv [47] to encode local features and mix
channels. Taken together, we find that the SAFMN network
is able to achieve a better trade-off between SR performance
and model complexity, as shown in Figure 1.

The main contributions of this paper are summarized as
follows:

• We develop an efficient feature modulation mechanism
to learn feature dependencies, which absorbs CNN-
like efficiency and transformer-like adaptability.

• We present a compact convolutional channel mixer
that simultaneously encodes local contextual informa-
tion and performs channel mixing.

• We evaluate the proposed method quantitatively and
qualitatively on benchmark datasets, and the results
show that our SAFMN achieves a favorable trade-off
between accuracy and model complexity.

2. Related Work
Deep Learning-based Image Super-Resolution. Classi-
cal interpolation algorithms, such as linear or bicubic up-
sampling, create high-resolution images by inserting zeros
between adjacent pixels in the low resolution and then us-
ing a low-pass filter to preserve the content information of
the input image [41]. Unlike these interpolation-based up-
samplers, deep learning-based approaches learn a nonlinear
mapping between the input image and the target output in an
end-to-end training fashion. SRCNN [10] is the first attempt

3.2180 5.1936 4.0629 10.4295

L
A

M
 

DI

(a) (b) (c) (d) (e)

Figure 2. Comparison of local attribution maps (LAMs) [13]
and diffusion indices (DIs) [13] between our SAFMN and other
efficient SR models. (a) is the LR input, (b)-(e) are the results of
CARN [1], EDSR-baseline [32], PAN [54] and SAFMN, respec-
tively. The LAM results denote the importance of each pixel in the
input LR image when super-resolving the patch marked with a red
box. The DI value reflects the range of involved pixels. A larger
DI value means a wider range of attention. The proposed method
can exploit more feature information.

to use a convolutional neural network to tackle the image
SR problem and achieves a considerable performance gain
compared with conventional methods. Since then, many im-
provements have been proposed. VDSR [24] uses global
residual learning [15] to solve the problem of difficulty in
training an SR model with deep layers. DRRN [46] inte-
grates the local residual learning and global residual con-
nection to ease the training difficulty and enhance high-
frequency details. EDSR [32] further increases the model
footprint to 43M, achieving a significant breakthrough in re-
construction performance and showing that the BatchNorm
(BN) [22] layer is not necessary for the SR task. RCAN [53]
builds a more than 400 layers model based on channel at-
tention and dense connections for accurate SR. NLSA [40]
utilizes a non-local sparse attention to enhance the fea-
ture modeling capability and reaches state-of-the-art perfor-
mance. With the successful application of ViT in various
high-level vision tasks, image SR also follows this ViT [12]
framework, achieving higher reconstruction performance
than CNN-based models on extensive public benchmarks.
For instance, SwinIR [31] acts as a strong baseline for im-
age restoration tasks based on the Swin Transformer [34].
While these approaches achieve impressive reconstruction
performance, the required high computational costs make
them challenging to deploy in real-world applications on
resource-constrained devices.
Efficient Image Super-Resolution. To improve the model
efficiency, many CNN-based SR works try to alleviate this
issue. FSRCNN [11] and ESPCN [44] utilize a post-
upsampling manner to reduce the computational burden
from the pre-defined inputs significantly. CARN [1] uses
group convolutions and a cascading mechanism upon resid-
ual networks to improve efficiency. IMDN [20] adopts
feature splitting and concatenation operations to progres-
sively aggregate features, and its improved variants [33, 26]
won the AIM2020 and NTIRE2022 Efficient SR challenge.
ShuffleMixer [45] introduces a large kernel convolution for
lightweight SR design. BSRN [30] employs blueprint-
separable convolutions to reduce model complexity. Mean-

13191



C
o

n
v

 3
×

3

… …

U
p

sa
m

p
le

r

F
ea

tu
re

 M
ix

in
g

 M
o

d
u

le

F
ea

tu
re

 M
ix

in
g

 M
o

d
u

le

Feature Mixing Module

L
a

y
er

N
o

rm

S
A

F
M

L
a

y
er

N
o

rm

C
C

M

Figure 3. An overview of the proposed SAFMN. SAFMN first transforms the input LR image into the feature space using a convolutional
layer, performs feature extraction using a series of feature mixing modules (FMMs), and then reconstructs these extracted features by an
upsampler module. The FMM block is implemented by a spatially-adaptive feature modulation (SAFM) layer, a convolutional channel
mixer (CCM) and two skip-connections.

while, an increasingly popular direction is to compress or
accelerate a well-trained deep model through model quan-
tization [21], structural re-parameterization [52] or knowl-
edge distillation [16]. Neural architecture search (NAS)
is also commonly used to search a well-constrained archi-
tecture for image super-resolution [7]. Note that the effi-
ciency of a deep neural network could be measured in dif-
ferent metrics, including the number of parameters, FLOPs,
activations, memory consumption and inference running
time [29]. Although the above approaches have been im-
proved in different efficiency aspects, there is still room for
a favorable trade-off between reconstruction performance
and model efficiency.

3. Proposed Method

In this section, we present the core components of our
proposed model for efficient SISR. As shown in Figure 3,
the network consists of the following parts: a shallow con-
volution, a stacking of feature mixing modules (FMMs),
and an upsampler layer. Specifically, we first apply a 3× 3
convolution layer to transform the input LR image to feature
space and generate the shallow feature F0. Then, the multi-
ple stacked FMMs are used to generate finer deep features
from F0 for HR image reconstruction, where an FMM layer
has a spatially-adaptive feature modulation (SAFM) layer
and a convolutional channel mixer (CCM). To recover the
HR target image, we introduce a global residual connection
to learn high-frequency details and employ a lightweight
upsampling layer for fast reconstruction, which only con-
tains a 3×3 convolution and a pixel-shuffle layer [44].

3.1. Spatially-adaptive Feature Modulation

Recent studies [9, 35, 14, 39, 31] suggest that the no-
table performance of ViTs across diverse tasks stems from
their implementation of the key multi-head self-attention
(MHSA) mechanism. This mechanism enables the model
with the capability of long-range feature interaction and dy-
namic spatial weighting, both of which contribute to pro-

MFGU3

MFGU2

MFGU1

X3

X2

X1

Conv 1×1

MFGU0X0

X

S C

X ·

1X̂

2X̂

3X̂

·Element-wise Product GELU Activation S Channel Split C Concatenate

0X̂

Figure 4. Network architecture of the proposed SAFM module.
This module performs spatially-adaptive modulation on the input
features. Please see the Section 3.1 for more details.

ducing promising results. But existing self-attention vari-
ants are computationally expensive and unfriendly to effi-
cient SR design. In contrast, standard convolution is an ef-
ficient operation, but its performance is limited by the static
weights and locality. This observation inspires us to borrow
the idea of MHSA to enhance the representation capability
of convolution.

To introduce the ability of long-range interaction and dy-
namic modeling into convolution, we follow the multi-head
paradigm, using parallel and independent computations that
allow each head to process different scale information of
the input, and then aggregate these features to generate an
attention map for spatially-adaptive feature modulation.

The detailed architecture of our propoed SAFM is de-
picted in Figure 4. Specifically, we first split the normalized
input features into four-group components, and feed them
into a multi-scale feature generation unit (MFGU), where a
3 × 3 depth-wise convolution processes the first one, and
the rest parts are sampled individually by pooling opera-
tions. As we desire to select discriminative features towards
learning non-local feature interactions, adaptive max pool-
ing operators are applied over the input features to gather
information. Given the input feature X , this procedure can
be formulated as:

[X0, X1, X2, X3] = Split(X),

X̂0 = DW-Conv3×3(X0),

X̂i =↑p (DW-Conv3×3(↓ p

2i
(Xi))), 1 ≤ i ≤ 3,

(1)

13192



where Split(·) corresponds to the channel split operation,
DW-Conv3×3(·) is a 3 × 3 depth-wise convolution, ↑p (·)
represents upsampling features at a specific level to the orig-
inal resolution p via nearest interpolation for fast implemen-
tation, and ↓ p

2i
denotes pooling the input features to the size

of p
2i . Figure 5(b)-(e) show that using such a design, we can

obtain varying features from different representation sub-
spaces.

Afterward, we aggregate these extracted short- or long-
range features by concatenating them on the channel dimen-
sion and performing a 1 × 1 convolution. It can be formu-
lated as:

X̂ = Conv1×1

(
Concat([X̂0, X̂1, X̂2, X̂3])

)
, (2)

where Concat(·) denotes the concatenation operation, and
Conv1×1(·) is the 1×1 convolution. After obtaining the ag-
gregated representation X̂ (see Figure 5(f)), we normalize it
through a GELU non-linearity [17] to estimate the attention
map and adaptively modulate the input X according to the
estimated attention via element-wise product. This process
can be written as:

X̄ = ϕ(X̂)⊙X, (3)

where ϕ(·) represents the GELU function and ⊙ is the
element-wise product. The benefits of those operators are
compared and results are shown in Table 3.

3.2. Feature Mixing Module

As mentioned previously, the SAFM module prioritizes
exploiting non-local feature interactions. To further incor-
porate local contextual information and perform channel
mixing simultaneously, we introduce a compact convolu-
tional channel mixer (CCM) based on the FMBConv [47].
The CCM comprises a 3×3 convolution and a 1×1 convo-
lution. Within this, the first 3 × 3 convolution encodes the
spatially local contexts and doubles the number of channels
of the input features for mixing channels; the later 1 × 1
convolution reduces the channels back to the original input
dimension. A GELU [17] function is applied to the hidden
layer for non-linear mapping.

We formulate the proposed SAFM and CCM into a uni-
fied feature mixing module (FMM) to select representative
features. The FMM can be written as:

Y = SAFM(LN(X)) +X,

Z = CCM(LN(Y )) + Y,
(4)

where LN(·) is the LayerNorm [3] layer, X , Y , and Z are
the intermediate features. The additional residual learn-
ing is employed to stabilize training processes and learn
high frequency details to facilitate high-quality image re-
construction.

(b) Scale 1

(e) Scale 8

(c) Scale 2

(f) Aggregated

(d) Scale 4

(g) Attended(a) LR input

Figure 5. Illustration of learned deep features from the SAFM
module. (a) is the LR input. (b)-(e) are features learned by the
multi-scale feature generation unit. (f) is the results of aggregating
features (b)-(e). (g) denotes the attended output of the SAFM.

4. Experimental Results
In this section, we perform quantitative and qualitative

evaluations with state-of-the-art algorithms to demonstrate
the effectiveness of the proposed method.

4.1. Dataset and Implementation

Datasets. Following previous works [28, 31, 45], we use
DIV2K [48] and Flickr2K [32] as the training data and gen-
erate LR images by applying the bicubic downscaling to
reference HR images. We use five commonly used bench-
mark datasets inluding Set5 [4], Set14 [51], B100 [2], Ur-
ban100 [19] and Manga109 [38] as test data. We use the
peak signal to noise ratio (PSNR) and the structural simi-
larity index (SSIM) to evaluate the quality of the restored
images. All PSNR and SSIM values are calculated on the Y
channel of images transformed to YCbCr color space.
Implementation details. During the training, the data ar-
gumentation is performed on the input patches with random
horizontal flips and rotations. In addition, we randomly
crop 64 patches of size 64 × 64 pixels from LR images as
the basic training inputs. The number of FMM and fea-
ture channels is set to 8 and 36, respectively. We use the
Adam [25] optimizer with β1 = 0.9 and β2 = 0.99 to
solve the proposed model. The number of iterations is set to
500,000. We set the initial learning rate to 1×10−3 and the
minimum one to 1× 10−5, which is updated by the Cosine
Annealing scheme [36]. We use a combination of mean ab-
solute error (MAE) loss and an FFT-based frequency loss
function to constrain the model training, which is the same
as [45]. All experiments are conducted with the PyTorch
framework on an NVIDIA GeForce RTX 3090 GPU. Due
to the page limit, we include more comparison results in the
supplemental material.

4.2. Comparisons with State-of-the-Art Methods

Quantitative comparisons. To evaluate the performance of
the proposed approach, we compare it with state-of-the-art
lightweight SR methods on different scaling factors, includ-
ing SRCNN [10], FSRCNN [11], ESPCN [44], VDSR [24],
LapSRN [27], CARN [1], EDSR-baseline [32], IMDN [20],

13193



Table 1. Comparisons of efficient SR networks on the commonly used benchmark datasets. All PSNR/SSIM results are calculated
on the Y-channel. #Acts represents all elements of the output of convolutional layers. #FLOPs and #Acts are measured corresponding to
an HR image of the size 1280 × 720 pixels. Red color denotes the best performance. Blanked entries indicate results not reported or not
available from previous work.

Methods Scale #Params [K] #FLOPs [G] #Acts [M] Set5 Set14 B100 Urban100 Manga109
Bicubic

×2

- - - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [10] 57 53 89 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.74/0.9661
FSRCNN [11] 12 6 41 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9694
ESPCN [44] 21 5 23 36.83/0.9564 32.40/0.9096 31.29/0.8917 29.48/0.8975 -
VDSR [24] 665 613 1,120 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729
LapSRN [27] 813 30 223 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740
CARN-M [1] 415 91 655 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 -
CARN [1] 1,592 223 522 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 -
EDSR-baseline [32] 1,370 316 563 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272 38.54/0.9769
IMDN [20] 694 159 423 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
PAN [54] 261 71 677 38.00/0.9605 33.59/0.9181 32.18/0.8997 32.01/0.9273 38.70/0.9773
LAPAR-A [28] 548 171 656 38.01/0.9605 33.62/0.9183 32.19/0.8999 32.10/0.9283 38.67/0.9772
ECBSR-M16C64 [52] 596 137 252 37.90/0.9615 33.34/0.9178 32.10/0.9018 31.71/0.9250 -
SMSR [49] 985 132 - 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
ShuffleMixer [45] 394 91 832 38.01/0.9606 33.63/0.9180 32.17/0.8995 31.89/0.9257 38.83/0.9774
SAFMN (Ours) 228 52 299 38.00/0.9605 33.54/0.9177 32.16/0.8995 31.84/0.9256 38.71/0.9771
Bicubic

×3

- - - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [10] 57 53 89 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107
FSRCNN [11] 12 5 19 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080 30.98/0.9212
VDSR [24] 665 613 1,120 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310
CARN-M [1] 415 46 327 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385 -
CARN [1] 1,592 119 268 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 -
EDSR-baseline [32] 1,555 160 285 34.37/0.9270 30.28/0.8417 29.09/0.8052 28.15/0.8527 33.45/0.9439
IMDN [20] 703 72 190 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
PAN [54] 261 39 340 34.40/0.9271 30.36/0.8423 29.11/0.8050 28.11/0.8511 33.61/0.9448
LAPAR-A [28] 594 114 505 34.36/0.9267 30.34/0.8421 29.11/0.8054 28.15/0.8523 33.51/0.9441
SMSR [49] 993 68 - 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
ShuffleMixer [45] 415 43 404 34.40/0.9272 30.37/0.8423 29.12/0.8051 28.08/0.8498 33.69/0.9448
SAFMN (Ours) 233 23 134 34.34/0.9267 30.33/0.8418 29.08/0.8048 27.95/0.8474 33.52/0.9437
Bicubic

×4

- - - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [10] 57 53 89 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
FSRCNN [11] 12 5 11 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517
ESPCN [44] 25 1 6 30.52/0.8697 27.42/0.7606 26.87/0.7216 24.39/0.7241 -
VDSR [24] 665 613 1,120 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809
LapSRN [27] 813 149 264 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845
CARN-M [1] 415 33 227 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 -
CARN [1] 1,592 91 194 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -
EDSR-baseline [32] 1,518 114 202 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
IMDN [20] 715 41 108 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
PAN [54] 272 28 238 32.13/0.8948 28.61/0.7822 27.59/0.7363 26.11/0.7854 30.51/0.9095
LAPAR-A [28] 659 94 452 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
ECBSR-M16C64 [52] 603 35 64 31.92/0.8946 28.34/0.7817 27.48/0.7393 25.81/0.7773 -
SMSR [49] 1006 42 - 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
ShuffleMixer [45] 411 28 269 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9093
SAFMN (Ours) 240 14 77 32.18/0.8948 28.60/0.7813 27.58/0.7359 25.97/0.7809 30.43/0.9063

PAN [54], LAPAR [28], ECBSR [52], SMSR [49], and
ShuffleMixer [45].

The quantitative comparisons on benchmark datasets for
the upscaling factors of ×2, ×3, and ×4 are reported in
Table 1. In addition to PSNR/SSIM metrics, we list the
number of parameters (#Params), FLOPs (#FLOPs) and ac-
tivations (#Acts). We calculate the number of FLOPs and
activations with the fvcore1 library under a setting of super-
resolving an LR image to 1280× 720 pixels. Among these
metrics, #Params and #Acts are linked to memory consump-
tion, and #FLOPs is related to energy usage. In particular,

1We use the fvcore.nn.flop count str command to calculate the number
of parameters, FLOPs and activations.

#Acts is a better metric for measuring the efficiency of a
model than the number of parameters and FLOPs as sug-
gested in recent works [42, 52, 29].

Benefiting from the simple yet efficient structure, the
proposed SAFMN obtains comparable performance with
significantly fewer parameters and memory consumption.
For instance, the ×4 SR results on the B100 dataset reveal
that our SAFMN has parameters about 85% less than the
CARN [1], 66% less than the IMDN [20], and 42% less
than the ShuffleMixer [45]. As for activations, we have
60%, 29% and 71% fewer than them, respectively. While
our model has a smaller footprint, we achieve similar per-
formance among these methods. Moreover, we compare

13194



(a) HR patch (b) Bicubic (c) VDSR [24] (d) ShuffleMixer [45]

img024 from Urban100 (e) LapSRN [27] (f) CARN [1] (g) IMDN [20] (h) SAFMN

(a) HR patch (b) Bicubic (c) VDSR [24] (d) ShuffleMixer [45]

img062 from Urban100 (e) LapSRN [27] (f) CARN [1] (g) IMDN [20] (h) SAFMN

(a) HR patch (b) Bicubic (c) VDSR [24] (d) ShuffleMixer [45]

img098 from Urban100 (e) LapSRN [27] (f) CARN [1] (g) IMDN [20] (h) SAFMN

Figure 6. Visual comparisons for ×3 SR on the Urban100 dataset. The proposed method recovers the image with clearer structures.

the reconstruction accuracy, FLOPs and parameters on the
×2 Set5 dataset in Figure 1. The proposed SAFMN model
achieves a favorable trade-off between model complexity
and reconstruction performance.

Qualitative comparisons. In addition to the quantitative
evaluations, we provide qualitative comparisons of the pro-
posed method. Figure 6 shows the visual comparisons on
the Urban100 dataset for ×3 SR. Our approach generates
parallel straight lines and grid patterns more accurately than
the listed methods. These results also demonstrate the effec-
tiveness of our method for adaptive feature modulation by
exploiting non-local feature interactions.

Memory and running time comparisons. To fully ex-
amine the efficiency of our proposed method, we further
evaluate our method against five representative ones, in-
cluding CARN-M [1], CARN [1], EDSR-baseline [32],
IMDN [20], and LAPAR-A [28] on ×4 SR in terms of

the GPU memory consumption (#GPU Mem.) and running
time (#Avg. Time). The maximum GPU memory consump-
tion is recorded during the inference. The running time is
averaged on 50 test images with a resolution of 320 × 180
pixels. We show the memory and running time compar-
isons in Table 2, our method achieves a clear improvement
over other state-of-the-art methods. By using the spatially-
adaptive feature modulation layer and the compact channel
mixer, the GPU consumption of our SAFMN is only 10%
of the CARN series and 4% of LAPAR-A; the running time
is nearly twice as fast as other evaluated methods, except
for IMDN. Compared to IMDN [20], our method has a sim-
ilar running time speed while significantly reducing mem-
ory usage. Tables 1 and 2 show that the proposed model
achieves a favorable trade-off in terms of inference speed,
model complexity and reconstruction performance against
state-of-the-art methods.

13195



Table 2. Memory and running time comparisons on ×4
SR. #GPU Mem. denotes the maximum GPU memory con-
sumption during the inference phase, derived with the Pytorch
torch.cuda.max memory allocated() function. #Avg. Time is the
average running time on 50 LR images of 320× 180 pixels.

Methods #GPU Mem. [M] #Avg.Time [ms]
CARN-M [1] 680.84 17.85
CARN [1] 689.83 18.90
EDSR-baseline [32] 486.58 19.81
IMDN [20] 203.44 10.22
LAPAR-A [28] 1811.47 24.91
SAFMN 65.26 10.71

5. Analysis and Discussion
We further conduct extensive ablation studies to better

understand and evaluate each component in the proposed
SAFMN. For fair comparisons with the designed base-
lines, we implement all experiments based on ×4 SAFMN
and train them with the same setting. The experimental
results in Table 3 are measured on DIV2K-val [48] and
Manga109 [38] datasets.
Effectiveness of the SAFM. To demonstrate the effect of
the spatially-adaptive feature modulation, we first remove
this module for comparison. Without it, the PSNR values
will drop by 0.17dB (30.26 vs. 30.43) and 0.34dB (30.09
vs. 30.43) on the DIV2K-val and Manga109 datasets, re-
spectively. These results show the importance of the SAFM.
Therefore, we further investigate this module to figure out
why it works.

• Feature modulation. The feature modulation mecha-
nism is introduced to enable the network with adaptive
properties. Without this operation, the baseline model
is lowered by 0.11dB on the Manga109 dataset.

• Multi-scale representation. Here, “w/o MR” in Ta-
ble 3 denotes that we directly use a depth-wise con-
volution with a kernel size of 3 × 3 pixels to extract
spatial information and do not employ multi-scale fea-
tures. A noticeable performance drop of 0.13dB on
the Manga109 dataset is observed without these multi-
scale features. Moreover, we apply the adaptive max
pooling over the input features in this module to build
feature pyramids. Compared to using adaptive average
pooling or nearest interpolation, adaptive max pooling
allows the model to detect discriminative features, re-
sulting in better reconstruction results.

• Feature aggregation. We use a 1 × 1 convolution
to aggregate the multi-scale features on the channel
dimension. Combined with the modulation mecha-
nism, it brings a PSNR improvement of 0.14dB on the
Manga109 dataset, which proves the necessity of ag-
gregating the multi-scale features.

Without all three components mentioned before, it rep-
resents that only a 3 × 3 depth-wise convolution is

used to encode the spatial information and leads to a
PSNR reduction of 0.12dB and 0.2dB on the DIV2K-
val and Manga109 datasets, respectively. This perfor-
mance drop suggests that the spatially-adaptive mod-
ulation based on the multi-scale feature representation
effectively boosts SR reconstruction performance.

• GELU function. Here, we use the GELU [17] func-
tion to normalize the modulation map. Table 3 shows
that better experimental results can be achieved with
GELU than with Sigmoid or without GELU, mainly
because it weights the input features by their percentile
and allows better-activated features.

In addition, we use the local attribution map (LAM) [13]
and diffusion index (DI) [13] to illustrate the feature in-
teraction range. Figure 2 clearly shows that the proposed
model can utilise more feature information than previous
CNN-based efficient SR methods. The more information
used, the better the reconstruction performance in general.

The above analysis shows that benefiting from the multi-
scale feature representation, our proposed SAFM can ef-
fectively exploit non-local feature interactions with small
memory and computational costs.
Effectiveness of the CCM. Compared with the original
FMBConv [47], the main change made by CCM is re-
moving the SE [18] block. As shown in Table 3, using
SE blocks, its performance is almost the same as without
them. This result is mainly caused by the SAFM block al-
lows adaptability in channel and spatial dimensions. Hence,
we do not use the SE blocks for saving parameters. We
next conduct a series of ablations to verify that CCM can
effectively encode local contextual information and per-
form channel mixing. Without it, the model only achieves
the accuracy of 29.69dB and 28.49dB on DIV2K-val and
Manga109 datasets, proving the indispensability and local-
ity modelling ability of this part. We then change CCM to
other channel mixers commonly used in ViT architectures:
channel MLP [12] or inverted residual block [43]. When
the channel MLP is adopted for the channel mixer, there is
a significant performance drop of 0.63dB (29.80 vs. 30.43)
on the Manga109 dataset. This performance reduction re-
sults from a lack of capacity for modeling local contextual
information. For the inverted residual block, the perfor-
mance is highly similar to that of CCM, but the correspond-
ing #Acts is increased by nearly 33M, which means more
memory consumption and slower inference time. Thus, we
use the CCM as the default channel mixer.
Effect of the LayerNorm layer. Since we use the element-
wise product in the SAFM module, it will result in abnor-
mal gradient values and unstable model training, as shown
in Figure 7(a). It is, therefore, necessary to normalize the
input features. Here, we perform normalization with the
LayerNorm [3] layer. To verify this assumption, we first re-
move the LayerNorm layer. Table 3 and Figure 7(a) show

13196



Table 3. Ablation for SAFMN on DIV2K-val and Manga109 datasets. SAFMN with a scaling factor of ×4 is utilized as the baseline
for ablation studies. The PSNR/SSIM values on benchmarks are reported. “A → B” is to replace A with B. “None” means to remove
the operation. “lr” denotes the learning rate. “FBN” is the abbreviation of the Frozen BatchNorm. “L2 normalization” represents that
the inputs are normalized by L2-norm over the channel dimension. “FM”, “MR”, and “FA” are the abbreviations corresponding to feature
modulation, multi-scale representation, and feature aggregation. ∗ indicates that the corresponding results are obtained before the training
collapse. The number of parameters, FLOPs and Acts are calculated in the same way as in Table 1.

Ablation Variant #Params [K] #FLOPs [G] #Acts [M] DIV2K val Manga109
Baseline - 239.52 13.56 76.70 30.43/0.8372 30.43/0.9063

Main module SAFM → None 225.41 12.90 54.61 30.26/0.8330 30.09/0.9018
CCM → None 30.72 1.61 26.93 29.69/0.8193 28.49/0.8756

SAFM

(a): w/o FM 239.52 13.56 76.70 30.36/0.8357 30.32/0.9048
(b): w/o MR 239.52 13.64 87.78 30.34/0.8350 30.30/0.9047
(c): w/o FA 228.86 12.96 60.11 30.36/0.8355 30.29/0.9049
(a) + (b) 239.52 13.64 87.78 30.32/0.8345 30.24/0.9038
(a) + (c) 228.86 12.96 60.11 30.34/0.8351 30.28/0.9043
(a) + (b) + (c) 228.86 13.05 71.19 30.31/0.8344 30.23/0.9036
AdaptiveMaxPool → AdaptiveAvgPool 239.52 13.56 76.70 30.40/0.8364 30.41/0.9061
AdaptiveMaxPool → Nearest interpolate 239.52 13.56 76.70 30.36/0.8354 30.31/0.9048
GELU → None 239.52 13.56 76.70 30.40/0.8366 30.37/0.9058
GELU → Sigmoid 239.52 13.56 76.70 30.36/0.8355 30.29/0.9044

CCM

w/ SE 260.98 13.59 76.70 30.39/0.8360 30.46/0.9067
CCM → Channel MLP 73.63 4.00 76.70 30.17/0.8313 29.80/0.8980
CCM → Inverted residual block 245.28 13.85 110.00 30.43/0.8373 30.43/0.9064

Normalization

LN → None, lr=1× 10−3∗ 238.37 13.55 76.70 30.29/0.8340 30.04/0.9014
LN → None, lr=1× 10−4 238.37 13.55 76.70 30.15/0.8306 29.74/0.8970
LN → BN 239.52 13.72 76.70 30.28/0.8354 30.05/0.9029
LN → FBN∗ 238.37 13.55 76.70 30.30/0.8343 30.15/0.9028
LN → L2 normalization 238.37 13.55 76.70 30.37/0.8358 30.31/0.9049

0 100000 200000 300000 400000 500000
Iterations

0.024

0.026

0.028

0.030

0.032

L
1 

L
os

s

The model training crashes and returns large values

w/ LN, lr=1e-3
w/o LN, lr=1e-3
w/o LN, lr=1e-4

196000 198000 200000

1.25

1.50

1.75
1e9

0 100000 200000 300000 400000 500000
Iterations

0.024

0.026

0.028

0.030

0.032

L
1 

L
os

s

The model training crashes and returns abnormal values

LN
BN
FrozenBN
L2 normalization

(a) Effect of LayerNorm (b) Comparison of different normalizations

Figure 7. Smoothed training loss curves with or without nor-
malization. Figure (a) shows LayerNorm stabilizes model train-
ing and converges better than without it. Figure (b) compares the
effects of different normalization approaches on model training.

that without it, the model suffers a training crash at a large
learning rate and does not converge well at small ones with
its PSNR of only 30.15dB and 29.74dB on the DIV2K-
val and Manga109 datasets, respectively. Next, we com-
pare the LayerNorm with three representative normalization
methods, including BatchNorm [22], Frozen BatchNorm
(FBN) [22], and L2 normalization in Figure 7(b). The re-
sults in Table 3 and Figure 7(b) demonstrate that the BN
family decrease the PSNR/SSIM values by a large mar-
gin, and the FBN even does not guarantee a stable model
training process. Although the L2 normalization allows the
model to be trained successfully, its performance is not as
good as that of using LayerNorm. Thus, the LayerNorm
layer is set as default for the proposed SAFMN.

Table 4. Effect of the number of FMMs on performance.
#N #Params [K] #FLOPs [G] #Acts [M] DIV2K val Manga109
4 128.06 7.25 40.77 30.21/0.8319 29.86/0.8988
6 183.79 10.40 58.64 30.32/0.8347 30.18/0.9033
8 239.52 13.56 76.70 30.43/0.8372 30.43/0.9063

12 350.97 19.86 113.00 30.51/0.8389 30.71/0.9096

Table 5. GPU runtime of meta-operations in the SAFM layer.
Meta-operations LayerNorm Channel Splitting Adaptive MaxPool Nearest Interpolation Element-wise Product Element-wise Addition

Runtime [us] 465 133 85 24 156 193

Effect of the number of FMMs. The proposed network
contains several FMMs. We evaluate the effect of the num-
ber of FMMs by setting the number #N from 4 to 12. Ta-
ble 4 shows that the performance gradually improves as #N
increases. To achieve a favorable trade-off between model
complexity and reconstruction performance, we choose 8
blocks as the default setting.
Relations to lightweight ViT models. To alleviate the
quadratic complexity of vanilla ViT [12], MobileViT [39],
Mobile-Former [6], and EdgeNeXt [37] adopt a hybrid
CNN-Transformer design, which replaces the shallow
transformer blocks with convolutional layers to avoid using
self-attention on high-resolution representations, and effi-
ciently combines the transformer blocks with the modified
mobilenet blocks to perform feature interactions in the later
stages. Another alternative [50, 14] is to incorporate con-
cepts from the transformer into convolutional modules. For
example, MetaFormer [50] and VAN [14] use pooling op-
eration or large kernel attention to replace the heavy-weight
self-attention for contextual information aggregation. Com-

13197



pared to these approaches, we develop an efficient feature
modulation mechanism upon a grouped multi-scale repre-
sentation to learn feature dependencies. Benefiting from the
multi-head paradigm, the proposed model can exploit multi-
scale contexts across different heads for adaptive feature
modulation while maintaining a low computational cost.
Limitations. Although our SAFMN has better overall per-
formance than the evaluated methods [1, 20, 49, 28, 45], its
running time is relatively slow. As shown in Table 5, we
count the inference time of different commonly used ten-
sor operations with the torch.profiler function, and the re-
sults show that the utilized LayerNorm layers and residual
connections lead to increased runtime. The running time of
SAFMN can be further accelerated by optimizing the imple-
mentation of these components. We will investigate these
in the future work. Another limitation is that the PSNR
performance of SAFMN is suboptimal, especially on the
Urban100 dataset, which is mainly due to the fact that we
perform the feature modulation without considering the in-
tegration of local features.

6. Conclusion

In this paper, we propose a simple yet efficient CNN
model to solve the efficient image super-resolution prob-
lem. Our SAFMN exploits non-local feature interactions
upon a multi-scale feature representation. To complement
the local contextual information, we further develop a com-
pact convolutional channel mixer to encode spatially local
context and conduct channel mixing simultaneously. We
both qualitatively and quantitatively evaluate the proposed
method on commonly used benchmarks. Experimental re-
sults show that the proposed SAFMN model is more effi-
cient than state-of-the-art methods while achieving compet-
itive performance.

Acknowledgements. This work has been partly sup-
ported by the National Key R&D Program of China (No.
2018AAA0102001), the National Natural Science Foun-
dation of China (Nos. U22B2049, 62272233, 61922043,
61925204), and the Fundamental Research Funds for the
Central Universities (Nos. 30922010910, 30920041109).

References
[1] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,

accurate, and lightweight super-resolution with cascading
residual network. In ECCV, 2018. 1, 2, 4, 5, 6, 7, 9

[2] Pablo Arbeláez, Michael Maire, Charless C. Fowlkes, and
Jitendra Malik. Contour detection and hierarchical image
segmentation. PAMI, 33(5):898–916, 2011. 4

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4, 7

[4] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and
Marie line Alberi Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding.
In BMVC, 2012. 1, 4

[5] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yip-
ing Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu,
and Wen Gao. Pre-trained image processing transformer. In
CVPR, 2021. 1

[6] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen
Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-
former: Bridging mobilenet and transformer. In CVPR,
2022. 8

[7] Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and
Qingyuan Li. Fast, accurate and lightweight super-resolution
with neural architecture search. In ICPR, 2021. 1, 3

[8] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style
convnets great again. In CVPR, 2021. 2

[9] Xiaohan Ding, Xiangyu Zhang, Yizhuang Zhou, Jungong
Han, Guiguang Ding, and Jian Sun. Scaling up your kernels
to 31x31: Revisiting large kernel design in cnns. In CVPR,
2022. 3

[10] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. PAMI, 38(2):295–307, 2016. 2, 4, 5

[11] Chao Dong, Chen Change Loy, and Xiaoou Tang. Acceler-
ating the super-resolution convolutional neural network. In
ECCV, 2016. 1, 2, 4, 5

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1, 2, 7, 8

[13] Jinjin Gu and Chao Dong. Interpreting super-resolution net-
works with local attribution maps. In CVPR, 2021. 2, 7

[14] Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming
Cheng, and Shi-Min Hu. Visual attention network. arXiv
preprint arXiv:2202.09741, 2022. 3, 8

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

[16] Zibin He, Tao Dai, Jian Lu, Yong Jiang, and Shu-Tao Xia.
Fakd: Feature-affinity based knowledge distillation for effi-
cient image super-resolution. In ICIP, 2020. 1, 3

[17] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units. arXiv preprint arXiv:1606.08415, 2016. 4, 7

[18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In CVPR, 2018. 7

[19] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single
image super-resolution from transformed self-exemplars. In
CVPR, 2015. 4

[20] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang.
Lightweight image super-resolution with information multi-
distillation network. In ACM MM, 2019. 1, 2, 4, 5, 6, 7,
9

13198



[21] Andrey Ignatov, Radu Timofte, Maurizio Denna, and et al.
Efficient and accurate quantized image super-resolution on
Mobile NPUs, Mobile AI & AIM 2022 challenge: Report.
In ECCV Workshops, 2022. 2, 3

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 2, 8

[23] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-
recursive convolutional network for image super-resolution.
In CVPR, 2016. 1

[24] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-
works. In CVPR, 2016. 2, 4, 5, 6

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 4

[26] Fangyuan Kong, Mingxi Li, Songwei Liu, Ding Liu, Jing-
wen He, Yang Bai, Fangmin Chen, and Lean Fu. Residual
local feature network for efficient super-resolution. In CVPR
Workshops, 2022. 1, 2

[27] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-
Hsuan Yang. Deep laplacian pyramid networks for fast and
accurate super-resolution. In CVPR, 2017. 4, 5, 6

[28] Wenbo Li, Kun Zhou, Lu Qi, Nianjuan Jiang, Jiangbo Lu,
and Jiaya Jia. LAPAR: Linearly-assembled pixel-adaptive
regression network for single image super-resolution and be-
yond. In NeurIPS, 2020. 4, 5, 6, 7, 9

[29] Yawei Li, Kai Zhang, Luc Van Gool, Radu Timofte, et al.
NTIRE 2022 challenge on efficient super-resolution: Meth-
ods and results. In CVPR Workshops, 2022. 3, 5

[30] Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Jinjin
Gu, Yu Qiao, and Chao Dong. Blueprint separable residual
network for efficient image super-resolution. In CVPR Work-
shops, 2022. 1, 2

[31] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. SwinIR: Image restoration
using swin transformer. In ICCV Workshops, 2021. 1, 2, 3, 4

[32] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In CVPR Workshops, 2017. 1, 2, 4,
5, 6, 7

[33] Jie Liu, Jie Tang, and Gangshan Wu. Residual feature dis-
tillation network for lightweight image super-resolution. In
ECCV Workshops, 2020. 1, 2

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin Transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 2

[35] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A ConvNet for the
2020s. In CVPR, 2022. 3

[36] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. In ICLR, 2017. 4

[37] Muhammad Maaz, Abdelrahman Shaker, Hisham
Cholakkal, Salman Khan, Syed Waqas Zamir, Rao Muham-
mad Anwer, and Fahad Shahbaz Khan. Edgenext: Efficiently
amalgamated cnn-transformer architecture for mobile vision
applications. In ECCV Workshops, 2022. 8

[38] Yusuke Matsui, Kota Ito, Yuji Aramaki, Toshihiko Ya-
masaki, and Kiyoharu Aizawa. Sketch-based manga retrieval
using manga109 dataset. arXiv preprint arXiv:1510.04389,
2015. 4, 7

[39] Sachin Mehta and Mohammad Rastegari. MobileViT: Light-
weight, general-purpose, and mobile-friendly vision trans-
former. In ICLR, 2022. 3, 8

[40] Yiqun Mei, Yuchen Fan, and Yuqian Zhou. Image super-
resolution with non-local sparse attention. In CVPR, 2021.
2

[41] Pablo Navarrete Michelini, Yunhua Lu, and Xingqun Jiang.
edge–SR: Super–resolution for the masses. In WACV, 2022.
1, 2

[42] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollar. Designing network design
spaces. In CVPR, 2020. 5

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 7

[44] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
CVPR, 2016. 1, 2, 3, 4, 5

[45] Long Sun, Jinshan Pan, and Jinhui Tang. ShuffleMixer: An
efficient convnet for image super-resolution. In NeurIPS,
2022. 1, 2, 4, 5, 6, 9

[46] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-
resolution via deep recursive residual network. CVPR, 2017.
1, 2

[47] Mingxing Tan and Quoc Le. EfficientNetV2: Smaller mod-
els and faster training. In ICML, 2021. 2, 4, 7

[48] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-
Hsuan Yang, Lei Zhang, et al. NTIRE 2017 challenge on sin-
gle image super-resolution: Methods and results. In CVPR
Workshops, 2017. 4, 7

[49] Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi
Ying, Zaiping Lin, Wei An, and Yulan Guo. Exploring
sparsity in image super-resolution for efficient inference. In
CVPR, 2021. 5, 9

[50] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In CVPR, 2022. 8

[51] Roman Zeyde, Michael Elad, and Matan Protter. On single
image scale-up using sparse-representations. In Curves and
Surfaces, 2012. 4

[52] Xindong Zhang, Hui Zeng, and Lei Zhang. Edge-oriented
convolution block for real-time super resolution on mobile
devices. In ACM MM, 2021. 1, 2, 3, 5

[53] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very deep
residual channel attention networks. In ECCV, 2018. 1, 2

[54] Hengyuan Zhao, Xiangtao Kong, Jingwen He, Yu Qiao, and
Chao Dong. Efficient image super-resolution using pixel at-
tention. In ECCV Workshops, 2020. 1, 2, 5

13199


