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Abstract

Increasingly, autoregressive approaches are being used
to serialize observed variables based on specific criteria.
The Neural Processes (NPs) model variable distribution as
a continuous function and provide quick solutions for differ-
ent tasks using a meta-learning framework. This paper pro-
poses an autoregressive-based framework for NPs, based
on their autoregressive properties. This framework lever-
ages the autoregressive stacking effects of various variables
to enhance the representation of the latent distribution, con-
currently refining local and global relationships within the
positional representation through the use of a sliding win-
dow mechanism. Autoregression improves function approx-
imations in a stacked fashion, thereby raising the upper
bound of the optimization. We have designated this frame-
work as Autoregressive Neural Processes (AENPs) or Con-
ditional Autoregressive Neural Processes (CAENPs). Tradi-
tional NP models and their variants aim to capture relation-
ships between the context sample points, without addressing
either local or global considerations. Specifically, we cap-
ture contextual relationships in the deterministic path and
introduce sliding window attention and global attention to
reconcile local and global relationships in the context sam-
ple points. Autoregressive constraints exist between multi-
ple latent variables in the latent paths, thus building a com-
plex global structure that allows our model to learn com-
plex distributions. Finally, we demonstrate the effectiveness
of the NPs or CFANPs models for 1D data, Bayesian opti-
mization, and 2D data.

1. Introduction

Neural processes (NPs) are different from traditional
stochastic processes such as Gaussian processes (GPs)
[15, 20] in that GPs are difficult to use due to the neces-
sity of selecting an appropriate kernel function. In practice,
the selection of the right kernel function for different distri-
butions is often a matter of specialized knowledge and ex-
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Figure 1. The NPs model [5] (left) represents the context sample
points denoted as r using an average value aggregation. In this
model, the latent distribution is represented by the mean μz and
variance σz normal distribution of a single variable. On the other
model, the BANPs model [14] (right) represents the latent distri-
bution of each context sample point as a single variable with a
mean μn and variance σn normal distribution.

perience. In addition, different kernel functions can result
in different computational complexity and model accuracy.
In contrast, NPs provide a more flexible approach to data
modeling by eliminating the need to select a specific ker-
nel function. This approach can lead to more efficient and
accurate predictions without requiring extensive knowledge
of the data distribution. NPs [5] is a new model for the
combination of parametric [19, 24] Neural Networks and
Stochastic Processes. In the given data, NPs are modeled
as a new class of Stochastic Processes with a flexible ap-
proach to the original data distribution. In particular, NPs
deal with non-trivial function distributions for which it is
difficult to find a suitable prior representation of the GPs
function. In this sense, GPs perform data modeling by driv-
ing a prior distribution, while NPs perform the same task by
driving the data. While maintaining the flexible properties
of the model during the training process, the NPs are imple-
mented with a meta-learning framework so that they can be
quickly adapted to new functional tasks.

Despite the increasing attention in Stochastic Processes
methods, the NPs model still has several limitations that
hinder its development [13]. One of the main problems
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is that the NPs encoder maps context sample points to a
fixed-length latent representation, while the decoder maps
the above latent representation and the target sample point
input to the target sample point output. However, the en-
coder achieves a fixed-length representation of the context
sample points through an average aggregation module that
assigns equal weight to each context sample point. As a
result, it is difficult for the decoder to determine which con-
text sample points provide relevant information for predict-
ing the target sample points, leading to underfitting [11].
Another limitation of NPs is their susceptibility to noise in
real data, which causes the sampled context sample points
to contain more interference information, resulting in devi-
ations in the predicted location of the target sample points.
This is because NPs fail to capture the embedding relation-
ships between the context sample points [12]. Furthermore,
the distribution in the real world is complex and constantly
changing, making it difficult for the NPs model to express
its latent distribution by a single latent variable [6]. Exist-
ing NPs and their variants represent the latent distribution
by stacking single or multiple latent variables [14, 13, 5].
However, this approach has limitations that need to be ad-
dressed to further improve the effectiveness and accuracy of
the NPs model.

In this paper, we introduce two frameworks, Autoregres-
sive Neural Processes (AENPs) and Conditional Autore-
gressive Neural Processes (CAENPs), which jointly model
the global structure by using multiple latent Gaussian vari-
ables in an autoregressive manner. Our approach provides
better modeling performance, especially for complex distri-
bution modeling processes. While existing NPs and their
variants typically use self-attention implementations as the
deterministic path encoding process, this can be computa-
tionally expensive and may not effectively capture the re-
lationships between the local context sample points. To
overcome this, we propose a combination of sliding win-
dow attention and global attention that is implemented au-
toregressively, allowing us to capture relationships between
the global and local context sample points while avoiding
high computational cost. We demonstrate the advantages of
our approach on 1D and 2D datasets, as well as in Bayesian
optimization. Our approach improves the latent distribution
performance of multiple latent variables, leading to better
modeling performance for complex distribution modeling
processes.

2. Background

2.1. Neural Processes

Given a sequence of regression tasks represented as
D = (X,Y ), where X = {xi}ni=1 ∈ R

d is the obser-
vation set and Y = {yi}ni=1 ∈ R

d is the correspond-
ing label set. we can define a context sample point set as

(XC , YC) := {(xi, yi)}ni∈C , where C is the set of indices
for the context sample points. We also have a target set
XT := {xi}mi∈T , where T is the set of indices for the tar-
get sample points. The goal of the NPs model is to learn
a function f that maps the input observation x to the out-
put label y given the context sample points set XC , YC . In
other words, we want to learn the conditional distribution
p(YT |XT , XC , YC). To achieve this, the NPs model maps
each a pair of context sample point (xC , yC) to a corre-
sponding representation rC using a Multi-Layer Perceptron
(MLP) [27]. The above processes can be expressed as fol-
lows:

rC := MLP (xC , yC) (1)

In practice, each context sample point (xC , yC) is mapped
by the MLP function to rC , which is used to maintain di-
mensionality consistency, and further processed to take an
average value denoted as r (as shown in Figure 2). The
latent distribution in the NPs model is represented by a sin-
gle variable Z, for which the Gaussianisation factor is de-
composed into a mean μz and variance σz . Meanwhile, the
above latent distribution Z plays the role of a global vari-
able in the NPs model, acting as a representation of the un-
certainty function. So, the latent path for Z is derived from
sC := s (xC ,yC). We have incorporated the latent distri-
bution into the equation as follows.

p (yT | xT , xC , yC) :=

∫
p (yT | xT , rC , Z) q (Z | sC) dZ

(2)

where Z = N (μz, σz). The NPs model infers the target
sample point yT by the likelihood method. The encoder
and decoder parameters in the NPs model are adjusted by
maximizing the ELBO as follows.

log p (yT | xT , xC , yC) ≥ Eq(Z|sT ) [log p (yT | xT , rC , Z)]

−DKL (q (Z | sT ) ‖q (Z | sC))
(3)

The primary function of NPs is to acquire the skill of target
reconstruction, with Kullback-Leibler (KL) divergence reg-
ularization serving to facilitate approximation between the
context and target sample points.

2.2. Autoregressive

For predicting a sequence of target sample points, it is
customary to organize the samples following specific guide-
lines in order to establish a sequential relationship. For
example, a structured sequence x1, x2, · · · , xn can be rep-
resented using a p-order autoregressive model (AR). This
model formulates xt as a function involving a linear com-
bination of the preceding p terms within the series along
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Figure 2. NPs model architecture. The left side indicates the pro-
cess of encoding the context sample points. The right side indi-
cates the process of decoding the context sample points.

with an associated error term. This methodology inherently
captures the probability distribution and is commonly em-
ployed with structured data types, such as dimensions, fea-
tures, temporal instances, and more.

yt = Φ0 +Φ1yt−1
+Φ2yt−2

+ . . .+Φpyt−p + εt (4)

where Φ0 is a constant term, Φ1, · · · ,Φp are model parame-
ters, and εt is noise with mean 0 and variance σ.

The autoregressive approach provides an implicit mod-
eling of the likelihood function and is typically applied to
regular data, such as dimensions, features, or time, among
others. In this paper, the authors divide context sample
points sampled according to NPs into different numbers to
construct different dimensions or number levels for rank-
ing purposes. For example, given n context sample points
represented as (xi, yi)

n
i∈C , they can be divided into dif-

ferent dimensions such as {(x1, y1)}, {(x1, y1) , (x2, y2)},
· · · , {(x1, y1) , (x2, y2) , · · · , (xn, yn)}. These divisions
are used to establish the dependencies of the different levels
of context sample points and to establish the joint probabil-
ity distribution, which is then used to infer the latent distri-
bution of the target sample points.

3. Related Work
Garnello et al [4] identified several challenges within

Gaussian Processes (GPs), including substantial computa-
tional demands and the intricacy of selecting an appropriate
prior. In the present landscape, widely adopted neural net-
works achieve precise distributional representations through
gradient descent optimizationt[7, 16]. The authors combine

the two to produce Conditional Neural Processes (CNPs),
which can be extended to large data sets only by observing
a few context sample points. CNPs use fixed-dimension in-
put in the data encoding process, resulting in a lack of flex-
ibility in output. On this basis, NPs[5] enrich their encoder
representation by introducing latent variables. The aggrega-
tion approach of encoders in NPs causes the context sample
points to underfit. Attentive Neural Processes(ANPs)[11]
dynamically assign power to context sample points in this
aggregation with multi-headed attention. In practice, NPs
have serious flaws in sequential decision making, combined
with the temporal function in the current transformer to pro-
duce Transformer Neural Processes (TNPs)[17]. Convolu-
tional Conditional Neural Processes (CCNPs) solve NPs to
model the translational equivariance in the data (ie, time se-
ries, spatial data, text data). This model extends data pro-
cessing from finite dimensions to infinite dimensions.

Autoregressive models have witnessed noteworthy ad-
vancements within the realm of deep learning research. In
recent investigations [21, 22], scholars have treated individ-
ual image pixels as sequences, wherein each pixel’s value
relies on the value of its preceding pixel. This dependency
structure permits prediction via a pixel-by-pixel strategy.
Termed autoregressive modeling, this methodology lever-
ages the predicted value at a given point as input for fore-
casting the subsequent value. An additional study [9] amal-
gamated an order-independent autoregressive model with a
discrete absorption diffusion model, yielding comparable
performance with fewer iterative steps compared to conven-
tional diffusion models. Notably, this composite model has
showcased enhanced prowess in image compression, sur-
passing the capabilities of the standard diffusion model.

4. Autoregressive Neural Processes
The NPs [5] model a continuous function probability dis-

tribution conditional on partial observation of the context
sample points, which is constrained by the latent distribu-
tion. In this section, we enhance the representation of the
latent distribution by replacing the representation of a single
variable normal distribution with Autoregressive in the NPs
model. The new model generated above is referred to as
Autoregressive Neural Processes (AENPs) or Conditional
Autoregressive Neural Processes (CAENPs).

4.1. The Latent Distribution of Autoregressive

The encoder for AENPs has the same two components
as the NPs model: the deterministic path and the latent
path. The latent path is used to describe the latent distri-
bution of context sample points. The model is combined
with Stochastic Processes to produce a latent distribution
for each context sample point under this path. NPs and vari-
ants models [14, 13, 5] use single or multiple Gaussian dis-
tributions as a latent representation of each context sample
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Figure 3. The latent distribution representation of the AENPs
model. The context sample points complete the mapping rela-
tionship with the help of two MLPs and one GAP combination.
At the same time, the ability to constrain between different latent
variables is realized by autoregressive methods.

point.
We find that the representation of the latent variable Z in

the latent distribution p(sC | Z) depends on the outcome of
observing the context sample points (xC , yC) mapping sC .
The NP averages the results of the mapping sC and then
expresses them as a single variable normal distribution, re-
sulting in a weak expression of its latent distribution [11, 5]
(as shown in Figure 2). The mapping context sample points
sC = (s1, s2, · · · , sn) are treated in the AENPs model to
avoid the problem of a single representation of the latent
distribution by combining their different levels with the la-
tent variable Z = (z1, z2, · · · , zn) (as shown in Figure 3).
We incorporate autoregression to enhance the expressive-
ness of the latent distribution. The conditional probability
based on the autoregressive constraint on the latent variable
z1, z2, · · · , zn is as follows.

p(Z) =
n∏

i=1

p (zi | z1, · · · , zn−1) =
n∏

n=1

p (zn | z1:n−1)

(5)

Finally, the AENPs model goal is predicted by xC , yC , xT

referring to the corresponding target sample points denoted
as p(yT | xC , yC , xT ).

The specific implementation detail of the AENPs model
is shown in Figure 3. We build a module consisting of two
MLPs stacked with Global Average Pooling (GAP) [18].
This module processes the ith context sample point to form
a new continuous input by combining the previous i-1 con-
text sample points. The latent variable zi representation of
the context sample points (xC , yC) at each different level
is through a Gaussian distribution. The process for the i-th

context sample point is formulated as follows.

si = MLP(GAP(MLP((xi, yi), (xi−1, yi−1), · · · , (x1, y1)))
(6)

Also, the formula for calculating the latent distribution of
the i-th context sample point is calculated as follows.

pψ (zi | si) = N (
μzi , σ

2
zi

)
(7)

This latent distribution between the different latent variables
of the autoregressive constraint is calculated as follows.

zi = μi + σi � zi−1 (8)

The process of training AENPs is to complete the
computation of the conditional posterior distribution
qφ (zn | zn−1, xC , yC , xT , yT ). The goal of the above equa-
tion is to calculate as follows.

sn = MLP(GAP(MLP(xC , yC , xT , yT ))) (9)

qφ (zn | zn−1, sn) = N (
μzn , σ

2
zn

)
(10)

As in Equation (3), AENPs use KL divergence to measure
the matching result between the true distribution and the
approximate distribution as follows.

DKL =
n∑

i=2

Eqφ(zn|xC ,yC ,xT ,yT )[DKL[qφ(zn | zn−1, xC , yC

, xT , yT )‖pψ(zn | zn−1, xC , yC , xT )] +DKL[qφ(z1 | xC , yC ,

xT , yT )‖pψ(z1 | xC , yC , xT )]

(11)

The DKL section and the reconstruction section above are
as follows.

L ≥ Ezn∼qφ(zn|xT ,yT )[log pθ(yT | zn, xT , xC , yC)]

−β ·DKL

(12)

where β denotes hyperparameters to balance the KL and
reconstructed parts. At the same time, the presence of β
better captures the uncertainty in the model.

4.2. Conditional Dependence Between the Latent
Distribution of Autoregressive

The AENPs model increases model representation ca-
pability by addressing the dependencies between multiple
latent variables with an autoregressive approach. This ap-
proach ignores the different dependencies between the dif-
ferent context sample points corresponding to the latent dis-
tribution on the final representation distribution.

We introduce the gating mechanism from the (Long
Short-Term Memory) LSTM [1] model between the differ-
ent latent variables as shown in Figure 4. We call this model
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Figure 4. The latent distribution representation of the CAENPs
model. The context sample points complete the mapping relation-
ship with the help of two MLP and GAP combinations. The asso-
ciation between the different latent variables is achieved through
forgetting gates, selection gates, and output gates, with the ulti-
mate goal of achieving a representation of the latent distribution.

Conditional Autoregression Neural Processes (CAENPs).
The CAENPs model and the AENPs model use the same
treatment for the context sample point (xC , yC) to com-
plete the mapping relationship. The association between the
different latent variables z1, z2, · · · , zn is done through the
gating mechanism from the LSTM model. The gate mech-
anism in the LSTM contains mainly forgetting gates, selec-
tion gates, and output gates. The forgetting gate is required
to discard the part of the distribution represented by the last
latent variable. The selection gate is required to retain the
part of the distribution represented by the current latent vari-
able. The output gate is required to output the part of the
distribution represented by the latent variable.

The forgetting gate for the latent variable of the ith con-
text sample point is calculated as follows.

zf = sigmoid(W f � [zi−1, si] + bf ) (13)

where sigmoid denotes the activation function; bf denotes
a bias; W f denotes the weight. The selection gate for the
latent variable of the ith context sample point is calculated
as follows.

zi = sigmoid(W i � [zi−1, si] + bi) (14)

z̃i = tanh(W c � [zi−1, si] + bc) (15)

where sigmoid and tanh denote the activation function; bi

and bc denote a bias; W i and W c denote the weight . The
output gate for the latent variable of the ith context sample
point is calculated as follows.

zo = sigmoid(W o � [zi−1, si] + bo) (16)
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Figure 5. The deterministic path of the AENPs or CAENPs model.
Capturing local information about the context sample points by
sliding window self-attention. The target sample point xT is re-
trieved by distance to the nearest context sample point (xC , yC)
that is (x∗, y∗). The combination of sliding window attention and
global attention replaces the self-attention inside [13].

zi = zo � tanh(zf � zi−1 + zi � z̃i) (17)

where tanh and sigmoid denote the activation function; bo

denotes a bias; W o denotes the weight. We inferred the
final latent distribution by correlating the different latent
variables with each other through a gating mechanism. The
CAENPs model and the AENPs model are optimized in the
same way by using equation (12).

The CAENPs and AENPs models are associated in an
autoregressive way with the different latent variables in the
latent path. This autoregressive approach focuses on dis-
covering dependencies between the different latent vari-
ables and enhancing their representation of the latent dis-
tribution.

4.3. The Deterministic Path

The deterministic path is achieved in the NPs model by
taking an average of the context sample points. This ap-
proach tends to cause underfitting of the context sample
points [5]. [11] solves the underfitting problem in the NPs
model by using an attention mechanism.

In the AENPs or CAENPs model, sliding windows[2]
are used to capture the relationship between the local
context sample points (As shown in Figure 5). The
size of the sliding window WS is l and the ith read
context sample points in its message is denoted as
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(xi, yi), · · · , (xl+i−1, yl+i−1). The content of each win-
dow is self-attention transformed to achieve (ri1, · · · , ril)
mapping relationships. The target sample points xT are ob-
tained as the nearest sample point from the context sam-
ple points (xC , yC) according to the Euclidean distance as
(x∗, y∗). (x∗, y∗) is transformed with all the context sample
points by equation (18) to obtain the mapping relationship
(r∗1 , · · · , r∗l ). Global attention and sliding window attention
are represented by summing the weights of the positional
relationships into a matrix A ∈ R

n∗n[2]. Finally, the rela-
tionship between the xT (Query), A (keys), xC (values) is
represented by the cross-attention mechanism with context
sample points r∗.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (18)

where Q denotes the Query; K denotes the Key; V denotes
the Value;

√
dk denotes the scaling factor; Attention K =

Q = V converted to self-attention.
In the AENPs or CAENPs model, we capture relation-

ships between local context sample points through a sliding
window and global attention to capture relationships be-
tween the global context sample points. In this paper, we
replace the original self-attention with sliding window at-
tention and global attention to reduce the spatial complex-
ity from O(n2) to O(ln+ n) , in addition to enhancing the
capture of the local context sample points relationship.

5. Experimental Result
CAENPs and AENPs are used as new Stochastic Pro-

cess models to enrich the variants of the family of Neural
Processes. We are required to demonstrate the performance
of our AENPs and CAENPs models on both 1D and 2D
datasets. This paper illustrates the situation from the 1D
Gaussian distribution dataset and the 2D dataset (MNIST
[5], CelebA [11]).

5.1. 1D Function Regression

As a first experiment, we evaluated the performance of
the AENPs and CAENPs models on a 1D regression task.
To generate the distribution, we chose a Gaussian kernel
function for the 1D function. The context sample points
sampled from this distribution were used as training data,
and the associated target sample points were used as test
data. The goal of the model is to take as input the context
sample points (x, y)C , target sample points xT , and output
the predicted values y∗T corresponding to the ground truth
values yT . The range of values for each data point x in the
1D Gaussian distribution data was restricted to the interval
[-3,3].

For this 1D data distribution, we explored the effect of
using different ways of implementing the latent distribution

Figure 6. Visualization of NPs, ANPs, AENPs, CAENPs models
on 1D Gaussian distribution prediction results. A total of 40 sam-
ple points are sampled by all the above methods. The true fit curve
for Gaussian distribution is shown in blue, the context point sam-
ples is shown in black, and the prediction curve is shown in red.

to predict the target sample distribution in the AENPs and
CAENPs. In order to illustrate the superior performance
of the AENPs model and CAENPs model, the results of
existing popular NPs [5]1, and ANPs [11]2 are required to
be compared on 1D Gaussian distribution data (see Figure
6). The optimized loss is shown in Equation (12).

In Figure 6, We provide 1D Gaussian distribution data
to represent the visualization of NPs, ANPs, AENPs, and
CAENPs. The AENPs or CAENPs model provides supe-
rior results among the multiple latent variables in an autore-
gressive constrained approach. From figure 6, the CAENPs
model is better than the AENPs model in terms of the way
it constrains between the different latent variables through
the gating mechanism.

We are training on 1D Gaussian distribution data using
NPs, ANPs, AENPs, and CAENPs that require the mini-
mum value in the Gaussian distribution prior to being ex-
tracted with the objective function. From the process, the
NPs, ANPs, AENPs, and CAENPs are compared to the
original kernel values in 1D Gaussian distribution data. The
whole process uses the best simple regret [18], which is a
method of discovering the difference between the best ob-
served solution and the global optimal solution in the 1D
Gaussian distribution data. The model considers the ob-
jective function of the agents of the previous NPs and vari-
ants. We use Thompson sampling [25] to extract the waiting
function from the agents and actions. We have chosen 100

1https://github.com/EmilienDupont/neural-processes
2https://github.com/soobinseo/Attentive-Neural-Process
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Figure 7. Simple and cumulative regret for Bayesian optimized.

Method RBF kernels Matérn 5/2 Periodic

CNPs 0.278 ± 0.003 0.310 ± 0.003 0.652 ± 0.001
NPs 0.282 ± 0.003 0.315 ± 0.003 0.650 ± 0.002

ANPs 0.193± 0.001 0.230 ± 0.000 0.703 ± 0.002
BNPs 0.269± 0.003 0.301 ± 0.003 0.649 ± 0.002

BANPs 0.260± 0.001 0.232 ± 0.001 0.613 ± 0.001
CCNPs 0.254± 0.003 0.228 ± 0.001 0.681± 0.002
TNPs 0.177 ± 0.001 0.222 ± 0.000 0.670 ± 0.009
VNPs 0.162 ± 0.003 0.201 ± 0.000 0.642 ± 0.007

AENPs(Ours) 0.152 ± 0.003 0.217 ± 0.001 0.593 ± 0.005
CAENPs(Ours) 0.149 ± 0.001 0.199 ± 0.003 0.524 ± 0.001

Table 1. We experimented with different kernel functions in 1D
Gaussian distribution. The mean and standard deviation of the five
runs are reported (MSE measures).

objective functions as the results shown in figure 8. From
figure 8, the AENPs or CAENPs result in better predicted
minimum values than the NPs, and ANPs.

We require different kernel functions in addition to
the Gaussian kernel function data described above to ac-
count for the reliability of the AENPs or CAENPs model.
We compare NPs[5], CNPs [4]3, ANPs[11], BNPs[13]4,
BANPs[14], CCNPs[26]5, TNPs[17]6, VNPs[6]7 in terms
of metrics: Mean Square Error (MSE), Calibration Error
(CE) to measure performance. Furthermore, we use the data
generated by GP data to compare different kernels (RBF
kernels, Matérn 5/2, Periodic). From the results in Tables
1 and Tables 2 the AENPs, CAENPs, and other models
showed the best results in terms of MSE and CE measures
of their model performance. The final results show that the
AENPs and CAENPs models are reliable.

5.2. 2D Function Data Images

In addition to the 1D data experiments described above,
the AENPs model or CAENPs model requires validation on

3https://github.com/stratisMarkou/conditional-neural-processes
4https://github.com/juho-lee/bnp
5https://github.com/cambridge-mlg/convcnp
6https://github.com/tung-nd/TNP-pytorch
7https://github.com/ZongyuGuo/Versatile-NP

Method RBF kernels Matérn 5/2 Periodic

CNPs 0.078 ± 0.002 0.051 ± 0.000 0.143 ± 0.002
NPs 0.093 ± 0.002 0.056 ± 0.001 0.130 ± 0.007

ANPs 0.085 ± 0.001 0.169 ± 0.001 0.265 ± 0.002
BNPs 0.093 ± 0.003 0.054 ± 0.002 0.115 ± 0.004

BANPs 0.082± 0.001 0.232 ± 0.001 0.613 ± 0.001
CCNPs 0.094± 0.000 0.195 ± 0.001 0.162± 0.003
TNPs 0.048 ± 0.001 0.050 ± 0.001 0.155 ± 0.009
VNPs 0.045 ± 0.000 0.049 ± 0.001 0.140 ± 0.005

AENPs(Ours) 0.052 ± 0.002 0.047 ± 0.002 0.137 ± 0.000
CAENPs(Ours) 0.049 ± 0.003 0.041 ± 0.000 0.122 ± 0.005

Table 2. We experimented with different kernel functions in 1D
Gaussian distribution. The mean and standard deviation of the five
runs are reported (CE measures).

NPs ANPs AENPs CAENPs

Context 

Sample0

Sample1

Sample2

Figure 8. The NPs, ANPs, AENPs, and CAENPs models sampled
10 context sample points to complete the image complementation
task. The results of 3 stages are selected for each model for pre-
sentation.

2D data to demonstrate its suitability for handling higher
dimensional data. In this paper, 2D data is selected from
common ordinary image data (AENPs model or CEFNPs
covers all 2D data, not just images). The dependencies be-
tween pixel values in an image are considered to be the
background values xC and yC , while predicting the target
pixel yT is considered to be the complete image problem.
We compare the NPs[5], CNPs [4], ANPs[11], BNPs[13],
BANPs[14], CCNPs[26], and TNPs[17],VNPs[6] on the
MNIST dataset [5] and CelebA [13] dataset.

The results of visualizing NPs, ANPs, AENPs, and
CAENPs on the MNIST dataset (As shown in Figure 8) and
CelebA dataset (As shown in Figure 9). From Figures 8 and
9, we find that the AENPs or CAENPs models predicted
better output pixel values than the ANPs and NPs models.
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NPs ANPs AENPs CAENPs

Sample0

Context

Sample1

Figure 9. The NPs, ANPs, AENPs, and CAENPs model use a
random sampling of 100 context sample points. We use NPs,
ANPs, AENPs, and CAENPs methods to output predict image pix-
els through their learned distributions. Each model selects 2 stage
samples for presentation.

The superiority of the AENPs and CAENPs models is
analyzed from a quantitative perspective in Figure 8 or 9.
The results are evaluated in quantitative form for the com-
plete images. We use the Frechet Inception Distance (FID)
[8] metric to measure the quality of the complete image. We
have expressed the formula for the above metric as follows.

FID = ||μr − μg||22 + Tr(
∑

r
+
∑

g
−2(

∑
r

∑
g
)1/2)

(19)
where r denotes the ground truth image, g denotes the com-
plete images, and μ denotes the distribution mean. The
larger value of FID, the worse the quality of the complete
images. On the contrary, the smaller value of FID, the bet-
ter the quality of the complete images. From Table 7 and
4, it is found that the FID is lowest at 50, 100, 200, and
400 the context sample points for the complete images. The
above results imply that the AENPs or CAENPs model is
of the highest quality than the NPs, CNPs, ANPs, BNPs,
BANPs, CCNPs, TNPs, and VNPs models of the complete
images. It is illustrated from the results that constraining
the latent variable in an autoregressive manner enhances the
representation of the latent distribution. At the same time,
the original self-attention was replaced by sliding-window
attention and global attention, capturing the role of the lo-
cal and the global between the context sample points on the
deterministic path.

5.3. Ablation Study

In analyzing the performance of the AENPs or CAENPs
models, we examined various factors that affect their perfor-
mance. various influencing factors. Notably, autoregression

Methods 50 100 200 400

FID FID FID FID

CNPs 90.41 87.23 74.10 63.92
NPs 87.56 79.03 71.88 65.35

ANPs 79.62 72.15 60.84 52.71
BNPs 74.00 63.69 52.42 49.38

BANPs 70.05 64.67 51.69 48.16
CCNPs 78.13 68.40 55.83 51.56
TNPs 67.42 54.51 47.29 39.50
VNPs 65.92 53.42 46.91 37.42

AENPs(Ours) 58.16 43.57 34.83 19.00
CAENPs(Ours) 57.43 40.64 32.48 17.14

Table 3. The FID result of selecting a different number of pixel
points from the images as context sample points to the complete
image (MNIST dataset).

Methods 50 100 200 400

FID FID FID FID

CNPs 94.13 79.04 68.26 51.72
NPs 87.52 76.11 60.34 48.60

ANPs 80.00 73.89 55.91 37.45
BNPs 68.95 61.54 56.07 45.52

BANPs 61.38 64.35 54.20 40.11
CCNPs 74.23 69.08 59.86 50.31
TNPs 63.18 59.24 57.99 40.99
VNPs 68.92 58.13 56.00 38.43

AENPs(Ours) 60.84 55.72 41.09 31.55
CAENPs(Ours) 55.47 43.30 39.17 30.70

Table 4. The FID result of selecting a different number of pixel
points from the images as context sample points to the complete
images (CelebA dataset).

plays a unique and important role in AENPs or CAENPs
models.

Sliding window attention and Global attention. We
employ a hybrid approach that incorporates both sliding
windows and global paths to establish the deterministic
path. In contrast, for the latent path, we leverage the
(C)AENPs-NPs and (C)AENPs-VNPs models based on the
NPs and VNPs frameworks respectively. The efficacy of
these models is assessed using the 2D MNIST and CelebA
datasets, and the summarized outcomes are presented in
Table 6.

Autoregressive implementation method. The AENPs
and CAENPs models implement the autoregressive ap-
proach in the form of chain multiplication and gating mech-
anisms in the LSTM. This paper further compares the re-
sults of common Bidirectional Long Short-Term Mem-
ory (bi-LSTM) [10] (CAENPs-biLSTM), Gate Recurrent
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Method 50 100 200 400

FID FID FID FID

(C)AENPs-NPs 78.03 47.59 45.31 39.64
(C)AENPs-VNPs 63.04 43.54 39.53 32.57

AENPs(Ours) 58.16 43.57 34.83 19.00
CAENPs-biLSTM 54.32 42.28 31.08 18.02

CAENPs-GRU 51.00 41.05 30.27 18.32
CAENPs-Transformer 48.03 37.04 28.55 17.49

Table 5. Variations of Models for Modular Combinations of
AENPs and CAENPs (MNIST dataset).

Method 50 100 200 400

FID FID FID FID

(C)AENPs-NPs 81.44 78.59 61.00 59.37
(C)AENPs-VNPs 77.32 74.48 59.05 48.96

AENPs(Ours) 60.84 55.72 41.09 31.55
CAENPs-biLSTM 59.23 50.08 49.46 29.83

CAENPs-GRU 58.90 49.81 47.22 28.65
CAENPs-Transformer 49.54 58.28 45.93 20.70

Table 6. Variations of Models for Modular Combinations of
AENPs and CAENPs (celebA Dataset).

Unit (GRU) [3] (CAENPs-GRU), and Transformer [23]
(CAENPs-Transformer) implementations in the latent path.
From the results, it is clear that Transformer works better
than the original LSTM and GRU methods with the differ-
ent latent variables autoregressive constraints.

Different numbers of context sample points. We ex-
perimented with sampling ratios of 10%, 30%, 50%, 70%,
and 90% in the MNIST and celebA datasets. We aim to
compare the performance of AENPs and CAENPs models
with different numbers of context sample points.

The effect of sliding window size on AENPs or
CAENPs model. We experimented with different sliding
windows on the dataset separately for MNIST and celebA
effects. The final result is expressed as the value of the FID.
Similarly, we take the number of contexT sample points
to 50,100,200,400 (Results are shown in the table 7. We
choose a sliding window size of 3 as the result in the AENPs
or CAENPs model.

6. Conclusion
Neural Processes (NPs) are a new approach to modeling

stochastic processes. The model is given only a portion of
the context sample points, and the distribution of the target
sample points is learned by means of function approxima-
tion to predict the target sample points. The model is given
only a portion of the context sample points, and the distri-
bution of the target sample points is learned by means of
function approximation to predict the target sample points.

10% 30% 50% 70% 90%

Sampling ratio of the context sample 

points

FID

10

30

50

70

90

MNIST(AENPs)
celebA(AENPs)
MNIST(CAENPs)
celebA(CAENPs)

Figure 10. The FID values for the different proportions of sampled
context sample points by the AENPs or CAENPs model.

Size of sliding window 50 100 200 400

FID FID FID FID

1 89.54 80.19 73.08 66.15
2 88.36 79.03 72.92 65.84
3 58.16 43.57 34.83 19.00
4 63.29 59.00 47.94 28.95
5 64.34 65.35 54.66 37.04
6 69.06 68.29 59.85 49.38

Table 7. The FID result of selecting a different number of pixel
points from the images as context sample points to the complete
images (MNIST dataset).

This paper reconciles the contradiction between local and
global with sliding window attention and global attention
for the NPs model and its variants on the relationship be-
tween sample points of contextual relations. At the same
time, the spatial complexity of the original implementation
in terms of self-attention is reduced. The latent represen-
tation draws on the properties of autoregression to achieve
an overall structural representation of the latent variables
stacked according to different levels. We implement the
latent variable stacking by means of simple multiplication
and gating mechanisms (LSTM). The gating mechanism is
implemented by learning the dependencies between differ-
ent levels of latent variables to achieve global perception.
In future work, we plan to investigate the impact of super-
position on the potential distribution of noisy data within
the AENPs or CAENPs methods. Additionally, we aim to
explore the performance of these models on other types of
datasets and tasks, such as natural language processing and
reinforcement learning.
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