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Abstract

Neural Architecture Search (NAS) has shown promising
performance in the automatic design of vision transformers
(ViT) exceeding 1G FLOPs. However, designing lightweight
and low-latency ViT models for diverse mobile devices re-
mains a big challenge. In this work, we propose ElasticViT,
a two-stage NAS approach that trains a high-quality ViT
supernet over a very large search space for covering a wide
range of mobile devices, and then searches an optimal sub-
network (subnet) for direct deployment. However, current
supernet training methods that rely on uniform sampling
suffer from the gradient conflict issue: the sampled sub-
nets can have vastly different model sizes (e.g., 50M vs. 2G
FLOPs), leading to different optimization directions and infe-
rior performance. To address this challenge, we propose two
novel sampling techniques: complexity-aware sampling and
performance-aware sampling. Complexity-aware sampling
limits the FLOPs difference among the subnets sampled
across adjacent training steps, while covering different-sized
subnets in the search space. Performance-aware sampling
further selects subnets that have good accuracy, which can
reduce gradient conflicts and improve supernet quality. Our
discovered models, ElasticViT models, achieve top-1 accu-
racy from 67.2% to 80.0% on ImageNet from 60M to 800M
FLOPs without extra retraining, outperforming all prior
CNNs and ViTs in terms of accuracy and latency. Our tiny
and small models are also the first ViT models that surpass
state-of-the-art CNNs with significantly lower latency on mo-
bile devices. For instance, ElasticViT-S1 runs 2.62× faster
than EfficientNet-B0 with 0.1% higher accuracy.

*Equal contribution
§Work was done during the internship at Microsoft Research
‡Corresponding author (lzhani@microsoft.com)

Figure 1: We train a high-quality ViT supernet for a wide range of
mobile devices. Our discovered ViTs outperform SOTA CNNs and
ViTs with higher accuracy, fewer FLOPs and faster speed.

1. Introduction
Vision Transformers (ViTs) have achieved remarkable

success in various computer vision tasks [14, 31, 51, 5, 64].
However, the success comes at a significant cost - ViTs are
heavy-weight and have high inference latency costs, posing
a great challenge to bring ViTs to resource-limited mobile
devices [56]. Designing accurate and low-latency ViTs be-
comes an important but challenging problem.

Neural Architecture Search (NAS) provides a powerful
tool for automating efficient DNN design. Recently, two-
stage NAS such as BigNAS [59] and AutoFormer [7], de-
couple training and searching process and achieves remark-
able search efficiency and accuracy. The first stage trains
a weight-shared supernet assembling all candidate architec-
tures in the search space, and the second stage uses typical
search algorithms to find best sub-networks (subnets) under
various resource constraints. The searched subnets can di-
rectly inherit supernet weights for deployment, achieving
comparable accuracy to those retrained from scratch. Such
two-stage NAS can eliminate the prohibitively expensive
cost for traditional NAS to retrain each subnet, making it a
practical approach for efficient deployment.

The success of two-stage NAS heavily relies on the qual-
ity of the supernet training in the first stage. However, it’s
extremely challenging to train a high-quality ViT supernet
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for mobile devices, due to the vast mobile diversity: mobile
applications must support a wide range of mobile phones
with varying computation capabilities, from the latest high-
end devices to older ones with much slower CPUs. For
instance, Google Pixel 1 runs 4× slower than Pixel 6. As a
result, the supernet must cover ViTs that range from tiny size
(< 100M FLOPs) for weak devices to large size for strong
ones. However, including both tiny and large ViTs results in
an overwhelmingly larger search space compared to typical
search spaces in two-stage NAS [3, 59, 15]. Training a super-
net over such a search space has been known to suffer from
performance degradation due to optimization interference
caused by subnets with vastly different sizes [11, 60, 63].
While existing works [28, 62, 7, 47] circumvent this issue by
manually designing multiple separate normal-sized search
spaces, the multi-space approach can be costly. Moreover,
there has been limited discussion regarding the root causes
of this problem and how to effectively address it.

In this work, we introduce ElasticViT, a novel approach
for training a high-quality vision transformer supernet that
can efficiently serve both strong and weak mobile devices.
Our approach is built upon a single very large search space
optimized for mobile devices, containing a wide range of vi-
sion transformers with sizes ranging from 37M to 3G FLOPs.
This search space is 107× larger than typical two-stage NAS
search spaces, allowing us to accommodate a broad range of
mobile devices with various resource constraints.

We start by investigating the root causes of poor per-
formance when training a ViT supernet over our exces-
sively large search space. We found that the main reason is
that prior supernet training methods rely on uniform sam-
pling [7, 15, 59, 3], which can easily sample subnets with
vastly different model sizes (e.g.,50M vs. 1G FLOPs) from
our search space. This leads to conflicts between subnets’
gradients and creates optimization challenges. We make
two key observations: (i) the gradient conflict between two
subnets increases with the FLOPs difference between them;
and (ii) gradient conflict between same-sized subnets can be
significantly reduced if they are good subnets.

Inspired by the above observations, we propose two key
techniques to address the gradient conflict issue. First, we
propose complexity-aware sampling to limit the difference
in FLOPs between sampled subnets across adjacent training
steps, while ensuring that different-sized subnets within the
search space are sampled. We achieve this by constraining
the FLOPs level of the sampled subnets to be close to that of
the previous step. Furthermore, we employ a multiple-min
strategy to sample the nearest smallest subnet based on the
FLOPs sampled at each step, thus ensuring performance
bounds without introducing a large FLOPs difference with
other subnets. Second, we introduce performance-aware
sampling that further reduces the gradient conflicts among
subnets with similar FLOPs. Our method samples subnets

with higher potential accuracy at each step from a prior distri-
bution that is dynamically updated based on an exploration
and exploitation policy. The policy leverages a memory
bank and a ViT architecture preference rule. The preference
rule guides the exploration of subnets with wider width and
shallower depth, which are empirically preferred by ViT ar-
chitectures. The memory bank stores historical good subnets
for each FLOPs level using prediction loss as a criterion.

Our contributions are summarized as follows:
• We propose ElasticViT to automate the design of accu-

rate and low-latency ViTs for diverse mobile devices.
For the first time we are able to train a high-quality ViT
supernet over a vast and mobile-regime search space.

• We conduct thorough analysis on the poor-quality su-
pernet trained by existing approaches, and find that
uniform sampling results in subnets of vastly different
sizes, leading to gradient conflicts.

• Inspired by our analysis, we propose two methods,
complexity-aware sampling and performance-aware
sampling, to effectively address the gradient issues by
sampling good subnets and limiting their FLOPs differ-
ences across adjacent training steps.

• Extensive experiments on ImageNet [12] and four mo-
bile devices demonstrate that our discovered models
achieve significant improvements over SOTA efficient
CNN and ViT models in terms of both inference speed
and accuracy. For example, ElasticViT-T3 achieves the
same accuracy of 75.2% as MobileNetV3 with only
160 MFLOPs, while be 1.2× faster. This is the first
time that ViT outperforms CNN with a faster speed on
mobile devices within the 200 MFLOPs range, to the
best of our knowledge. ElasticViT-L achieves 80.0%
accuracy with 806 MFLOPs, which is 5.3% higher than
Autoformer-Tiny [7] while using 1.61× fewer FLOPs.
We also prove that ElasticViT substantially enhance the
quality of supernet training, resulting in a noteworthy
3.9% accuracy improvements for best-searched models.

2. Related works
Efficient Vision Transformers. Many methods have been
proposed to design efficient ViTs. They use different ways,
such as new architectures or modules [6, 19, 25], bet-
ter attention operation [34, 36, 31, 24] and hybrid CNN-
transformer [57, 17, 33, 52, 16, 9, 26]. Hybrid models usu-
ally perform well with small sizes by introducing special
operations. For instance, MobileFormer [9] uses a parallel
CNN-transformer structure with bidirectional bridge. How-
ever, although the FLOPs are reduced, these ViTs still have
high latency because of mobile-unfriendly operations such
as the bidirectional bridge.
Neural Architecture Search. NAS has achieved an amazing
success in automating the design of efficient CNN architec-
tures [40, 18, 4, 59, 3]. Recently, several works apply NAS
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to design improved ViTs, such as Autoformer [7], S3 [8],
ViTAS [46] and ViT-ResNAS [27]. These methods focus
on searching models exceeding 1G FLOPs. For small ViTs,
HR-NAS [13], UniNet [30] and NASViT [15] search for
hybrid CNN-ViTs and achieve promising results under small
FLOPs. However, these NAS works mainly optimize for
FLOPs without considering the efficiency on diverse mobile
devices, which leads to suboptimal performance.
Supernet Training. Early NAS methods [65, 66, 42, 43]
are very costly because they need to train and evaluate many
architectures from scratch. More recent one-shot NAS meth-
ods [18, 4, 29, 10] use weight-sharing to save time. But they
still need to retrain the best architecture from scratch for
higher accuracy, which is expensive when targeting multiple
constraints. To solve this problem, two-stage NAS, such
as OFA [3], BigNAS [59] and AutoFormer [7] decouples
the training and search. They train a supernet where the
good subnets can be directly deployed without retraining.
However, they employ uniform sampling to sample subnets,
which can lead to subnets with significantly different sizes
being sampled in a much larger search space, resulting in gra-
dient conflicts and inferior performance. Our work proposes
conflict-aware supernet training to address this issue.

3. Search Space Design and Training Analysis
3.1. Search Space Design
Mobile-friendly ViTs. While many works aim to design ViT
models with high accuracy and small FLOPs, we observe that
models with small FLOPs may have high latency on mobile
devices. For example, NASViT-A0 [15] has fewer FLOPs
than MobileNetV3, but it runs 2× slower on a Google Pixel
4. MobileFormer [9] has only 52M FLOPs but runs 5.5×
slower. This is because these models incorporate effective
but mobile-unfriendly operations that reduce FLOPs.

Our goal is to design accurate ViTs that can achieve low-
latency on mobile devices. To achieve this, we draw inspi-
ration from recent works [16, 15] and construct our search
space based on mobile-friendly CNN-ViT architecture as
shown in Table 1. In CNN stage, we use MobileNetv2 [44]
(MBv2) and MobileNetv3 [20] (MBv3) blocks. In ViT stage,
we make key modifications based on NASViT attentions for
better efficiency. We remove the slow talking heads [45] and
use Hswish instead of Gelu. We opt not to employ shifted
window attention in Swin [31], because it does not help
much when the input size is small. We measure the latency
on real devices. Our attention can speed up latency by >2×,
making the transformer block more efficient.
A very large search space. Unlike previous ViT NAS
works [7, 46] that focused primarily on large models ex-
ceeding 1G FLOPs, our search space must accommodate a
wide range of ViT configurations, from tiny to large, to meet
the demands of diverse mobile devices. For instance, a high-
end device like the Pixel 6 can handle a large ViT model with

Table 1: Our very large search space to support both weak and
strong mobile devices. It’s 107× larger than that in two-stage NAS.
Tuples of three values represent the lowest value, highest, and steps.

Stage Depths Channels Kernel size
(V scale)

Expansion
ratio Stride

Conv 3×3 1 (16, 24, 8) 3 - 2
MBv2 block 1-2 (16, 24, 8) 3, 5 1 1
MBv2 block 2-5 (16, 32, 8) 3, 5 3, 4, 5, 6 2
MBv3 block 2-6 (16, 48, 8) 3, 5 3, 4, 5, 6 2
Transformer 1-5 (48, 96, 16) 2, 3, 4 2, 3, 4, 5 2
Transformer 1-6 (80, 160, 16) 2, 3, 4 2, 3, 4, 5 1
Transformer 1-6 (144, 288, 16) 2, 3, 4 2, 3, 4, 5 2
Transformer 1-6 (160, 320, 16) 2, 3, 4 2, 3, 4, 5 2

MBPool - 1984 - 6 -

Input resolution 128, 160, 176, 192, 224, 256

500M FLOPs to meet latency constraint of ∼30ms, whereas
a less powerful device such as the Pixel 1 requires a tiny
model with <100M FLOPs to meet the same constraint.

Table 1 presents the final search space. We add many
small choices for each block dimensions to include tiny
ViTs. We also make several key designs to cover poten-
tially good subnets based on previous works. Specifically,
we follow [37] and increase the maximun width choices
and decrease the depth choices for ViT stages. We follow
LeViT [16] and allow V matrix to have larger expansion ra-
tio of {2, 3, 4} (i.e.,V scale). We also allow larger expansion
ratios of {2, 3, 4, 5} for MLP layers, because they are not
redundant when using a typical ratio of 2 [56].

In total, our search space covers a wide range of ViT
subnets with varying sizes, from 37 to 3191 MFLOPs. It
contains an enormous 1.09×1017 subnets, which is a signif-
icant increase of 107× larger than a typical search space
in two-stage NAS (refer to supplementary materials). This
presents new challenges in training a high-quality supernet
over such a large search space.

3.2. Analysis of Training a Very Large Supernet
Supernet training differs from standard single network

training in that all the subnets share weights for their com-
mon parts. The shared weights may receive conflicting gra-
dients that lead to different optimization directions, which
lowers the final accuracy. Several techniques have been
proposed to mitigate this issue [59, 54, 15], have demon-
strated success in training high-quality supernet over typical
search spaces. Among them, sandwich rule is essential to
ensure performance lower and upper bounds. Specifically, it
samples a min, max and two random subnets per iteration.

However, when training a ViT supernet over our vast
search space in Table 1, we observe significant accuracy
drop using previous best practices [54, 15]. Specifically, we
use sandwich rule and follow the same training receipts in
NASViT [15]. Fig. 2(a) compares the accuracy of 20 random
subnets achieved by inheriting supernet weights to retraining
on ImageNet. Compared to retraining, models derived from
the supernet experience an accuracy drop with up to 8%.
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Figure 2: (a) Model accuracy achieved by training from scratch vs. inheriting supernet weights; (b) Gradient cosine similarity of models
with different FLOPs; (c) Under the same FLOPs level, good models share more similar gradients than random sampled models.

Analysis. Compared to a typical ViT supernet, our supernet
includes many tiny subnets and the sizes between subnets can
differ greatly. We randomly sample subnets with MFLOPs
ranging from 50 to 1200 from our supernet, and compute
the cosine similarity of shared weights’ gradient between
each pair under the same batch of training data. A lower
similarity indicates larger differences in gradients and thus
more difficulty in training the supernet well. Fig. 2(b) shows
that gradient similarity of shared weights between two sub-
nets is negatively correlated with their FLOPs difference
(Observation#1). Subnets with similar FLOPs achieve the
highest gradient similarity, while the similarity is close to 0
if there is a large FLOPs difference between two subnets.

Besides FLOPs difference, subnet quality may also affect
gradient similarity of shared weights. If a poor subnet is
sampled and trained, it would disturb the weights of good
subnets. To verify this hypothesis, we randomly sample
50 subnets with same level FLOPs and compute the shared
weights gradient cosine similarity between top subnets and
randomly-sampled subnets. Fig. 2(c) suggests that gradi-
ent similarity between same-size subnets can be greatly im-
proved if they are good subnets (Observation#2).

4. Methodology
Inspired by the observations in § 3.2, we propose two

methods to address the gradient conflict issue. (i) We in-
troduce complexity-aware sampling to restrict the FLOPs
difference between adjacent training steps, as large differ-
ence incurs gradient conflict problem (§ 4.2). (ii) Since
“good subnets” can enhance each other, which further reduce
gradient conflicts, we propose performance-aware sampling
to ensure the training process can sample good subnets as
much as possible (§ 4.3).

4.1. Preliminary

For a search space A, two-stage NAS aims to train a
weight-sharing network (supernet) over A and jointly opti-
mize the parameters of all subnets. Since it is infeasible to
train all subnets in A, this is often achieved by the widely-
used sandwich rule, which samples two types of subnets at

each training step: (i) an expectation term approximated by
a sampled subnet set through a prior distribution Γ over the
search space {sm|sm ∼ Γ(A)}Mm=1 and (ii) a fixed subnet
set sn ∈ S . Formally, the supernet training can be framed as
the following optimization problem:

argmin
w

[
Esm∼Γ(A)LD (f (wsm)) +

∑
sn∈S

LD(f(wsn))

]
,

(1)
where w is the shared weights for all subnets, f(·) denotes
the neural network, L is the loss on the training set D and
ws is the exclusive weights of subnet s.

Without loss of generality, there are two types of subnets
in any space – the random subnets that each dimensions
are sampled between maximum and minimum settings; and
the smallest and largest subnets that each dimensions are
the minimum and maximum settings, respectively. In recent
works [59, 55, 15], sandwich rule often approximates the first
term in Eq. 1 by randomly sampling M = 2 subnets from
a uniform distribution Γ. In the second term, S typically
consists of the largest subnet sl and the smallest subnet ss.

We now revisit the effectiveness of applying sandwich
rule on training our mobile-specialized supernet in Table 1.
Obviously, it can easily cause gradient conflicts due to two
reasons. First, it always sample the smallest (37M FLOPs),
biggest (3191 MFLOPs) and 2 random subnets, which re-
sults in a significant FLOPs difference and often causes the
gradient similarity to be close to 0 (Fig. 2(b)). Second, the
size and quality of the 2 randomly sampled subnets cannot
be guaranteed, which exacerbates the issue.

4.2. Complexity-aware Sampling
In this section, we introduce complexity-aware‡ sampling

to mitigate the gradient conflicts by large FLOPs difference,
while ensuring that different-sized subnets can be trained.
Adjacent Step Sampling For Uniform Subnets. Due to the
extremely large space, randomly sampling M subnets can
result in significant FLOPs differences (refer to supplemen-
tary materials) both within the same training step and across

‡We use FLOPs to represent the complexity metric, which can trivially
be generalized to other metrics (e.g.,latency).
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different training steps. Therefore, we propose to constrain
the FLOPs of M random subnets for each training step. As
shown in Fig. 3, we simply constrain the subnets within the
same training step to have the same level of FLOPs.

However, it is non-trivial to effectively constrain the
FLOPs differences between different training steps, as it
requires ensuring that subnets of varying sizes can be trained
to support diverse resource constraints. We propose adjacent
step sampling to gradually change the FLOPs level.

Specifically, we define a set of gradually increased com-
plexity levels C1, ..., CK (e.g.,100, 200, ..., 800 MFLOPs),
which cover a range of ViT models from tiny to large. Sup-
pose step t− 1 samples the ith complexity level C(t−1)

i , and
step t samples M subnets s(t) under the jth complexity level
of C(t)

j . To satisfy the adjacent step sampling, the FLOPs
distance between these two steps must satisfy the following:

g(s(t);C
(t)
j ) = |C(t)

j − C
(t−1)
i | ≤ Z, (2)

where Z ∈ N+ is the complexity threshold for controlling
the sampling distance between two steps. When Z → +∞,
it is equivalent to random sampling. In this work, we let
Z to be the FLOPs difference between two adjacent steps.
Concretely, the complexity level of step t is either equal to or
adjacent to step t− 1. We therefore offer C(t)

j three options:

C
(t−1)
i−1 , C

(t−1)
i , C

(t−1)
i+1 , representing the choices of decreas-

ing the FLOPs level by one, maintaining the current FLOPs
level, or increasing the FLOPs level by one, respectively.
Remove the Biggest Subnet. Since the biggest subnet has
3191 MFLOPs in our search space, it naturally introduces
a large FLOPs difference with our considered complexity
levels, which can cause gradient conflict at each step. Em-
pirically, we find that removing the largest subnet stabilizes
the training process and improves overall performance.
Use Multiple Hierarchical Smallest Subnets (HSS). Since
the smallest subnet has only 37 MFLOPs, sampling at the
large complexity range (Ci ≥ 500 MFLOPs) can also in-
troduce large FLOPs difference at each step. Unlike the
biggest subnet, the smallest subnet decides the performance
lower bound of the whole space [50], which cannot be re-
moved simply. Therefore, instead of sampling the min sub-
net with only 37 MFLOPs at each step, we sample a nearest
min subnet from the hierarchical smallest subnets (HSS) set
Ŝ = {sn}Nn=1. HSS set includes N = 3 pre-defined subnets
with discrepant complexity. At step t, when sampling around
a complexity level C(t), we select a subnet sn ∈ Ŝ whose
complexity is closest to it as the smallest subnet, as in Eq. 5.

In our experiments, we conduct empirical analysis and
select the N=3 smallest subnets as the HSS set Ŝ. As shown
in Fig. 3, these subnets include the original 37 MFLOPs
subnet (min1), as well as a 160 MFLOPs subnet (min2) and
a 280 MFLOPs subnet (min3), which are sampled and added
as the second and third smallest subnets, respectively.

Discussion for HSS set. The multiple “smallest” subnets
in HSS set logically partition the whole search space into N
hierarchical sub-spaces (Fig. 3). This is differs from previous
methods[7, 8], which manually divide the space into separate
sub-spaces and train them individually. The HSS set offers
two advantages: (i) it enables unified weight-sharing across
the entire space, allowing small subnets to benefit from large
subnets. Moreover, it has been proven that incorporating
small models into larger ones can significantly enhance small
subnets’ performance[2]. (ii) It does not rely on any heuristic
space re-design or strong relationship assumption between
dimensions (e.g., linear correlation in [8]), which enhances
the universality of our method.
Optimization Objective. With applying complexity-aware
sampling, we reformulate Eq. 1 as the follows:

argmin
w

 M∑
s
(t)
m ∈U

LD

(
f(w

s
(t)
m

)
)
+

∑
sn∈Ŝ

σ(sn, C
(t)
j )LD (f (wsn ))

 ,

(3)
where t denotes the current training step, U is the stochastic
subnet set containing M=3 uniform subnets, in which each
subnet has the FLOPs level of C(t)

j for step t:

U =
{
s(t)m |s(t)m ∼ Γ(A) && g

(
s(t)m ;C

(t)
j

)
≤ Z

}M

m=1
,

(4)
and σ(·) selects the nearest smallest subnet from HSS:

σ(sn, C
(t)
j ) =

{
1 if sn is the nearest min that is smaller than C

(t)
j

0 otherwise.
(5)

Note that we still use the notion Γ since the prior distribution
will be determined in § 4.3.

4.3. Performance-aware Sampling

In § 3.2, we observe that top-performing subnets can fur-
ther alleviate the gradient conflict issue. Inspired by this, we
introduce a performance-aware sampling to sample subnets
with potentially higher accuracy.

Specifically, for the M = 3 same-sized subnets in U (as
defined in Eq. 4), we aim to sample from a new distribution
that favors good subnets, rather than a uniform distribution
with random performance. To achieve this, we propose an
exploration and exploitation policy that constructs the new
distribution based on quality-aware memory bank and path
preference rule. The quality-aware memory bank is used
to exploit historical good subnets with a probability of q,
while preference rule explores subnets with wider width and
shallower depth with a probability of 1− q.
Quality-aware Memory Bank. As shown in Fig. 3, mem-
ory bank stores the historical up-to-date good subnets for
each FLOPs level. Specifically, the good subnets are iden-
tified through comparing cross-entropy loss on the current
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min-batch. Suppose step t sample the jth FLOPs level of
Cj , Bj denotes the good subnets for FLOPs of Cj at step
t, the prior distribution Γ can be as a mixture distribution
of the dynamic memory bank and other unexplored subnets.
From this perspective, the expectation of subnet s(t)m is

E
s
(t)
m ∼Γ(A)

= q · U(Bj) + (1− q) · U(ÂCj
), (6)

where Bj ∪ ÂCj
= ACj

and ACj
denotes all the subnets with FLOPs level of Cj

in search space A. U(ÂCj ) is the uniform distribution of
unexplored subnets, which will be further regulated by the
path preference rule in next section.

At the early training, a relatively small value (i.e.,0.2) of q
is applied so that uniform sampling dominates the training to
exploring promising subnets. As training proceeds, the mem-
ory banks are gradually filled, at which q is also gradually
increased to exploit these memorized good subnets.

Memory bank replacement strategy. We adopt the
Worst-Performing strategy to replace the subnet in the
memory bank. When the current subnet outperforms the
worst-performing subnet in the memory bank, the worst-
performing subnet is replaced by the current subnet.
Path Preference Rule. In Eq. 6, when exploring unvisited
subnets from ÂCj , we propose to sample ViT-preferred archi-
tectures that are more likely to achieve higher accuracy. Our
approach is inspired by recent studies [37, 41], which found
that in pure ViT models, the later Transformer stages tend to
prefer wider channels over more layers compared to CNN
models. We empirically verify that this conclusion holds
true in the hybrid CNN-ViT NAS space (see supplementary
materials), which motivates us to incorporate this preference
into the super-network training to filter out inferior subnets.

Specifically, when a subnet s(t) = {o(t)width, o
(t)
depth} is

sampled (i.e.,through uniform distribution of second term
in Eq. 6), we expect it to have wider widths and shallower
depths in Transformer stages, where o

(t)
width and o

(t)
depth are

the width and depth dimension (i.e., the dimension of inter-
ests ‡), respectively.

However, it’s non-trivial to determine whether a ViT is a
deep and narrow model or a shallow and wide model. Our
approach involves quantifying a subnet’s FLOPs distribution
in terms of the depth and width dimensions by comparing
it with an anchor model. This enables us to determine the
subnet’s preference in terms of depths and widths. Specif-
ically, suppose the anchor model is sac = {oacwidth, o

ac
depth}

and the sampled subnet is s(t) = {o(t)width, o
(t)
depth}, our first

step is to generate a new subnet s(t) = {oac
width, o

(t)
depth} by

aligning all dimensions to anchor model except the depth
dimension, and another new subnet ŝ(t) = {o(t)width,o

ac
depth}

‡For simplicity, we omit the remaining dimensions (e.g.,kernel size,
expansion ratio, etc.) since they are not the dimensions of interest.

Figure 3: The overview of our proposed confict-aware supernet
training. At step t, we first sample a target FLOPs that is close to
that at step t-1, then we sample 3 subnets with same level of FLOPs
and find a nearest min subnet to update supernet weights.

by aligning all dimensions to anchor model except widths.
Then, we compute the FLOPs differences between two new
subnets and the anchor model:

Φa(o
(t)
width) = FLOPs(s(t))− FLOPs(sac), (7)

Φb(o
(t)
depth) = FLOPs(ŝ(t))− FLOPs(sac). (8)

If Φa ≥ Φb, subnet s(t) is considered to have wider widths
and shallower depths for transformer stages, which adheres
to path preference rule, and we will train it. Otherwise, we
resample a new subnet and repeat the above steps.

The quality of the anchor model sac can impact the va-
lidity of these comparisons. We conjecture that the memory
bank captures such preferences and thus select the subnet
with minimal loss in the memory bank as the anchor model.

4.4. Overall Supernet Training Process
Fig. 3 shows the supernet training process that uses both

complexity-aware and performance-aware sampling tech-
niques. At step t, we choose a FLOPs level C

(t)
j from

{C(t−1)
i−1 , C

(t−1)
i , C

(t−1)
i+1 } that is close to C

(t−1)
i at step t−1.

Then, we sample 1 smallest subnet and M=3 stochastic sub-
nets for training. The smallest subnet is the nearest one from
the HSS set with FLOPs closest to C

(t)
j . The M = 3 subnets

have FLOPs equal to C
(t)
j . They are either from the memory

bank Bj with probability q or based on the path preference
rule with probability 1− q. We compute and accumulate the
gradients for above 4 subnets. Then, we use the accumulated
gradients to update supernet parameters.

5. Evaluation
Setup. We apply our proposed techniques to train our very
large ViT supernet for 600 epochs. The complexity levels
used in the training are set to {100, 200, 300, 400, 500, 700,
900, 1200} MFLOPs, which are suitable for mobile-regime
ViTs. The other training setting and hyper-parameters fol-
lows the existing best practices [15, 54]. We list the detailed
numbers in supplementary materials.

Then, we evaluate the effectiveness of our trained ViT
supernet on four mobile phones with varying resource lev-
els: weak (Pixel1), neutral (Pixel4, Xiaomi11), and strong
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Table 2: ElasticViT performance on ImageNet-1K [12] with com-
parison to state-of-the-art efficient CNN and ViT models. We group
models based on the hardware they are suited according to FLOPs.
∗: latency is measured on each group’s corresponding hardware.

Tiny models:<100 MFLOPs for weak Pixel 1 phone
Model MFLOPs Top-1 Acc Latency∗ Type

ShuffleNet-V2 x0.5 [32] 41 60.3 8.7 ms CNN
ElasticViT-T0 37 61.1 8.5 ms ViT NAS

MnasNet-x0.35 [48] 63 64.1 13.5 ms CNN NAS
MobileFormer [9] 52 68.7 176.6 ms ViT

ElasticViT-T1 62 67.2 13.1 ms ViT NAS

Tiny models: 100∼150 MFLOPs for weak Pixel 1 phone
ShuffleNet-V2 1× [32] 146 69.4 24.3 ms CNN

Cream [39] 114 72.8 24.3 ms CNN NAS
FBNet-v2 [53] 126 73.2 22.5 ms CNN NAS

MobileNet-V3 x0.75 [20] 155 73.3 26.4 ms CNN NAS
MobileFormer [9] 96 72.8 216.3 ms ViT

ElasticViT-T2 119 73.8 22.4 ms ViT NAS
ElasticViT-T3 160 75.2 29.2 ms ViT NAS

Small models: 200∼350 MFLOPs for neutral Pixel 4 phone
MobileNet-v3 x1.0 [20] 219 75.2 24.2 ms CNN NAS

FBNet-v2 [53] 238 76.0 22.1 ms CNN NAS
OFA #25 [3] 230 76.4 25.2 ms CNN NAS

BigNAS-S [59] 242 76.5 32.6 ms CNN NAS
MobileFormer [9] 214 76.7 415.1 ms ViT
HR-NAS-A [13] 267 76.6 - ViT NAS
ElasticViT-S1 218 77.2 21.0 ms ViT NAS

GreedyNAS-v2 [21] 324 77.5 65.4 ms CNN NAS
LeViT-128S [16] 305 76.6 30.5 ms ViT
HR-NAS-B [13] 325 77.3 - ViT NAS
ElasticViT-S2 318 78.6 29.6 ms ViT NAS

Medium models: 350∼500 MFLOPs for neutral Pixel 4 phone
EfficientNet-B0 [49] 390 77.1 55.1 ms CNN NAS

BigNAS-M [59] 418 78.9 64.3 ms CNN NAS
MobileViT-XXS [33] 364 69.0 84.1 ms ViT

LeViT-128 [16] 406 78.6 40.2 ms ViT
MobileViTv3-0.5 [52] 481 72.3 96.7 ms ViT

ElasticViT-M 415 79.1 37.4 ms ViT NAS

Large models: ≥ 500 MFLOPs for strong Pixel 6 phone
MAGIC-AT [58] 598 76.8 37.9 ms CNN NAS
BigNAS-L [59] 586 79.5 45.7 ms CNN NAS

MobileViTv2-0.5 [34] 500 70.2 56.5 ms ViT
UniNet-B0 [30] 560 79.1 53.9 ms ViT NAS
ElasticViT-L1 516 79.4 33.1 ms ViT NAS

EfficientNet-B1 [49] 700 79.1 49.9 ms CNN NAS
EdgeViT-XXS [36] 600 60.0 69.6 ms ViT
MobileViT-XS [33] 986 74.8 84.4 ms ViT
Autoformer-Tiny [7] 1300 74.7 71.1 ms ViT NAS
ViTAS-Twins-T [47] 1400 79.4 - ViT NAS

ElasticViT-L2 704 79.8 43.8 ms ViT NAS
ElasticViT-L3 806 80.0 50.5 ms ViT NAS

(Pixel6). For each device, we set a range of latency con-
straints and use nn-Meter [61] to build a latency predictor
for efficient search. We use the evolutionary search method
in OFA [3] to search 5k subnets for each latency constraint.

5.1. Main Results on ImageNet
Comparison with efficient CNN and ViT models. Table 2
reports the comparison with state-of-the-art models includ-
ing both strong CNNs and recent efficient ViTs. Remark-
ably, for the first time, we utilize two-stage NAS to deploy
lightweight and low-latency ViT models ranging from 37
to 800 MFLOPs, enabling us to bring accurate ViTs to a

wide range of mobile devices. Without retraining or finetun-
ing, our discovered subnets ElasticViT models significantly
outperform all evaluated ViT and CNN baselines.

First, our models significantly outperform prior ViTs
that are designed for mobile devices. For tiny ViTs, our
ElasticViT-T3 achieves 75.2% accuracy under only 160
MFLOPs, which is 2.9% better than MobileNetV3x0.75 in
terms of similar FLOPs. For medium-sized ViTs, ElasticViT-
M achieves 79.1% accuracy under 415 MFLOPs, signifi-
cantly outperforming existing mobile ViTs with 0.5% and
4.8% higher accuracy than LeViT and MobileViTv3 [52],
respectively. For large ViT models where ImageNet classifi-
cation accuracy saturates, ElasticViT-L3 still has 0.6% and
5.3% accuracy improvement compared with Autoformer [7]
and ViTAS [47] with 1.7× and 1.6× fewer FLOPs. Further-
more, our ViT models not only achieve high accuracy but
also demonstrate fast real inference latency, making them
practical for deployment on resource-constrained mobile
phones. This sets them apart from other mobile ViT ap-
proaches that solely focus on reducing FLOPs. For instance,
with only 214 MFLOP, MobileFormer [9] has a slow la-
tency of 415.1 ms on Pixel4, which is 17.2× slower than
MobileNetV3 and 19.7× slower than our ElasticViT-S1.

Second, our models also surpass lightweight CNNs with
higher accuracy and lower latency. For instance, ElasticViT-
T0 achieves 61.1% accuracy with only 37 MFLOPs, which
outperforms ShuffleNetv2x0.5 with 0.8% higher accuracy.
ElasticViT-T3 achieves the same accuracy of 75.2% as Mo-
bileNetV3 with only 160 MFLOPs, while be 1.2× faster.
This is the first time that ViT outperforms CNN with a faster
speed on mobile devices within the 200 MFLOPs range.
Deploying efficient ViTs for diverse mobile phones. Now
we apply our ViT supernet to get different specialized sub-
nets for diverse mobile devices. As a baseline for compari-
son, we choose OFA [3], which represents the state-of-the-art
hardware-aware NAS for delivering efficient mobile-regime
CNNs. Instead of relying solely on FLOPs to measure on-
device efficiency, we use real inference latency for com-
parison. To ensure a fair comparison, we adopt the same
approach as OFA and build a latency predictor for each of
our test devices. We conduct an evolutionary search to find
the optimal CNN subnets for each device. Note that we
didn’t compare with ViT NAS baselines, as existing works
focus on large ViTs, whose supernets are out of range for
searching low-latency models for mobile devices.

Fig. 4 presents the latency-accuracy curve of our ViTs
compared to OFA on diverse mobile devices. Our discov-
ered ViT models consistently outperform OFA under various
latency constraints, on both weak and strong mobile devices.
Notably, our models are the first ViT models to achieve real-
time inference latency on mobile devices without compro-
mising accuracy. These results demonstrate the effectiveness
of our approach and highlight the potential of transformers
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Figure 4: Under the same latency constraint, the discovered ViTs by ElasticViT surpass state-of-the-art mobile CNNs on diverse mobile
devices. From left to right: old and weak devices to latest and strong devices.

Table 3: Ablation study results on ImageNet. We show the top1
accuracy of best searched models for each case. Note that Multiple
min is applied on top of Adjacent sampling; Perf-aware sampling
is applied on top of both Adjacent sampling and Multiple min.

Method MFLOPs
100 200 300 400 500 600 700 800

Baseline (Sandwich rule) 69.9 74.2 76.5 77.4 77.8 78.3 78.7 79.0

Adjacent step sampling 73.2 75.6 76.7 77.5 78.2 78.3 78.7 79.0
+Multiple min (HSS) 72.8 76.7 78.4 79.0 79.3 79.4 79.6 79.7

++Perf-aware sampling 73.8 77.2 78.6 79.1 79.4 79.6 79.8 80.0

for efficient, high-performance models on mobile devices.

5.2. Ablation Study
We now conduct ablation studies to evaluate 1) how each

of our techniques can improve supernet training; 2) how our
techniques mitigate the gradient conflict issues; and 3) the
performance of our searched model compared to retraining.
Ablation study on each technique. Table 3 shows the ac-
curacy of the best-searched models under different supernet
training techniques. We start with the baseline supernet that
is trained using the original sandwich rule. Then we apply
our techniques one by one to enhance the supernet training.
We keep all the other training settings and search process
consistent for a fair comparison.

Table 3 illustrates the effectiveness of our proposed tech-
niques in enhancing supernet training over a vast ViT search
space. Both adjacent step sampling and multiple min strategy
effectively controls the FLOPs differences among trained
subnets, resulting in substantial top-1 accuracy gains of up
to 3.3%. Furthermore, by further using performance-aware
sampling to train good subnets, we are able to further im-
prove the best-searched ViTs by up to 1% accuracy.
The effectiveness of mitigating gradient conflicts. Our
accuracy improvements primarily stem from the effective
mitigation of gradient conflicts. To validate this, we con-
duct experiments on two supernets trained with different
approaches: one using our proposed techniques and one us-
ing the sandwich rule as a baseline. We freeze the weights for
both supernets and study the gradients of different subnets
under the same batch of training data. We randomly sample

Table 4: Gradient cosine similarity between subnets in supernet
trained with different methods. The ”good” subnets refer to the
top10 subnets chosen from the randomly sampled 50 subnets.

Method
MFLOPs

50 200 600
Random Good Random Good Random Good

Sandwich rule 0.37 0.47 0.32 0.41 0.31 0.46
Ours 0.50 0.56 0.51 0.67 0.51 0.67

Table 5: Best-searched ViT top-1 accuracy of inheriting supernet’s
weights vs. retraining from scratch.

Method MFLOPs
100 200 300 400 500 600 700 800

Train from scratch 73.4 75.3 76.6 77.7 79.0 79.5 79.9 80.0
ElasticViT 73.8 77.2 78.6 79.1 79.4 79.6 79.8 80.0

50 subnets under three levels of FLOPs: 50M, 200M, and
600M. We compute the cosine similarity of shared weights’
gradient between each pair of subnets under the same FLOPs.
A higher cosine similarity indicates less gradient conflict.

Table 4 shows the average gradient similarity between
subnets on both supernets. Compared to vanilla sandwich
rule, we can significantly improve the gradient similarity for
both random and good subnets, suggesting that our method
can efficiently mitigate the gradient conflicts.
Comparison with training from scratch. High-quality
supernet training can ensure that subnets achieve compara-
ble accuracy as those trained from scratch. We retrain each
subnet with a batch size of 512 on 8 Nvidia V100 GPUs,
following the same training settings as LeViT [16]. Table 5
compares the accuracy on ImageNet. These selected sub-
nets can achieve even higher accuracy by directly inheriting
weights from our supernet, with up to 2% improvement.
Interestingly, we notice that larger ViT models achieve com-
parable accuracy to retraining, while tiny and small ViTs
(<500 MFLOPs) can benefit more from supernet training.

5.3. Transfer Learning
Fine-grained classification. We transfer ElasticViT to a list
of commonly used transfer learning datasets: 1) CIFAR10
and CIFAR100 [23]; 2) fine-grained classification: Food-
101 [1], Oxford Flowers [35] and Pets [38]. We take the
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Table 6: Transfer learning results on downstream image classifica-
tion datasets. We measure the latency on Pixel 4.

Model Latency CIFAR10 CIFAR100 Food-101 Flowers Pets

MobileNetV3 24.2 ms 97.1 83.3 86.8 94.3 87.7
ElasticViT-S1 21.0 ms 97.5 86.1 87.2 94.3 92.1

LeViT-128S 30.5 ms 96.8 85.0 73.6 86.2 90.1
ElasticViT-S2 29.6 ms 97.5 86.9 88.3 95.2 92.9
EfficientNet-B0 55.1 ms 97.9 86.9 89.1 92.4 92.2

LeViT-128 40.2 ms 97.8 86.6 80.8 86.2 92.2
ElasticViT-M 37.5 ms 97.9 87.0 88.8 95.6 93.3

Table 7: Transfer learning results on COCO object detection task
with comparisons to other light-weight CNN models.

Type Model FLOPs RetinaNet 1×
(M) AP AP50 AP75 APs APm APl

CNN MobileNetV2 300 28.3 46.7 29.3 14.8 30.7 38.1
CNN MobileNetV3 217 29.9 49.3 30.8 14.9 33.3 41.1

CNN NAS SPOS 365 30.7 49.8 32.2 15.4 33.9 41.6
ViT NAS ElasticViT-S2 318 31.3 50.3 31.8 15.6 34.7 42.5

pretrained checkpoints on ImageNet and fine-tune on new
datasets. We closely follow the hyper-parameter settings in
GPipe [22]. The results are summarized in Table 6. Com-
pared to existing efficient CNNs and ViTs, our ElasticViT
models achieves significantly better accuracy with fast infer-
ence speed on the Google Pixel 4.
Object detection. To further demonstrate our generalization
ability, we conduct transfer learning on COCO object detec-
tion task. Table 7 shows that our ElasticViT-S2 outperforms
MobileNetV2 by 3.0% AP with similar FLOPs and achieves
a higher AP than SPOS [18] while using 13% fewer FLOPs.

6. Conclusion
In this paper, we propose ElasticViT, a two-stage NAS

approach that trains a high-quality supernet for deploying
accurate and low-latency vision transformers on diverse mo-
bile devices. Our approach introduces two key techniques to
address the gradient conflicts issue by constraining FLOPs
differences among sampled subnets and sampling potentially
good subnets, greatly improving supernet training quality.
Our discovered ViT models outperfom prior-art efficient
CNNs and ViTs on the ImageNet dataset, establishing new
SOTA accuracy under various latency constraints.
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