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Abstract

The whole slide image (WSI) classification is often for-
mulated as a multiple instance learning (MIL) problem.
Since the positive tissue is only a small fraction of the gi-
gapixel WSI, existing MIL methods intuitively focus on iden-
tifying salient instances via attention mechanisms. How-
ever, this leads to a bias towards easy-to-classify instances
while neglecting hard-to-classify instances. Some litera-
ture has revealed that hard examples are beneficial for
modeling a discriminative boundary accurately. By ap-
plying such an idea at the instance level, we elaborate a
novel MIL framework with masked hard instance mining
(MHIM-MIL), which uses a Siamese structure (Teacher-
Student) with a consistency constraint to explore the poten-
tial hard instances. With several instance masking strate-
gies based on attention scores, MHIM-MIL employs a mo-
mentum teacher to implicitly mine hard instances for train-
ing the student model, which can be any attention-based
MIL model. This counter-intuitive strategy essentially en-
ables the student to learn a better discriminating boundary.
Moreover, the student is used to update the teacher with an
exponential moving average (EMA), which in turn identi-
fies new hard instances for subsequent training iterations
and stabilizes the optimization. Experimental results on the
CAMELYON-16 and TCGA Lung Cancer datasets demon-
strate that MHIM-MIL outperforms other latest methods in
terms of performance and training cost. The code is avail-
able at: https://github.com/DearCaat/MHIM-MIL.

1. Introduction
Histopathological image analysis plays a crucial role in

modern medicine, particularly in the treatment of cancer,
where it serves as the gold standard for diagnosis [18, 20,
24,45]. Digitalizating pathological images into Whole Slide
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Figure 1: Left: Previous MIL models focus on the more
salient instances. Right: MHIM-MIL mines an amount of
hard-to-classify instances to learn a better boundary.

Images (WSIs) through digital slide scanner has opened
new avenues for computer-aided analysis [9, 26]. Due to
the huge size of a WSI and the lack of pixel-level annota-
tions, histopathological image analysis is commonly formu-
lated as a multiple instance learning (MIL) task [10,23,31].
In MIL, each WSI (or slide) is a bag containing thousands
of unlabeled instances (patches) cropped from the slide.
With at least one instance being disease positive, the bag
is deemed positive, otherwise negative.

However, the number of slides is limited and each slide
contains a mass of instances with a low positive propor-
tion. This imbalance would hinder the inference of bag la-
bels [16, 43]. To alleviate this issue, several WSI classifica-
tion methods [6,16–18,26] employ an attention mechanism
to aggregate salient instance features into a bag-level fea-
ture for WSI classification. Furthermore, some MIL frame-
works [17, 21, 40, 43] focus on the more salient instances in
the bag and leverage them to facilitate WSI classification.
For instance, existing frameworks [40, 43] propose to only
select the instances that correspond to the top K highest or
lowest attention scores [17, 40] or patch probabilities [43]
for yielding high-quality bag embedding for both training
and testing.
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These salient instances are actually “easy-to-classify” in-
stances, which are not optimal for training a discriminative
WSI classification model. In conventional machine learn-
ing, such as Support Vector Machines (SVM) [13], samples
near the category distribution boundary are more challeng-
ing to classify, but are more useful for depicting the clas-
sification boundary, as illustrated in Figure 1. Moreover,
other deep learning works [25, 28, 33, 34] also reveal that
mining hard samples for training can improve the general-
ization abilities of models. By applying such an idea at the
instance level, we can better highlight the “hard-to-classify”
instances that facilitate MIL model training, and benefit the
final WSI classification. However, the lack of instance la-
bels poses a challenge to the direct application of traditional
hard sample mining strategies at the instance level.

To address this issue, we present a novel MIL framework
based on masked hard instance mining strategies (MHIM)
named MHIM-MIL. The main idea of MHIM is to mask out
the instances with high attention scores to highlight the hard
instances for model training. Based on this, we incorpo-
rate two other instance masking strategies to enhance train-
ing efficiency and mitigate the over-fitting risk. Another
key design of MHIM-MIL is an instance attention genera-
tor based on a Siamese structure (Teacher-Student) [3, 8].
In MHIM-MIL, the MIL-based WSI classification model is
the student network, which aggregates hard instances mined
by a momentum teacher with different instance masking
strategies. The momentum teacher is updated using an
exponential moving average (EMA) of the student model.
Moreover, the framework is optimized by inducing a con-
sistency constraint that explores more supervised informa-
tion beyond the limited slide label. Unlike the conventional
MIL frameworks [40, 43], which adopt complex cascade
gradient-updating structures, our method is more simple
and does not require additional parameters. It not only im-
proves efficiency but also provides improved performance
stability. The contribution of this paper is summarized as
follows,

• We propose a simple and efficient MIL framework
with masked hard instance mining named MHIM-
MIL. It implicitly mines hard instances with in-
stance attention for training a more discriminative MIL
model. Extensive experiments on two WSI datasets
validate that MHIM boosts different MIL models and
outperforms other latest methods in terms of perfor-
mance and training cost.

• We propose several hybrid instance masking strate-
gies for indirectly mining hard instances in MIL. These
strategies not only address the reliance problem of con-
ventional methods on instance-level supervision but
also enhance the training efficiency of the model and
mitigate the over-fitting risk.

• With the Siamese structure, we introduce a parameter-
free momentum teacher to obtain instance attention
scores more efficiently and stably. Moreover, we em-
ploy a consistency-based iterative optimization to im-
prove the discriminability of both models progres-
sively.

2. Related Work
2.1. Multiple Instance Learning in WSI Analysis

Multiple Instance Learning (MIL) [10] has been widely
used in WSI analysis with its unique learning paradigm in
recent years [17, 22, 26, 35, 40, 42]. MIL is a weakly super-
vised learning framework that utilizes coarse-grained bag
labels for training instead of fine-grained instance annota-
tions. Previous algorithms can be broadly categorized into
two groups: instance-level [4, 12, 15, 40] and embedding-
level [9, 27, 38, 39, 43]. The former obtain instance la-
bels and aggregate them to obtain the bag label, whereas
the latter aggregate all instance features into a high-level
bag embedding for bag prediction. Most embedding-level
methods share the basic idea of AB-MIL [16], which em-
ploys learnable weights to aggregate salient instance fea-
tures into bag embedding. Furthermore, some MIL frame-
works [17, 21, 40, 43] mine more salient instances making
classification easier and facilitating classification. For ex-
ample, Lu et al. selected the most salient instances based
on their attention scores (e.g., maximum and minimum
scores) to compute instance-level loss and improve per-
formance [21]. Zhang et al. proposed a class activation
map (CAM) based on the AB-MIL paradigm to better mine
salient instances and used AB-MIL to aggregate them into
bag embedding [43]. In addition, feature clustering meth-
ods [27,37,44] computed cluster centroids of all feature em-
beddings and used representative embeddings for the final
prediction. However, all these methods focused excessively
on salient instances in training, which are easy instances
with high confidence scores and can be easily classified. As
a result, they overlook the importance of hard instances for
training. In this paper, we intend to mine hard instances for
improving WSI classification performance.

2.2. Hard Sample Mining in Computer Vision

Hard sample mining is a popular technique to speed
up convergence and enhance the discriminative power of
the model in many deep learning areas, such as face
recognition [25], object detection [29, 36], person re-
identification [1, 28, 33, 34], and deep metric learning [30,
32]. The main idea behind this technique is to select the
samples which are hard to classify correctly (i.e., hard neg-
atives and hard positives) for alleviating the imbalance be-
tween positive and negative samples and facilitating model
training. There are generally three groups of approaches
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for evaluating sample difficulty: loss-based [14], similarity-
based [7], and learnable weight-based [41]. Typically, these
strategies require complete sample supervision information.
Drawing on the ideas of the above works, we propose a hard
instance mining approach in MIL, mining hard examples at
the instance level. In this, there are no complete instance
labels, only the bag label is available. Similar to our ap-
proach, Li et al. utilized attention scores to identify salient
instances from false negative bags to serve as hard negative
instances and used them to compose the hard bags for im-
proving classification performance [19]. A key difference
is that we indirectly mine hard instances by masking out
the most salient instances rather than directly locating hard
negative instances.

3. Proposed Method
3.1. Background: MIL Formulation

In MIL, any input WSI X is considered as a bag with
multiple instances, which can be represented as X =
{xi}Ni=1. xi is a patch collected from the WSI and consid-
ered as the i-th instance of X . N is the number of instances.
For a classification task, there exists a known label Y ∈ C
for the bag and an unknown label yn ∈ C for each instance,
where C is the collection of category labels. The goal of
a MIL model M(·) is to predict the bag label with all in-
stances Ŷ ←M(X). The popular solution is to learn a bag
representation F from the extracted features of instances
Z = {zi}Ni=1 in a bag, which is also referred as the instance
aggregation step. And a classifier C(·), trained upon the F ,
can be used to predict the bag label Ŷ ← C(F ). There are
two ways to aggregate instances for achieving bag embed-
ding. One is the attention-based aggregation [16] denoted
as follows,

F =

N∑
i=1

aizi ∈ RD, (1)

where ai is the learnable scalar weight for zi, and D is the
dimension of vector F and zi. Many works [17, 21, 43] fol-
low this formulation but differ in the ways they generate the
attention score ai.

Another is the multi-head self-attention (MSA) based ag-
gregation [26]. In this fashion, a class token z0 is embedded
with the instance features to get the initial input sequence
Z0 = [z0, z1, . . . , zN ] ∈ R(N+1)×D for aggregating in-
stance features. This can be formulated as,

head = Aℓ
(
Zℓ−1WV

)
∈ RN×D

H , ℓ = 1 . . . L

Zℓ = Concat (head1, · · · , headH)WO, ℓ = 1 . . . L
(2)

where WV ∈ RD×D
H and WO ∈ RD×D are the learnable

projection matrices of MSA. Aℓ ∈ R(N+1)×(N+1) is the
attention matrix of the ℓ-th layer, L is the number of MSA

block, and H is the number of head in each MSA block.
The bag embedding F is the output class token at the final
layer,

F = ZL
0 . (3)

The self-attention-based bag embedding is essentially a spe-
cial case of attention-based bag embedding in the multi-
instance learning setting. Collectively, these approaches can
be referred to as the general attention-based MIL method.

3.2. MHIM-MIL for WSI Classification

In general attention-based MIL frameworks, the atten-
tion scores of instances indicate the contributions of in-
stances to the bag classification. The salient instances with
high scores are useful for classifying WSI in the testing
phase but are not conducive to training a MIL model with
good generalization ability. Although hard samples have
been proven to enhance the generalization ability of the
model in many computer vision scenarios [11, 32–34], pre-
vious MIL works focus more on exploiting the salient in-
stances and neglecting the utilization of hard instances in
model optimization.

In this paper, we propose a simple and efficient MIL
framework with Masked Hard Instance Mining (MHIM-
MIL) to boost the WSI classification. As illustrated in
Figure 2, the MHIM-MIL framework employs a Siamese
structure during the training phase. The main component
of our framework is a general attention-based MIL model
(Student), denoted as S(·), for aggregating instance fea-
tures. To increase the discriminatory difficulty of the stu-
dent model and force it to focus on hard instances, we
introduce a momentum teacher, denoted as T (·), to score
the instances with attention weights and then employ some
masked hard instance mining strategies to mask the salient
instances while preserving the hard instances. After hard in-
stance mining, all the mined features are forwarded into the
student model for the inference of the bag label. The teacher
shares the same network structure as the student model but
does not need gradient-based updates. It is worth mention-
ing that, due to the varying number of instances within each
bag, the non-batch gradient descent algorithm (i.e., SGD
with batch size 1) is typically employed to optimize the MIL
model. Therefore, compared to the traditional MIL frame-
works with two-tier gradient updating models [40, 43], this
Siamese structure makes training more stable and efficient
with fewer parameters. The proposed framework can be de-
fined as,

Ŷ = S
(
Ẑ
)
= S (MT (Z)) , (4)

where MT (·) denotes a masked hard instance mining strat-
egy through the teacher model and Ẑ are the mined in-
stances.
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Figure 2: Overview of proposed MHIM-MIL. A momentum teacher is used to compute attention scores for all instances.
We mask instances based on attention with hard mining strategies and feed the remaining to the student model. The student
is updated by a consistency loss term Lcon and a label error loss term Lcls. The teacher parameters are updated with an
Exponential Moving Average (EMA) of the student parameters without gradient updates. In the inference phase, we use the
complete input instances and the student model only.

3.3. Masked Hard Instance Mining Strategy

Conventional hard sample mining strategies are difficult
to apply without instance-level supervision. We address
this challenge by proposing masked hard instance mining
strategies that use attention scores to implicitly mine hard
instances by masking out easy instances with high atten-
tion scores. More specifically, given a complete sequence
of instance features Z = {zi}Ni=1 as the input of the teacher
model T (·), the teacher outputs the attention weight ai for
each instance as follow,

A = [a1, . . . , ai, . . . , aN ] = T (Z) . (5)

Then, we obtain the indices of the attention sequence in de-
scending order by applying a sorting operation on A,

I = [i1, i2, . . . , iN ] = Sort (A) , (6)

where i1 is the index of the instance with the highest atten-
tion score while iN is the index of the one with the lowest
score. With this index collection I , we will present sev-
eral masked hard instance mining strategies to select the
hard instances. We define an N -dimensional binary vector
M = [m1, . . . ,mi, . . . ,mN ] for encoding the mask flags of
instances where mi ∈ {0, 1}. If mi = 1, the i-th instance
is masked, otherwise, it is unmasked.
High Attention Masking: The simplest masked hard
instance mining strategy is the High Attention Masking
(HAM) strategy, which simply masks instances with the top
βh% highest attention scores. The instance mask flags un-
der HAM are initialized as all zero vectors, Mh(:) = 0.

Then we collect the indices of the instances whose scores
are ranked in the top βh%, Ih = [it]

⌈βh%×N⌉
t=1 . Finally, we

set the mask flags with these indices, Mh(Ih) = 1. To
ensure that positive instances are preserved within the un-
masked sequences, we also utilized techniques such as mask
ratio decay.
Hybrid Masking: We combine HAM with several other
instance masking strategies as hybrid masking strategies to
achieve some specific properties in hard instance mining, as
shown in Figure 3. We consider the obtained mask flags
as a collection and employ the union operation for mask
flag fusion. We design three hybrid masking strategies as
follows:

• L-HAM: We use the same pipeline as HAM to gener-
ate the mask flags Ml for masking the instances with
the top βl% lowest attention scores in order to filter out
the redundant uninformative instances and improve ef-
ficiency. To endower this property to HAM, we union
the mask flags obtained by two strategies to get the new
mask flags, M̂ = Mh ∪Ml.

• R-HAM: Randomness is beneficial to reduce the risk
of over-fitting. We generate a random mask flag vector
Mr with a given random ratio βr%, and combine it
with Mh for introducing the randomness to the hard
instance mining, M̂ = Mh ∪Mr.

• LR-HAM: Combining the above strategies, we can
obtain completely hybrid mask flags, M̂ = Mh ∪
Mr ∪ Ml, which is expected to achieve both of the
mentioned desirable properties.
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Figure 3: Illustration of proposed hybrid masking strategy
for hard instance mining.

Once the final mask flag M̂ is produced, the masked in-
stance sequence will be obtained:

Ẑ = MT (Z) = Mask
(
Z, M̂

)
∈ RN̂×D, (7)

where the N̂ is the number of unmasked instances.

3.4. Consistency-based Iterative Optimization

Under the Siamese structure, while the teacher model
guides the training of the student model, the new knowledge
learned by the student model will also update the teacher
model. This iterative optimization process progressively
improves the mining ability of the teacher and the discrim-
inability of the student. To further facilitate this optimiza-
tion and explore additional supervised information provided
by the momentum teacher, we propose a consistency loss
that constrains the classification results of both models.
Student Optimization: There are two losses in student op-
timization. One is the cross-entropy for measuring the bag
label prediction loss,

Lcls = Y logŶ + (1− Y ) log
(
1− Ŷ

)
. (8)

Another is a consistency loss between the bag representa-
tion of student Fs and momentum teacher Ft,

Lcon = −softmax (Ft/τ) logFs (9)

where the τ > 0 is a temperature parameter. Overall, the
final optimization loss is as follows:

{θ̂s} ← argmin
θs
L = Lcls + αLcon (10)

where θs is the parameters of S(·), and α is scaling factor.
Teacher Optimization: The parameters of momentum
teacher θt are updated by an exponential moving aver-
age (EMA) of the student parameters. The update rule is
θt ← λθt + (1− λ)θs, where λ is a hyperparameter. More
importantly, the updated teacher is utilized in the next iter-
ation of hard instance mining.

4. Experiments and Results
4.1. Datasets and Evaluation Metrics

CAMELYON-16 [2] is a WSI dataset proposed for
metastasis detection in breast cancer. The dataset contains
a total of 400 WSIs, which are officially split into 270 for
training and 130 for testing, and the testing sample ratio is
13/40≈1/3. Following [6, 21, 44], we adopt 3-times 3-fold
cross-validation on this dataset to ensure that each slide is
used in training and testing, which can alleviate the impact
of data split and random seed on the model evaluation. Each
fold has approximately 133 slides. We report the mean and
standard deviation of performance metrics over 3 runs.

TCGA Lung Cancer includes two sub-type of cancers,
Lung Adenocarcinoma (LUAD) and Lung Squamous Cell
Carcinoma (LUSC). There are diagnostic slides, LUAD
with 541 slides from 478 cases, and LUSC with 512 slides
from 478 cases. We randomly split the dataset into train-
ing, validation, and testing sets with a ratio of 65:10:25 on
the patient level. 4-fold cross-validation is adopted, and the
mean and standard deviation of performance metrics of the
4 test folders are reported.

We adopt the same data pre-processing as in the
CLAM [21]. Following the previous work [21, 26] we
leverage Accuracy, Area Under Curve (AUC), and F1-score
to evaluate model performance. AUC is the primary per-
formance metric in the binary classification task, and we
only report AUC in ablation experiments. Please refer to
the Supplementary Material for the details of these two
datasets.

4.2. Implementation Details

The details on network architectures and training are de-
scribed in Supplementary Material.

4.3. Performance Comparison with Exiting Works

We mainly compare with AB-MIL [16], DSMIL [17],
CLAM-SB [21], CLAM-MB [21], TransMIL [26], and
DTFD-MIL [43], all of which are attention-based MIL
methods. In addition, we compared two traditional MIL
pooling operations, Max-pooling and Mean-pooling. Due
to the dataset differences, the results of all other methods
are reproduced using the official code they provide under
the same settings.

As shown in Table 1, max-pooling and mean-pooling
perform poorly on two datasets compared to other methods.
We attribute this to their insufficient modeling of key in-
stance information. Simple pooling operations are prone to
be misled by limited slides that contain numerous instances.
This problem is especially severe on the CAMELYON-
16 dataset, where the proportion of significant instances
is extremely small. For example, max-pooling lags be-
hind DTFD-MIL [43] by 13.87% on AUC. Attention-based
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Method
CAMELYON-16 TCGA Lung Cancer

Accuracy AUC F1-score Accuracy AUC F1-score

Max-pooling 78.95±2.28 81.28±3.74 71.06±2.59 81.49±1.24 86.45±0.71 80.56±1.09
Mean-pooling 76.69±0.20 80.07±0.78 70.41±0.16 84.14±2.97 90.13±2.40 83.39±3.14
AB-MIL [16] 90.06±0.60 94.00±0.83 87.40±1.05 88.03±2.19 93.17±2.05 87.41±2.42
DSMIL [17] 90.17±1.02 94.57±0.40 87.65±1.18 88.32±2.70 93.71±1.82 87.90±2.50
CLAM-SB [21] 90.31±0.12 94.65±0.30 87.89±0.59 87.74±2.22 93.67±1.64 87.36±2.24
CLAM-MB [21] 90.14±0.85 94.70±0.76 88.10±0.63 88.73±1.62 93.69±0.54 88.28±1.58
TransMIL [26] 89.22±2.32 93.51±2.13 85.10±4.33 87.08±1.97 92.51±1.76 86.40±2.08
DTFD-MIL [43] 90.22±0.36 95.15±0.14 87.62±0.59 88.23±2.12 93.83±1.39 87.71±2.04
MHIM-MIL (AB-MIL) 91.81±0.82 96.14±0.52 89.94±0.70 89.64±2.25 94.97±1.72 89.31±2.19
MHIM-MIL (TransMIL) 91.98±0.89 96.49±0.48 90.13±1.08 90.02±2.59 94.87±2.17 89.65±2.63
MHIM-MIL (DSMIL) 92.48±0.35 96.49±0.65 90.75±0.73 89.83±3.37 95.53±1.74 89.71±2.92

Table 1: The performance of different MIL approaches on CAMELYON-16 (C16) and TCGA Lung Cancer (TCGA). The
highest performance is in bold. The Accuracy and F1-score are determined by the optimal threshold.

Model C16 TCGA Para. Time Mem.

AB-MIL 94.00 93.17 657K 4.0s 2.4G
CLAM-MB 94.70 93.69 789K 4.3s 2.7G
DTFD-MIL 95.15 93.83 987K 5.2s 2.1G
MHIM-MIL 96.14 94.97 657K 4.3s 2.3G

TransMIL 93.51 92.51 2.67M 13.1s 10.6G
MHIM-MIL 96.49 94.87 2.67M 10.1s 5.5G

Table 2: Comparison of time and memory requirements of
different MIL methods. We report the model size (Para.),
the training time per epoch (Time), and the peak memory
usage (Mem.) on the CAMELYON-16 dataset (C16).

methods achieve better performance on both datasets by
focusing on salient instances. In particular, the represen-
tative MIL framework DTFD-MIL [43] benefits from the
further exploration of significant instances and achieves the
second-best performance on both datasets (95.15% AUC on
CAMELYON-16 and 93.83% AUC on TCGA). However,
it also suffers from overemphasizing salient instances dur-
ing training, which limits its generalization. Our proposed
MHIM-MIL achieves significant performance improvement
on both datasets (+1.34% AUC on CAMELYON-16 and
+1.70% AUC on TCGA) by mining hard instances during
training, breaking the performance bottleneck. It is worth
mentioning that we validate our framework on three repre-
sentative MIL models, both of which can outperform the
existing MIL methods.

4.4. Computational Cost Analysis

In this section, we report the training time and GPU
memory requirements for running different MIL models on
a 3090 GPU. The upper part of Table 2 compares some
MIL frameworks that use AB-MIL [16] as a baseline. We
observe that traditional MIL frameworks typically intro-

duce additional parameters and reduce efficiency due to
their complex structures. For example, the state-of-the-art
framework DTFD-MIL [43] increases the parameter size
by nearly twice (657K vs. 987K) and the training time
by 30%. In contrast, MHIM-MIL achieves the most sig-
nificant performance improvement with almost no extra
computational cost due to the momentum teacher. More-
over, existing Transformer-based MIL methods are usually
plagued by high computing costs due to their large number
of parameters and self-attention operations. For instance,
TransMIL [26], which first applies a pure Transformer MIL
model to solve WSI classification problems, has 4× more
parameters than AB-MIL, 3× longer training time, and al-
most 4.5× higher memory consumption. Furthermore, the
extremely long input sequences in WSI classification de-
grade the stability of such complex structures (2.13% AUC
standard deviation on C16, which is the highest among all
embedding-level MIL methods). With the masked hard in-
stance mining strategy, the MHIM-MIL framework signif-
icantly reduces the computational cost (-24% training time
and -48% memory usage) and enhances its stability (0.48%
AUC standard deviation on C16). More details are provided
in Supplementary Material.

4.5. Ablation Study

4.5.1 Importance of the Different Components

Table 3 shows the effect of different modules in MHIM-
MIL on two datasets. The baseline methods are two
representative attention-based MIL methods, namely AB-
MIL [16] and TransMIL [26]. First, we introduce the naive
masked hard instance mining strategy, which leverages the
model itself to mine hard instances during training. This
strategy improves AUC by 1.86% and 2.55% for the two
MIL models on CAMELYON-16 respectively, indicating
that concentrating on hard instances during training can as-
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Module
CAMELYON-16 TCGA

AB. Trans. AB. Trans.

Baseline 94.00 93.51 93.17 92.51
+MHIM 95.86 96.06 94.14 93.75
+MHIM+Siam. 95.82 96.24 94.55 94.13
+MHIM+Siam.+Con. 96.14 96.49 94.97 94.87

Table 3: The effect of different components in MHIM-
MIL with two MIL models: AB-MIL (AB.) and TransMIL
(Trans.). MHIM denotes the masked hard instance mining
strategy. Siam. refers to the Siamese framework. Con. rep-
resents consistency loss.

Strategy
CAMELYON-16 TCGA

AB. Trans. AB. Trans.

Baseline 94.00 93.51 93.17 92.51
HAM 95.68 95.90 93.83 94.54
R-HAM 96.14 95.88 94.79 94.60
L-HAM 95.81 96.49 94.33 94.67
LR-HAM 95.92 96.33 94.97 94.87

Table 4: Comparison between different masked hard in-
stance mining strategies. The three hybrid strategies show
varying performance across the benchmarks.

sist mainstream MIL models in building better classification
boundaries. Further discussion on the masked hard instance
mining strategy is presented in Section 4.5.2. Compared
with the naive MHIM strategy, the third row of the table
suggests that a Siamese structure [3,5,8] based on a momen-
tum teacher is beneficial for more stable and effective min-
ing of hard instances. We elaborate more on choosing the
teacher model in Section 4.5.3. After adding consistency
loss term to the objective function, our full MHIM-MIL
framework achieves the best performance (96.49% AUC on
CAMELYON-16 and 94 .97% AUC on TCGA). For subse-
quent ablation experiments, we include consistency loss by
default to facilitate the optimization of our framework.

4.5.2 Impact of the Different MHIM Strategies

The masked hard instance mining strategy is the core design
of our method. The main idea of this strategy is masking the
most salient instances to indirectly mine hard instances to
facilitate model training. Based on this idea, we devise three
hybrid strategies (R-HAM, L-HAM, and LR-HAM) and
present their impact in Table 4. The basic strategy, High At-
tention Masking (HAM), already boosts performance sig-
nificantly, leading to AUC improvements of 1.68% and
2.39% for two MIL models on the CAMELYON-16 dataset,
respectively. After introducing the other two strategies,
different MIL models achieve performance improvements

Teacher
CAMELYON-16 TCGA

AB. Trans. AB. Trans.

Baseline 94.00 93.51 93.17 92.51
Student copy 95.84 95.86 93.68 93.45
Init. 95.88 96.12 94.66 94.15
Momentum 95.96 96.11 94.65 94.45
Init.+Momentum 96.14 96.49 94.97 94.87

1600 1800 2000 2200
Step

92.0

92.5

93.0

93.5

A
U

C
 (%

)

Student
Momentum Teacher

Table 5: Comparison of different types of teachers. Mo-
mentum denotes the teacher is updated by EMA strategy.
Init. indicates the initialization of the teacher with pre-
trained parameters. The bottom figure compares the sta-
bility of the momentum teacher and the non-batch gradient
updated student during training.

on both datasets. Specifically, AB-MIL [16] shows more
significant performance gains after introducing randomness
(96.14% AUC on CAMELYON-16 with R-HAM) due to
its better ability to filter out redundant information, while
TransMIL [26] shows the reverse trend (96.49% AUC on
CAMELYON-16 with L-HAM). Furthermore, the more
complex three-hybrid strategy (LR-HAM) achieves the best
performance on the TCGA dataset, which has a larger pro-
portion of positive areas and more instances. Overall, our
experiments validate the effectiveness of masked hard in-
stance mining strategy, and the diversity of proposed strate-
gies improves its applicability to different datasets and MIL
models.

4.5.3 Impact of the Choice of Teacher Network

In MHIM-MIL, we employ a Teacher model to mine hard
instances and facilitate training of the Student model. In Ta-
ble 5, we comprehensively investigate the effects of various
choices of Teacher network. First, we utilize a single-model
structure, which treats the Student model as the Teacher.
The student conducts masked hard instance mining prior to
training. Due to the non-batch gradient update, the unstable
performance of the Student model makes the strategy sus-
ceptible to noise, so the performance is not optimal. Sec-
ond, we adopt a momentum teacher, which shares the same
network structure as the Student model and is updated with
the EMA strategy. This updating strategy enhanced the sta-
bility of momentum teachers, as shown in the figure below,
and enabled MHIM-MIL to achieve 0.97% and 1.00% per-
formance improvement in TCGA under the two MIL mod-
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Normal SlideTumor Slide AB-MIL Ours AB-MIL Ours

Figure 4: Patch visualization produced by AB-MIL [16] (baseline) and MHIM-MIL. The blue lines outline the tumor regions.
The brighter patch indicates higher attention scores. The cyan colors indicate high probabilities of being tumor for the
corresponding locations. Ideally, the cyan patches should cover only the area within the blue lines. We show that focusing
only on more salient regions reduces the generalization ability of the model and that hard instances can provide useful
information for more accurate and comprehensive judgments.

els, respectively. With proper initialization, the momentum
teacher achieves the best performance. However, a fixed
initialization teacher fails to learn new knowledge, which
emphasizes the significance of iterative optimization.

4.6. Visualization

To more intuitively understand the effect of the masked
hard instance mining, we visualize the attention scores
(bright patch) and tumor probabilities (cyan patch) of
patches produced by AB-MIL and MHIM-MIL, as illus-
trated in Figure 4. Here, MHIM-MIL employs AB-MIL
as its baseline model. We note that attention scores only
indicate the regions of interest of models and are infeasi-
ble to reflect tumor probabilities [17, 43]. First, as shown
in Figure 4, AB-MIL often assigns high tumor probabili-
ties to patches in non-tumor areas. We attribute this phe-
nomenon to the low generalization capability of conven-
tional attention-based MIL models, which tend to focus
only on salient regions during training. In contrast, MHIM-
MIL trained with hard instances shows a much better gen-
eralization ability than the baseline model for noise robust-
ness (rows 2 and 3 on the right) and for precise detection of
challenging subtle tumor areas (row 3 on the left). More sig-
nificantly, we find that focusing only on tumor areas leads to
missing most of them, expanding the view to include some

“irrelevant areas” enables the model to make more complete
judgments (rows 1 and 2 on the left). This phenomenon
demonstrates how hard instances provide more useful in-
formation to help the model make more accurate and com-
prehensive judgments. We provide more details and an in-
depth analysis of this patch visualization in Supplementary
Material.

5. Conclusion

This paper rethinks the impact of salient instances for
MIL-based WSI classification algorithms. We demon-
strate that attention-based MIL methods excessively prior-
itizing salient instances harm the generalization ability of
the model. To address this issue, we have proposed sev-
eral masked hard instance mining strategies that mask out
salient patches and encourage the model to attend to infor-
mative regions for better discriminative learning. Through
qualitative analysis, we have demonstrated that these strate-
gies effectively alleviate the under-fitting problem of gen-
eral AB-MIL to hard instances. We have also developed the
MHIM-MIL framework that leverages momentum teacher
and consistency loss to further enhance hard instance min-
ing. Our experimental results demonstrate the superiority
and generality of the MHIM-MIL framework over other lat-
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est methods. In future work, we plan to devise a more pre-
cise localization scheme for hard instances that can facili-
tate model training and convergence.
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