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Figure 1: Example animations generated by our EMMN. Given a reference image, EMMN is capable of generating
emotional talking face driven by an emotional audio clip. The lip motions are synchronized with the contents of the audio,
while the facial emotion dynamics are controlled by the emotion embedding in audio.

Abstract

Synthesizing expression is essential to create realistic
talking faces. Previous works consider expressions and
mouth shapes as a whole and predict them solely from audio
inputs. However, the limited information contained in au-
dio, such as phonemes and coarse emotion embedding, may
not be suitable as the source of elaborate expressions. Be-
sides, since expressions are tightly coupled to lip motions,
generating expression from other sources is tricky and al-
ways neglects expression performed on mouth region, lead-
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ing to inconsistency between them. To tackle the issues, this
paper proposes Emotional Motion Memory Net (EMMN)
that synthesizes expression overall on the talking face via
emotion embedding and lip motion instead of the sole au-
dio. Specifically, we extract emotion embedding from au-
dio and design Motion Reconstruction module to decom-
pose ground truth videos into mouth features and expres-
sion features before training, where the latter encode all
facial factors about expression. During training, the emo-
tion embedding and mouth features are used as keys, and
the corresponding expression features are used as values to
create key-value pairs stored in the proposed Motion Mem-
ory Net. Hence, once the audio-relevant mouth features
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and emotion embedding are individually predicted from au-
dio at inference time, we treat them as a query to retrieve
the best-matching expression features, performing expres-
sion overall on the face and thus avoiding inconsistent re-
sults. Extensive experiments demonstrate that our method
can generate high-quality talking face videos with accurate
lip movements and vivid expressions on unseen subjects.

1. Introduction
High-fidelity audio-driven facial animation has various

applications, including education, well-being, and enter-
tainment [25]. Extensive efforts have been devoted to gen-
erating not only lip motions [5, 34, 33] synchronized with
the audio, but also rhythmic head movements [4, 36, 43, 40]
to create more realistic talking heads. However, most ap-
proaches rarely consider emotional expression, an essential
element for delivering communicative information [10].

Facial emotion dynamics are typically expressed through
the coordinated movements of multiple facial muscles in a
global manner [12]. For instance, when surprisingly speak-
ing, individuals tend to widen their eyes and open their
mouths unconsciously larger than displaying other expres-
sions. It suggests that expression and lip motions are intrin-
sically interconnected and mouth shape is crucial for con-
veying emotions [14, 20]. Recently, some works treat ex-
pressions and mouth shapes as a whole and predict them
from the audio [15, 11]. However, audio, which consists
of phoneme-level contents and coarse-grained emotion em-
beddings, is inadequate for controlling the generation of
fine-grained global expressions. Therefore, our goal is to
separately predict expression and mouth shape from sources
in addition to audio and integrate the predictions globally.
Nevertheless, there exist two formidable challenges: (1)
Since expression and mouth shape are inherently coupled
on the face, it is tough to achieve separate prediction and
global integration. (2) Although emotional audio can pro-
vide a rough emotion embedding that indicates the emotion
category, it struggles to guide detailed facial emotion dy-
namics effectively. Even though expression can be obtained
from other plausible sources, it also requires compromis-
ing the consistency between expression and mouth shape to
express emotion overall on the face.

To deal with the challenges above, we propose a novel
audio-driven emotional talking face generation framework,
namely Emotional Motion Memory Network (EMMN). Ba-
sically, we extract emotion embedding from audio follow-
ing EVP [15] and leverage keypoint-based dense motion
fields [29, 36] to represent facial dynamics. Our intuition
is to completely disentangle the entire facial dynamics into
mouth-related space and expression-related space. The for-
mer merely contains the content of audio without expres-
sion information, while the latter encodes all facial factors

about expression to perform expression overall on the face.
To this end, we design Motion Reconstruction module that
decouples and merges the facial dynamics. To simultane-
ously train these two processes, the cross-reconstruction
training strategy [1] is adopted. However, it brings the de-
sire for paired videos with the exact same expression but
different mouth shapes, which is almost impossible to real-
ize in reality [35, 3] due to the strict requirement. To cre-
ate the training pairs, we present a pseudo label generation
strategy via a pre-trained Wav2Lip [26] model with satisfac-
tory lip-sync generation performance. This enables the Mo-
tion Reconstruction module to be trained and further em-
ployed to decompose ground truth videos into mouth mo-
tion features and expression motion features, which serve
as pseudo labels for mouth shape and expression, facili-
tating separate prediction setting. For instance, we design
Audio2Mouth module to predict solely the mouth motion
features from audio.

To ensure the consistency between expression and lip
motion, we hope to recall the expression motion features
most relevant to emotion embedding and the mouth mo-
tion features. Ideally, we suppose that they are disentangled
from the same source. For this purpose, we resort to Mem-
ory Network [39] which leverages external memory to store
information. Specifically, we construct the Motion Mem-
ory Net to store emo-mouth feature (emotion embedding
and mouth motion feature) and the corresponding expres-
sion motion feature as a key-value pair. During training, the
memory aligns emo-mouth features with their correspond-
ing expression motion features in the same address. Hence,
at inference time, the best-matching expression motion fea-
ture can be retrieved by querying with emo-mouth feature
predicted via Audio2Mouth. Using the retrieved expression
features and mouth motion features, Motion Reconstruction
can globally generate the final representation of the entire
emotional facial dynamics. Lastly, a flow estimator and an
image generator from FOMM [29] are introduced to synthe-
size photo-realistic results. Extensive experiments demon-
strate the superiority of our method in terms of expression
naturalness and emotion accuracy compared with state-of-
the-art (SOTA) methods.

Our contributions are summarized as follows: (1) We
present a system named Emotional Motion Memory Net-
work (EMMN) to perform one-shot emotional talking face
generation solely from a reference image and an emotional
audio clip without additional emotion sources. Hence it is
flexible in applying the system. (2) We propose Motion Re-
construction that decomposes the face into expression and
mouth feature to separately predict them and synthesize ex-
pression overall on the face, including the mouth region. (3)
We design Motion Memory-Net to store aligned expression
and emo-mouth features, which ensures the consistency of
the final emotional face motion.
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2. Related work
2.1. Audio-Driven Talking Face Generation

There have been several works related to the talking
head generation from audio. Generally, the current methods
can be divided into intermediate representation based meth-
ods and feature based methods. Intermediate representation
based methods methods [47, 6, 9, 28, 13, 42, 27] usually
leverage the intermediate representation such as landmark
to bridge the gap between the input audio and generated
video. For instance, Zhou et al. [47] first predict landmarks
from audio and subsequently utilize them as guidance to
animate an image to speak. However, the sparse representa-
tions of the landmarks hardly provide delicate information,
inevitably leading to error accumulation. Conversely, we
look into the dense keypoint based representation [29, 36]
that encompasses the entire face motion, including facial
dynamics, head motion, and background. Feature based
methods [5, 45, 46, 44] encode the inputs into implicit fea-
tures and leverage them to generate the result images via de-
coders. Prajwal et al. [26] map audio and face image/video
into latent space and decode them to reconstruct photo-
realistic faces. In addition, they significantly enhance lip-
synchronization with the assistance of lip-sync discrimina-
tor. Nonetheless, none of these methods perform expression
in their results.

2.2. Emotional Talking Face Generation

Compared to lip synchronization synthesis methods, few
works [20, 30, 32] focus on consistent emotion in talking
face generation, which is crucial in communicating. While
Karras et al. [16] learn an emotion latent space to control
the expression during testing, they fail to cover all emotions
owing to the limited data. Recently, Wang et al. [35] re-
lease a large emotional audio-visual MEAD dataset and uti-
lize one-hot vectors to encode emotion. Similarly, Eskimez
et al. [11] take a face image and one-hot emotion vectors to
generate emotional talking face from audio. However, both
approaches integrally predict expression and mouth shape
from audio. Ji et al. [14] extract expression information
from another emotional video with the mouth masked, but
the extracted information primarily indicates local emotion
displacement, neglecting expression on other facial factors
such as the mouth. In contrast, we aim to decouple the
whole face into expression and mouth features separately
and globally reconstruct dynamic face motion, performing
expression with all facial factors on the entire face.

2.3. Memory Network

Memory Network [39, 31, 22] leverages memory com-
ponents to store scene information for long-term memory.
Due to the effectiveness in augmenting features, Mem-
ory Network has demonstrated its great power in various

fields [18, 17, 23, 19] including talking face generation. For
example, Yi et al. [41] store spatial features and aligned
identity features in memory. To refine unrealistic frames
from rough ones, they retrieve the corresponding identity
feature by querying with spatial feature. Similarly, Park
et al. [24] construct Audio-Lip Memory to provide lip fea-
tures for more precise lip synchronization during inference.
However, storing emotion-related features in memory net-
work has yet to be attempted. Sparked by their approaches,
we store emo-mouth features and expression motion fea-
tures as key-value pairs and recall the best-matching ex-
pression motion features using the emo-mouth features as
a query. In this fashion, dynamic face motion can be pro-
duced based on expression and mouth features.

3. Method
3.1. Overview

The proposed network is illustrated in Fig. 2. We first
decouple the face representation of ground truth videos into
mouth motion features and expression motion features by
Motion Reconstruction module (Sec. 3.2) as pseudo labels
for the rest of the training. Next, we introduce the Au-
dio2Mouth module (Sec. 3.3) to predict mouth motion fea-
tures and emotion embeddings from input audios and ref-
erence images. Subsequently, both features are utilized to
query the corresponding expression motion features stored
in the elaborately designed Motion Memory Net (Sec. 3.4).
Lastly, we incorporate the Rendering module (Sec. 3.5) to
synthesize photo-realistic results from the mouth motion
features and retrieved expression motion features. In the
following sections, we will explain each part of our algo-
rithm in detail.

3.2. Motion Reconstruction

Pseudo Label Generation. To prepare paired videos that
are with the exact same expression but different mouth
shapes for cross-reconstruction training [1], we employ
the pre-trained Wav2Lip [26] model to process videos in
MEAD dataset [35]. Concretely, we feed Wav2Lip the
same video with emotion i and different audios with the
content a and b, hence videos vi,a and vi,b with the same
expression i but with different mouth shapes a and b are ob-
tained. In this fashion, we can generate paired data vi,a,
vi,b and vj,b, where vi,b can be treated as the label for
cross-reconstructing vi,a and vj,b during training Motion
Reconstruction module. However, the Wav2Lip model is
trained on LRS2 [2] and there exists an inevitable gap be-
tween LRS2 and MEAD, resulting in slightly poor perfor-
mance in MEAD. To cope with the issue, we evaluate the
synchronization between the generated mouth shapes and
the input audio using the confidence score of SyncNet [8],
and filter out the generated videos that do not exceed the
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Figure 2: The overview of proposed Emotional Motion Memory Network. Before training, we begin by decoupling the
ground truth videos into mouth motion features and expression motion features as pseudo labels (Sec. 3.2 Motion Recon-
struction). During inference, we employ multiple encoders to extract the corresponding features, which we then utilize to
predict mouth motion features and emotion embedding. (Sec. 3.3 Audio2Mouth). By incorporating them, the corresponding
expression motion features can be queried from the learned Motion Memory Network (Sec. 3.4 Motion Memory-Net). The
mouth motion features and the queried expression motion features are integrated to synthesize photo-realistic results based
on the Flow Estimator and Image Generator (Sec. 3.5 Rendering).

preset threshold to obtain adequate high lip-sync paired
videos for subsequent training. It is worth noting that since
Wav2Lip merely alters the mouth shape of the input video
while maintaining the same head pose and expression, the
extracted expression features also contain head pose infor-
mation in addition to facial expression, which aids in gen-
erating head motions without requiring an additional pose
code input.

Design and Training. Motion Reconstruction consists of
Motion Disentanglement and Motion Integration, as de-
picted in the bottom right of Fig. 2. We employ a pre-trained
keypoint Detector Ek [29] to detect input image xi,a for the
motion representation (pi,a, ji,a) pair, where pi,a ∈ RN×2

represents N key-points and ji,a ∈ RN×2×2 represents the
corresponding Jacobian. The detected (pi,a, ji,a) is then
passed through Expression Encoder Ee and Mouth Encoder
Em to extract expression motion feature f i

e with emotion i,
and mouth motion feature fa

m with content a, respectively.
Subsequently, Motion Decoder De,m combines the disen-
tangled features and the face representations (pneu, jneu)
detected from a neutral image of the same subject to re-
construct input motion representations ( ˆpi,a, ˆji,a). During
training, Motion Disentanglement processes images xi,a

and xj,b to obtain disentangled features, which are crossly

recombined and fed into Motion Integration to reconstruct
the face representations ( ˆpi,b, ˆji,b) and ( ˆpj,a, ˆjj,a).

To optimize the network, the cross-reconstruction loss
and self-reconstruction loss are established to define the
Motion Reconstruction task.

Lrec =
∥∥De,m

(
f i
e, f

b
m

)
− Ek(y

i,b)
∥∥
2

+
∥∥De,m

(
f j
e , f

a
m

)
− Ek(y

j,a)
∥∥
2
,

(1)

Lself =
∥∥De,m

(
f i
e, f

a
m

)
− Ek(x

i,a)
∥∥
2

+
∥∥De,m

(
f j
e , f

b
m

)
− Ek(x

j,b)
∥∥
2
,

(2)

where fms and fes are features disentangled from corre-
sponding input xi,a and xj,b. In addition, yi,b and yj,a do-
nate ground truth frames.

In addition, we import two consistency losses, i.e., ex-
pression consistency loss Le-con and mouth consistency loss
Lm-con, to enforce the matching between the features with
the same content and emotion.

Le-con =
∥∥Ee

(
Ek(x

i,a)
)
− Ee

(
Ek(y

i,b)
)∥∥

2

+
∥∥Ee

(
Ek(x

j,a)
)
− Ee

(
Ek(y

j,b)
)∥∥

2
.

(3)
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Lm-con =
∥∥Em

(
Ek(x

i,a)
)
− Em

(
Ek(y

j,a)
)∥∥

2

+
∥∥Em

(
Ek(x

j,b)
)
− Em

(
Ek(y

i,b)
)∥∥

2
.

(4)

The total loss function Ldis can be represented as:

Ldis = Lrec + Lself + λe-conLe-con + λm-conLm-con, (5)

where λe-con and λm-con represent the weights for Le-con and
Lm-con, respectively.

3.3. Audio2Mouth

We adopt the trained Motion Disentanglement compo-
nent to decouple training videos into expression motion fea-
tures and mouth motion features as pseudo labels. Then
we design the Audio2Mouth module to map the audio in-
put into the latent mouth motion space, and Fig. 2 shows
the pipeline of the Audio2Mouth module. Unlike previous
works [36, 37, 14], which take a tuple consisting of refer-
ence image, audio and pose code as input and predict N key-
points, our Audio2Mouth omits the pose code input and out-
puts the mouth motion features in a high dimension. Specif-
ically, we utilize an identity encoder Ei to extract identity
feature fi from reference image Ir, which provides the iden-
tity information. Next, we introduce the pre-trained Emo-
tion Disentanglement module in EVP [15] to separate input
audio a1:T into emotion embedding ee and content embed-
ding ec, where T denotes the length of audio features. The
content embedding ec and identity feature fi are combined
and fed into the Mouth Decoder Dm to predict the mouth
motion features f̂m as described in Sec. 3.2. To predict ac-
curate mouth motion features via the Audio2Mouth module,
we apply an L2 loss, which is calculated as follows:

La2m =
1

T

T∑
t=1

∥∥∥fm(t) − ˆ
fm

(t)
∥∥∥
2
, (6)

where fm
(t) stands for mouth motion feature disentangled

from tth frame in ground truth video v1:T .

3.4. Motion Memory-Net

To ensure the consistency between mouth shape and ex-
pression, we propose the Motion Memory Net, whose pur-
pose is to retrieve the best-matching expression motion fea-
tures when querying with emo-mouth features. Specifically,
we construct the Memory-Net consisting of expression mo-
tion memory Mexp and emo-mouth memory Mem to store
the mutually aligned expression motion and emo-mouth
features. In particular, the expression motion memory Mexp
= {mi

exp}Si=1 comprises of S slots and ith slot stores the ex-
pression motion feature mi

exp. During training, we take the
expression motion feature fe disentangled from the train-
ing videos as guidance for expression motion memory. fe

is first leveraged as a query to calculate the cosine similar-
ity with each slot, which is then processed by the softmax
function Φ(·) as the weight αi

exp of each slot:

αi
exp = Φ

(
fe ·mi

exp

∥fe∥2 ·
∥∥mi

exp

∥∥
2

)
. (7)

In this way, the weight of all slots Ωexp ={
α1

exp, ..., α
i
exp, ..., α

S
exp

}
can be acquired. We regard the

Ωexp as the value address for each slot in memory when
querying via fe. Thus we are capable of recalling the fea-
ture f̃e most relevant to fe by following formula:

f̃e =

S∑
i=1

αi
exp ·mi

exp (8)

To update the expression motion memory, we minimize
the distance between the retrieved feature f̃e and fe:

Lexp-mem =
∥∥∥fe − f̃e

∥∥∥ (9)

However, the fe is unavailable during inference to ac-
quire the weight for each slot. Thus this brings the need to
leverage the available predicted mouth motion feature f̂m
and emotion embedding ee as the key to query the value
in expression motion memory. Concretely, emotion embed-
ding is responsible for the correct emotion category, while
the mouth motion feature ensures the consistency between
expression and mouth shape. Note that in order to estab-
lish the association between audio and memory, we use f̂m
predicted from audio instead of fm disentangled from the
ground truth. We ensure the accuracy of memory by ensur-
ing the accuracy of f̂m constrained via La2m. Therefore, we
construct emo-mouth memory Mem in the same manner as
building expression motion memory:

αi
em = Φ

 (f̂m
⊕

ee) ·mi
em∥∥∥(f̂m⊕ ee)

∥∥∥
2
· ∥mi

em∥2

 , (10)

where
⊕

represents the concatenate operation, and mi
em

denotes ith slot containing emo-mouth motion information
stored in emo-mouth memory Mem. Also, we can obtain the
weight of each slot Ωem =

{
α1

em, ..., α
i
em, ..., α

S
em

}
.

To bridge the correlation between expression motion
memory and emo-mouth memory, we need to ensure that
the matching features in the respective memories are in the
equivalent address. Hence, we utilize the KL divergence to
align:

Lalign = KL(Ωem||Ωexp) (11)

By enforcing key address and value address obtained
from f̂m

⊕
ee and fe consistency, both of them point to

the same slots in the expression motion memory whether
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queried with f̂m
⊕

ee or fe. Therefore during the infer-
ence, we retrieve the best-matching expression motion fea-
ture by using the available emo-mouth feature as a query:

ˆfe;em =

S∑
i=1

αi
em ·mi

exp, (12)

where ˆfe;em denotes the expression motion feature recalled
via emo-mouth feature.

3.5. Rendering

We combine the two retrieved features and the keypoints
of reference neutral image (pneu, jneu) and feed them into
the Motion Integration component in Sec. 3.2 to predict the
whole emotional face motion representation ( ˆp(t), ˆj(t)) in
time step t. To alleviate potential jitter and distortion in
results, we apply a one-euro filter as a post-processing step
on ( ˆp(t), ˆj(t)). Then we adopt the Flow Estimator and Image
Generation architectures [29] to estimate the relative dense
motion between (pneu, jneu) and ( ˆp(t), ˆj(t)), and then to
render the synthesized images ˆy(t).

To train the whole framework, we adopt the 2-stage
train strategy following[36, 14]. Besides the loss functions
above, we detect the motion representation (p(t), j(t)) from
the tth frame y(t) of training video v1:T via a pre-trained
Keypoint Detector Ek as guidance in the first stage. The
loss function Lp,j can be formulated as:

Lp,j =
1

T

T∑
t=1

(∥∥∥p(t) − ˆp(t)
∥∥∥
1
+
∥∥∥j(t) − ˆj(t)

∥∥∥
1

)
. (13)

Therefore, the first stage loss function Lstage1 is formu-
lated by the weighted sum of the above losses.

Lstage1 =La2m + λexp-memLexp-mem

+ λalignLalign + λp,jLp,j,
(14)

where λs are hyper-parameters to balance these terms.
In the second stage, we import a perceptual loss Lstage2 to

fine-tune the model for a lower disparity between the output
ˆy(t) and ground truth y(t). Given the ith channel feature of a

pre-trained VGG layer with l channels VGGi(·), we define
Lstage2 as:

Lstage2 =

l∑
i=1

∥∥∥VGGi(y
(t))− VGGi(

ˆy(t))
∥∥∥
1
. (15)

4. Experiments
4.1. Experimental Settings

Datasets and Implementation Details. We leverage two
public datasets MEAD [35] and LRW [7] for training in our

experiment. MEAD is an emotional audio-visual dataset
containing videos with 8 emotions and multiple audio clips
performed by different actors. We select 32 actors to train
our EMMN model. Since MEAD contains limited actors,
it is challenging to achieve one-shot setting. Therefore, we
introduce LRW, which is collected from various speakers
in BBC news, to pre-train our Audio2Mouth and Render-
ing modules. To evaluate the performance of our method
in one-shot setting, we introduce the neutral faces of arbi-
trary identities from CREMA-D [3] and CFD dataset [21],
both of which are unseen in the training sets. We implement
our EMMN model with PyTorch. Model training and test-
ing are conducted on 2 NVIDIA GeForce GTX 3090 with
24GB memory. We train the Motion Reconstruction for 200
epochs with Adam optimizer with an initial learning rate of
2 × 10−4, and the entire framework is trained for 2 days.
Further details can be found in the supplementary material.
Comparison Setting. We compare our Emotional Mo-
tion Memory Network with several state-of-the-art (SOTA)
methods, including audio-driven talking face generation
methods: Wav2Lip [26], MakeItTalk [47], PC-AVS [46],
Audio2Head [36], as well as emotional talking face gener-
ation methods: ETK [11], MEAD [35] and EAMM [14].
We assess the results using evaluation metrics, including
PSNR, SSIM, M-LMD, SyncNet and F-LMD. PSNR and
SSIM [38] estimate the quality of the generated videos.
Landmarks distances on the mouth (M-LMD) [6] and the
confidence score of SyncNet [8] measure synchronization
between the generated lip motion and the input audio. Com-
pared to M-LMD, F-LMD calculates the disparity of mean
distance of all landmarks between predictions and ground
truth (GT) to evaluate the generated expression.

4.2. Experimental Results

Quantitative Results. We conduct experiments on MEAD
and CREMA-D datasets, and the quantitative comparison is
given in Tab. 1. Compared to SOTAs, our method gener-
ates expression and head pose without any additional emo-
tion source and head pose source. Besides, it is clear that
our method outperforms SOTAs in most metrics on both
datasets. On MEAD, Wav2Lip [26] achieves the highest
score on Syncconf, mainly due to the help of the SyncNet
discriminator when training the model. This also validates
the rationality of our pseudo label generation strategy via
Wav2Lip. Although ETK [11] is trained on CREMA-D
which is unseen in our training set, our method performs
better than ETK, only except for F-LMD. We assume that
the head movements generated by our method and the ex-
pression performance gap between MEAD and CREMA-
D datasets lead to disparity with the fixed pose of ground
truths in CREMA-D.
Qualitative Results. We first compare our method with
the SOTA emotional generation methods. Specifically, we
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Method
MEAD [35] CREMA-D [3] Input Source Output

PSNR↑ SSIM↑ M-LMD↓ F-LMD↓ Syncconf ↑ PSNR↑ SSIM↑ M-LMD↓ F-LMD↓ Syncconf ↑ Pose Emotion Pose Expression

MakeItTalk [47] 28.78 0.58 3.59 3.54 3.07 29.63 0.61 3.36 3.48 2.16 % % ! %

Wav2Lip [26] 28.87 0.57 2.39 3.33 3.69 29.58 0.59 3.32 3.41 2.40 % % % %

Audio2Head [36] 29.07 0.60 3.22 3.26 3.20 29.76 0.59 3.28 3.35 2.19 % % ! %

PC-AVS [46] 28.92 0.59 3.15 3.09 3.12 29.78 0.57 3.11 3.19 2.29 ! % ! %

ETK [11] 27.68 0.48 3.73 3.81 2.75 29.83 0.63 3.06 3.10 2.39 % ! % %

MEAD [35] 28.88 0.58 3.23 3.35 3.08 - - - - - % ! % !

EAMM [14] 29.23 0.62 2.96 3.09 3.43 29.92 0.65 3.12 3.29 2.35 ! ! ! !

Proposed 29.38 0.66 2.78 2.87 3.57 30.03 0.68 3.03 3.16 2.41 % % ! !

GT - 1.00 0.00 0.00 3.77 - 1.00 0.00 0.00 2.69 - - - -

Table 1: Quantitative comparisons with state-of-the-art methods. MEAD [35] mainly works on MEAD dataset, and fails
to generalize to CREMA-D. For each method, we also list additional input sources and output performance for head pose
(Pose) and expression (Emotion).

MEAD MEAD

ETK ETK

EAMM

EMMN

EAMM

EMMN

Figure 3: Qualitative comparisons with state-of-the-art emotional talking face generation methods. The first row present
target images from CFD and CREMA-D datasets and ground-truths with ‘disgueted’ emotion (left) and ‘happy’ emotion
(right) from MEAD dataset. More results can be found in the supplementary video.

randomly select reference images from CFD and CREMA-
D datasets and audios from MEAD as the inputs of each
method. Qualitative results are demonstrated in Fig. 3. Our
method generates more similar expressions with ground
truth. While all methods generate the corresponding expres-
sion, target-specific MEAD [35] fails to generalize to un-
seen subjects as shown in the first image of the second row.
Analogously, ETK focuses on synthesizing expressions, re-
sulting in blurred results when inferring reference images
from CFD dataset, especially in the mouth region. Al-
though EAMM [38] generates accurate mouth motions and
correct expressions, local emotion displacements extracted
from different identities neglect expression on mouth region
(pointed by red arrows) and introduce inconsistency with
the source image, resulting in face deformation in their re-
sults, such as different eye sizes (pointed by blued arrows).

Fig. 4 gives the comparison results with SOTA methods

without emotion. As observed, the mouth shapes predicted
by our method achieve the least disparity from the ground
truth. Notably, though both Audio2Head and EAMM are
keypoint-based methods in the same way as our method, we
only estimate mouth motion feature from the audio while
they predict the entire face motion, which conspires towards
slightly different upper expression from the reference image
(pointed by the red arrows in the 4th column), suggesting
the effectiveness of proposed Motion Reconstruction.
User Study. To estimate the quality of our method and SO-
TAs, we conduct a blind user study with 20 participants (10
males, 10 females). As displayed in Fig. 5a, our method
outperforms other methods over all aspects. Moreover, in
Fig. 5b, our method achieves 65.20% emotion accuracy, in-
dicating that our method synthesizes more recognizable ex-
pressions compared to other methods. Detailed settings and
results can be found in the supplementary.
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Figure 4: Qualitative comparisons with state-of-the-art
audio-driven talking face generation methods. Top row
shows target subject selected from CREMA-D and ground-
truth frames from LRW dataset.
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Figure 5: User study results. The score ranges from 1 to 5,
and error bars imply the standard deviations.

Method/Score PSNR ↑ SSIM ↑ M-LMD ↓ F-LMD ↓
w/o Lrec 29.55 0.73 2.46 2.57
w/o Lself 29.63 0.75 2.49 2.58
w/o Le/m-con 29.57 0.74 2.53 2.71
w/o filter 29.61 0.75 2.50 2.62

Ours 29.89 0.79 2.36 2.45

Table 2: Ablation study for Motion Reconstruction. We
decouple features and reconstruct themselves, and then
adopt Rendering module to synthesize images for metrics
evaluation.

H
ap
py

Reference

Baseline EMMNMMN

Figure 6: Visualization Results of ablation study. The
main improvements are pointed by red and blue arrows.

Ablation Study. To investigate the effectiveness of the
components of the proposed methods, we conduct the ab-
lation study. Firstly, we evaluate the contributions of the
losses and proposed filter process in Sec. 3.2 for motion
self-reconstruction. The results in Tab. 2 indicate that the re-
construction loss Lrec contributes most to video quality. By
incorporating it, PSNR and SSIM scores increase by 0.34
and 0.06, respectively. The improvement on filter also
demonstrates the effectiveness of filtering data. Then we
verify the contributions of the Motion Reconstruction and
Memory Net in a progressive manner. To be specific, the
experiments are arranged as: (1) Baseline: we remove both
modules from EMMN to directly output keypoints based on
fi, ec and ee. (2) Motion Memory Net (MMN): we store the
three specific keypoints in the Expression Motion Memory
based on the observations in EAMM for expression, instead
of expression motion features decomposed by Motion Re-
construction module. (3) EMMN. From the visualization
shown in Fig. 6, we can clearly observe that although we
provide emotion embeddings for baseline, it fails to gener-
ate talking faces with emotion. Besides, the extra emotion
embeddings distort normal expression (i.e., eye deforma-
tion pointed by red arrows). After adding Memory-Net, it
correctly displays emotions on the upper faces, which ver-
ifies that Memory Network can effectively store emotion
information. However, since only three keypoints cannot
globally fuse expression, it neglects the expression affected
on mouth shape (pointed by blue arrows). Compared to
MMN, EMMN incorporates Motion Reconstruction mod-
ule, thus generating more realistic expression on the entire
face, including the mouth region. The results confirm that
the Motion Reconstruction module can significantly disen-
tangle expression from mouth shape and reconstruct it from
the global. We also explore the effect of different memory
slot numbers on the final performance in the supplementary
material.

Limitation Despite the progress achieved, our current
work has the following limitations. First of all, some ex-
pressions, such as ‘disgusted’ and ‘angry’, have similar
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Angry Disgusted

Figure 7: Cases for limitations.

characteristics as illustrated in Fig. 7, our method achieves
a relatively low emotion accuracy on these expressions,
which is consistent with the real videos in MEAD dataset.
Secondly, due to the low resolution of the training data, our
approach is restricted to 256×256 images. In the future,we
will concentrate on overcoming these obstacles.

Ethical Considerations. Our approach has the potential
to be misused for harmful purposes, such as producing
deepfakes. To prevent this, we will limit the licensing of
our model exclusively to research purposes and provide it
to the deepfake detection community. Additionally, we will
take proactive measures to incorporate watermarks into the
deepfake generation process to facilitate their identification.

5. Conclusion

In this paper, we propose a novel Emotional Motion
Memory Network (EMMN) to achieve emotional talking
face generation. Assuming that expression entangled with
lip motion is hardly predicted from audio and that expres-
sion typically involves the entire face, we decouple emo-
mouth features and expression motion features by Motion
Reconstruction and store aligned disentangled features in
constructed Memory Network. Consequently, our method
produces not only precise lip motions but also generates
facial emotion dynamics by considering all facial factors
about expression. Extensive experiments conducted on
multiple datasets demonstrate the superiority of our method
compared to the state-of-the-art methods.
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