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Abstract

Incremental learning aims to overcome catastrophic
forgetting when learning deep networks from sequential
tasks. With impressive learning efficiency and performance,
prompt-based methods adopt a fixed backbone to sequen-
tial tasks by learning task-specific prompts. However, ex-
isting prompt-based methods heavily rely on strong pre-
training (typically trained on ImageNet-21k), and we find
that their models could be trapped if the potential gap
between the pretraining task and unknown future tasks is
large. In this work, we develop a learnable Adaptive
Prompt Generator (APG). The key is to unify the prompt
retrieval and prompt learning processes into a learnable
prompt generator. Hence, the whole prompting process can
be optimized to reduce the negative effects of the gap be-
tween tasks effectively. To make our APG avoid learning
ineffective knowledge, we maintain a knowledge pool to reg-
ularize APG with the feature distribution of each class. Ex-
tensive experiments show that our method significantly out-
performs advanced methods in exemplar-free incremental
learning without (strong) pretraining. Besides, under strong
pretraining, our method also has comparable performance
to existing prompt-based models, showing that our method
can still benefit from pretraining. Codes can be found at
https://github.com/TOM-tym/APG

1. Introduction
Deep neural networks (DNNs) have become powerful

tools in various fields [5, 7, 12, 15, 28, 56]. However, when
facing sequential training tasks, DNNs learn new tasks
along with severe performance degradation on previous
tasks in the absence of old data, which is the notorious
catastrophic forgetting [11, 41, 49]. Incremental learning
aims to overcome catastrophic forgetting in DNNs, push-
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Figure 1. Experimental comparison between our adaptive prompt-
ing scheme and other prompted-based methods [60,61] on the CI-
FAR100 [25] dataset. ‘Non-pretrained’ (a standard protocol in
incremental learning) means the data from the first task is used
to pretrain the backbone. (a) With an intensive pretrained back-
bone, all three methods perform well. (b) When swapping to Tiny-
ImageNet (200 classes) pretrained weights, the performance of
other methods clearly drops, while ours does not. (c) Our method
significantly outperforms other methods in the presence of a large
semantic gap between pretraining task and unknown future tasks.

ing DNNs toward complex real-world applications, e.g.
AI robotics [4, 10, 42, 52] or self-driving [13, 16, 43, 45].
Previous works usually maintain a memory buffer with a
handful of old samples for rehearsal when learning new
tasks [18, 26, 48, 54, 58, 62, 63, 65]. Since keeping old data
may be infeasible due to privacy/storage concerns, another
branch of work [64, 66, 67] explores exemplar-free incre-
mental learning, which tunes the network based on the in-
troduced priors but the performance still far falls behind
those of rehearsal-based methods.

Recently, an appealing development [59–61] based on
prompting [21,27,29,34,35] manages to encode knowledge
into sets of prompts to steer a frozen backbone for handling
sequential tasks. In addition to impressive performance, it
has several benefits. (1) The catastrophic forgetting prob-
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lem is effectively alleviated since the backbone is fixed; (2)
learning prompts instead of backbone significantly reduces
training costs and improves learning efficiency; (3) prompt-
based methods are free from keeping exemplars. To employ
prompts for task-agnostic class-incremental learning, a cru-
cial step is to select task-specific prompts given any input
images. Existing methods maintain a prompt pool and re-
trieve prompts by directly computing the similarity between
the image feature extracted by the pretrained model and the
prompts in the pool, which is simple yet effective with a
strong pretrained model. However, as the pretrained model
dominates the retrieval, such a non-learnable retrieval pro-
cess will be problematic because the future tasks are un-
known and the gap between the pretraining task and the un-
known future tasks could be large. As in Fig. 1 (c), when
the first task in incremental learning is used for pretrain-
ing, the classes in the pretraining task are totally different
from other tasks, which we refer to as a semantic gap that
degenerates existing models. Although the semantic gap
between domains is also studied in some works such as
transfer learning [14, 44, 53], their works do not consider
the forgetting problem in sequential tasks. It is necessary to
emphasize that the intention of this work is NOT to refuse
pretraining but to propose a more general method that does
not rely heavily on strong pretraining and can benefit from
it if task-related pretraining is available. For more experi-
ments regarding the necessity of our work, please refer to
the supplementary materials.

In this work, we develop a learnable Adaptive Prompt
Generator (APG) to effectively bridge the potential gap be-
tween pretraining tasks and unknown future tasks. The
core of our method is to unify the prompt retrieval and the
prompt learning process into a learnable prompt generator.
In this way, the whole prompting process can be optimized
to reduce the negative effects of the gap between tasks ef-
fectively. Besides, rather than retrieving prompts from a
fixed-size prompt pool, learning to generate prompts en-
hances the expression ability of prompts. As a result, the
APG can be applied to a model without strong pretraining,
and notably, the employment of APG does not discount the
effort on overcoming forgetting since the backbone is still
fixed.

For incremental learning, APG holds an extendable
prompt candidate list for aggregating knowledge from seen
tasks into a group of prompts. To adaptively prompt the
backbone, the knowledge aggregation in APG is condi-
tioned on the immediate feature from the backbone. In ad-
dition, we form a knowledge pool to summarize the knowl-
edge encoded in the feature space. The summarized knowl-
edge is further used to regularize the AGP to prevent it from
learning ineffective knowledge.

In summary, our contributions are as follows. (1) We
propose a learnable adaptive prompt generator (APG) to re-

duce the negative effects of the gap between the pretraining
task and unknown future tasks, which is critical but ignored
by previous work. Our adaptive prompting eases the re-
liance on intensive pretraining. (2) To regularize APG, we
propose the knowledge pool, which retains the knowledge
effectively with only the statistics of each class. (3) The
extensive experiments show that our method significantly
outperforms advanced exemplar-free incremental learning
methods without pretraining. Besides, under strong pre-
training, our method also achieves comparable satisfactory
performance to existing prompt-based models.

2. Related Work

Non-pretrained Class-incremental Learning. Rehearsal-
based class incremental learning methods [2,3,8,18,19,22,
38, 54, 55] have access to a handful of old samples. With
the retained samples, several works propose to distill old
knowledge to the current network [2,8,18,19,54] or to main-
tain the old feature space [22,55]. Different from rehearsal-
based methods, we propose to get rid of the memory buffer
and bridge the gap between old and new tasks with a learn-
able module. A straightforward idea to handle incremen-
tal learning is to dynamically expand the network for each
task [1, 23, 39, 40, 46, 47, 50, 58, 63]. Although these meth-
ods are more intuitive, their methods often require careful
design of network architecture and often require a mem-
ory bank like rehearsal-based methods. There also exists
exemplar-free methods aiming to learn sequentially tasks
without saving any images. These works propose to esti-
mate the semantic drift [64], or to keep knowledge in class
prototypes [66, 67]. Although exemplar-free methods pro-
posed an appealing prospect for incremental learning, they
typically introduce manually designed priors to the learning
of new tasks, and human-designed priors are less generaliz-
able, which makes their results unsatisfactory.

Prompt-based Class-incremental Learning. Inspired by
prompting in natural language processing, some methods
investigate prompt-based incremental learning and achieve
great success [59–61]. These methods are generally inher-
ited directly from NLP, utilizing a pretrained transformer
as a base. S-prompt [59] focuses on domain-incremental
learning and learns different prompts across domains. For
class incremental learning, L2P [61] and DualPrompt [60]
first propose to learn a pool of prompts and query the
prompts based on the feature extracted by the pretrained
backbone. DualPrompt [60] further proposes to attach com-
plementary prompts to divide old knowledge into the gen-
eral one and the expert one. The main idea of prompt-based
methods is to encode knowledge from old tasks into sets of
vectors (i.e. prompts) and retrieve them to instruct the back-
bone when the old data is not accessible. These methods
are in need of a strong pretrained backbone to assist such a
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retrieval process. Different from their methods, we propose
a unified prompting scheme that eases the reliance on in-
tensive pretraining and makes it suitable for both pretrained
and non-pretrained scenarios.

3. Adaptive-prompting for Incremental Learn-
ing

3.1. Preliminary

Class-incremental learning. For a deep model Φ(f(·))
consisting of a classifier Φ(·) and the backbone f(·), the
goal of class-incremental learning is to train the model
Φ(f(·)) on tasks {Tt}nt=1 sequentially so that the model can
classify testing samples from any task. Specifically, at the
t-th task Tt, the training set is Dt = {xt

m, ytm}Nt
m=1, where

xt
m is the m-th image at task Tt with label ytm. And the

label space Yt of task Tt is disjoint with other tasks, i.e.⋂n
t=1 Yt = ∅. Once the model finishes learning on task Tt,

the corresponding training set Dt will be dropped and be-
comes inaccessible when learning from Tt+1, which raises
a risk of forgetting old tasks when learning new ones.

Vision transformers and prompting. Different from
convolutional neural networks, Vision Transformers (ViTs)
treat the image as a sequence of tokens. Specifically, the
image xt

m will be converted into a sequence E ∈ RNE×d

through patch embedding layers, where NE is the total
number of image patches (i.e. tokens) and d is the embed-
ding dimension. An extra token called class token ecls ∈
Rd will be concatenated to E to gather information from
patches. The resultant token sequence X = [ecls;E] will
be fed into transformer layers for feature extraction, and the
core is self-attention operation:

SelfAttn(X) = Attn(XWQ,XWK ,XWV ),

Attn(Q,K, V ) = Softmax(
QKT

√
d

)V, (1)

where WQ, WK and WV are learnable projections.
To facilitate visual feature extraction, a common prompt-

ing [21, 30, 32, 33, 35, 36] technique is to insert a set of
learnable extra tokens P ∈ RNP×d into the original se-
quence as [ecls;P;E]. In this work, we only discuss vanilla
ViTs [7,56] due to their simplicity and versatility. We detail
our method as follows, and an overview is in Fig. 2.

3.2. Adaptive Prompt Generation

Adaptive prompt generator. We propose an adaptive
prompt generator (APG) for adaptively aggregating old and
new knowledge. Assume there are NL transformer layers
denoted as {Ll}NL

l=1, and the output of the l-th transformer
layer is Xl = Ll(Ll−1(· · ·L1(x))) ∈ R(NE+1)×d, where

x1 is the input image. The APG takes the intermediate fea-
ture as input, which is denoted as vl = Xl[0, :], and outputs
the class-specific prompts to facilitate feature extraction in
deeper layers:

P = APG(vl) ∈ RNP×d. (2)

Specifically, in the APG, we keep updating a prompt can-
didate list to maintain different types of knowledge. Starting
from an empty list denoted as I0 = [], the list is extended at
each task, and the list at task Tt is denoted as:

It =
[
It−1; P̂1, . . . , P̂c, . . . , P̂|Yt|

]
, (3)

where P̂c ∈ RNg×d represents a group of prompts candi-
dates, and there are totally Ng × |Yt| prompt candidates are
extended at Tt to form It. In order to generate prompts with
class-specific knowledge adaptively for vl, we firstly apply
a projection module Min to vl, denoted as z = Min(vl),
and then adopt a cross-attention operation between the pro-
jection z and the candidate list It:

P̃ = CrossAttn(z, It) = MMHA(z, It, It), (4)

where the MMHA denotes Multi-output Multi-head Atten-
tion, an extension of the Multi-head attention (MHA) [57].
While the original MHA outputs the same number of tokens
with the input query, in our case, the query is a single token
z and we want to obtain NP prompts after cross-attention.
To avoid restricting NP = 1, we directly extend the MHA
and form the MMHA as follows. Firstly, with the input z
and It, we define the j-th token computed from the h-th
attention head as:

rjh = Attn(zWQ
h,j , ItW

K
h,j , ItW

V
h,j). (5)

Assuming the number of heads is nh, we concatenate results
from every head as the j-th token Rj , and pass the token
through a projection module as the output of MMHA:

Rj = Concat(rj1, . . . , r
j
h, . . . , r

j
nh

),

P̃ = MMHA(z, It, It) = [R1, . . . ,RNP
]Wo.

(6)

We further put the P̃ into an output projection module
Mout, and the obtained tokens P = Mout(P̃) ∈ RNP×d

are the adaptive prompts for current image x.
The generated prompts P are further integrated with

the original output Xl of the l-th layer, and the token se-
quence for the next layer becomes Xl = [ecls,l;P;El].
we feed Xl into the remaining deeper layers {Li}NL

i=l+1.
The final output of the network with APG is denoted as
XNL

= [ecls,NL
;PNL

;ENL
]. We take the class token

1In the later part of Sec. 3.2, we will omit the task label t and the index
m of image xt

m for simplicity.
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Figure 2. Overview of the proposed method. The Main framework is shown at the top part of the figure. The adaptive-prompting conducts
in the middle of Layer Ll and Ll+1. With the help of the adaptive prompt generator (APG) which adaptively aggregates old and new
knowledge, deeper layers are instructed by the old knowledge. A corresponding illustration of the APG is shown in the lower-left corner
of the figure. To facilitate the knowledge aggregation, the knowledge pool (shown in the lower-right corner) consists of class-specific
knowledge and the prompt centroid is used to constrain the APG and the classifier Φ of the old knowledge.

ecls,NL
as the image feature. The classifier Φ(·) is com-

posed of a fully-connected layer and a softmax function and
outputs the classification probability Φ(ecls,NL

).
It is worth mentioning that all components inside

the APG are trainable, including the projection module
Min,Mout, the prompt candidate list It and the parameters
in cross-attention operation (Wo, {WQ/K/V

h,j }).

Optimization of the APG. The generated prompts are sup-
posed to contain sufficient knowledge so that the model can
handle the current task. Hence, we adopt a classification
loss to learn new knowledge from the current task:

Lcls = − log Φ(ecls,NL
)(y), (7)

where Φ(ecls,NL
)(y) is the y-th element of Φ(ecls,NL

).
Since Lcls is evaluated on the ultimate feature represen-

tation ecls,NL
, we further directly apply constraints on the

generated prompts and the prompt candidate list for more
effective learning. For the prompt candidates, its informa-
tion is aggregated through the cross-attention operation in
Eq. 5. When computing the j-th token rjh in the h-th at-
tention head, the attention score (Eq. 5) is calculated as:

Aj
h = Softmax(

(zWQ
h,j)(ItW

K
h,j)

T

√
d

), (8)

where each element Aj,(c)
h indicates the score between the

projection z and the c-th prompt in the candidate list It
under the projection WQ

h,j ,W
K
h,j . The prompt candidates

should contain diverse knowledge from each class, other-
wise, the APG can not generate prompts adaptively to vari-
ous images. In other words, if the candidates only learn the
knowledge from part of the classes, APG can not handle im-
ages from the other classes. Thus, we explicitly guide dis-
tinctive groups of prompt candidates to learn class-specific
knowledge. We apply a class-specific constraint on the at-
tention score:

Lattn = −
np∑
j=1

nh∑
h=1

∑
c∈Ĉy

log(A
j,(c)
h ), (9)

where Ĉy is the set of indexes of the prompts in P̂y .
Moreover, since the images of the same class have simi-

lar characteristics, such as appearance, it is natural that the
network can be prompted in a similar way when extract-
ing features for different images in a class. To this end,
we further constrain the relations between prompts through
a triplet loss, encouraging the APG to learn the common
knowledge of each class. Assume (x1, x2, x3) is a triplet
of images and their labels satisfy y1 = y2, y1 ̸= y3. The
corresponding prompts generated by the APG are P1, P2

and P3. Since x1 and x2 are from the same class while
x3 is from another class, we constrain the distance between
P1 and P2 should be smaller than that between P1 and
P3. Formally, the cosine distance between P1 and P2

is denoted as dp = cos(P1,P2), and similarly we have
dn = cos(P1,P3). The triplet loss with margin is adopted:
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Ltri = [dp − dn + α]+, (10)

where [·]+ denotes the hinge loss, and α is the margin.
Discussion. The proposed APG has the following advan-
tages. First, APG continuously learns to generate diverse
prompts conditioned on the input of the network. Hence,
APG breaks the limitation of selecting prompts from a
fixed-size prompt pool and alleviates the dependence on the
pretrained model that is used for querying discrete prompts
from a pool. Second, the prompt candidate list is extendable
to handle growing knowledge. This enables the model capa-
ble of long incremental learning (see Sec. 4.2 and Sec. 4.3)
as the APG can aggregate knowledge from different tasks
by the cross-attention operation (Eq. 5).

3.3. Anti-forgetting Learning: A Knowledge Pool

Construction of the knowledge pool. Any trainable mod-
ule faces the forgetting (i.e. old knowledge degradation)
problem when learning from sequential tasks, including the
proposed APG and the classifier Φ(·). Hence, we develop a
knowledge pool to better maintain old knowledge.

Once finishing learning at task Tt, we summarize the
knowledge in the training set Dt into the knowledge pool
before dropping the dataset. Specifically, denote all the im-
ages in class c as Dc

t = {xt
m, ytm|xt

m ∈ Dt, y
t
m = c}. We

feed these images into the backbone and get a set of features
V l
c = {vlm|xt

m ∈ Dc
t} from the l-th transformer layer. Then

the class centroid µl
c is then calculated by averaging features

and the and Σl
c is a matrix where each element Σl,(i,k)

c is the
covariance between the i-th feature and the k-th feature. We
use the class-specific statistics to form a multivariate normal
distribution N l

c = N (µl
c,Σ

l
c) for each class. Besides, to

better constrain the APG, the feature centroid µl
c is used to

extract corresponding prompts by feeding the centroid into
the APG, i.e. Pc = APG(µc).

Finally, we form the knowledge pool for class c as Sc =
(N l

c ,NNL
c ,Pc), where NNL

c is computed from the features
from the last layer. Generally, we store the statistics for

each class {Sc}
Ncls

t
c=1 , where N cls

t =
∑

t |Yt| is the number
of seen classes so far.
Anti-forgetting learning. For exemplar-free incremental
learning, we can only access the current training set Dt dur-

ing task Tt. The knowledge pool {Sc}
Ncls

t−1

c=1 described above
is used to maintain old knowledge. To alleviate forgetting in
the APG, we sample from N l

c , and get intermediate knowl-
edge vector ṽc ∼ N l

c . With the vector and the correspond-
ing prompt centroid Pj , we apply a constraint on APG:

LConA = ϕ(APG(ṽc),Pc), (11)

where ϕ is a distance metric and we find that the L1 loss
is useful. With the constraint, APG can be reminded of old
knowledge and perform aggregation on them.

The classifier Φ(·) is extended after each task, and needs
to be updated during every task. Thus forgetting also hap-
pens at the classifier. Similar to the constraint on the APG,
we sample the knowledge vector from ṽc ∼ NNL

c . Then a
simple but effective cross-entropy loss is adopted:

LConC = − log Φ(ṽcm)(c), (12)

where Φ(ṽc)(c) is the c-th element of Φ(ṽc).
Training objective for the whole model. The objective
function for optimizing the model and APG is summarized
as follows:

L = Lattn + Ltri + Lcls + LconA + LconC . (13)

For the backbone f(·), it is only trained on the first task and
then is fixed in the case of without pretraining, and other-
wise it is fixed all the time. The classifier Φ(·) and APG are
optimized across all tasks.

4. Experiments
4.1. Experiment Setup

Datasets. We conduct experiments on three datasets: CI-
FAR100 [25], ImageNet-Subset [6], and ImageNet-R [17].
CIFAR100 [25] contains 100 classes. There are 50,000 im-
ages for training and 10,000 images for evaluation. Ima-
geNet [6] is a large-scale dataset containing 1,000 classes,
1300 images per class. We follow prior works [8,18,19,26,
54, 58, 62, 63, 65] and use ImageNet-Subset which contains
100 classes. ImageNet-R [17] dataset contains newly col-
lected data that are different styles of the original ImageNet
classes. We follow prior work [60] to split the dataset with
80% samples for training and the rest 20% samples are used
for evaluation.
Training and testing protocols. For the training and test-
ing protocols, we follow previous works [8, 18, 19, 54, 58,
60, 61, 63] to conduct class-incremental learning. After ev-
ery training stage, we evaluate the model by testing on the
union of all testing sets of seen tasks. The classification ac-
curacies in every task are averaged, and we report the aver-
age accuracy in all experiments [8,19,48,54,60–63]. When
comparing with L2P [61] and DualPrompt [60], we also re-
port the forgetting metric following their papers.

We do not save any images as a memory buffer and only
keep the class statics of old classes on the feature level,
following the exemplar-free class-incremental learning pro-
posed in PASS [66] and SSRE [67].
Implementation details. For all experiments below, we
use the vanilla ViT as our backbone. For the standard non-
pretrained setting, we adjust the embedding dimension and
number of heads to match the number of parameters of the
widely used ResNet-18 [15]. For more information about
the adjusted backbone, please refer to the appendix. We
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Methods
ImageNet-Sub

B50-T10
ImageNet-Sub

B30-T14
CIFAR100
B50-T10

CIFAR100
B40-T20

Avg. Acc.^ Forgetting_ Avg. Acc.^ Forgetting_ Avg. Acc.^ Forgetting_ Avg. Acc.^ Forgetting_
L2P 25.11 1.72 29.92 3.03 36.55 2.61 18.84 3.02

DualPrompt 35.82 4.53 30.33 4.16 26.84 4.68 11.86 1.80
Ours 75.52 5.63 69.87 6.87 66.68 5.42 62.41 6.72

Table 1. Comparison with state-of-the-art prompt-based methods. Since existing prompt-based methods rely on a pretrained backbone, we
treat the first task (i.e. 50 classes for the B50 setting) as the pretraining task and we conduct class-incremental learning on the rest classes
using their methods. The best results are marked in bold. Results are averaged across three trials.

B50-T10 B30-T14 B50-T50Methods Mem
Per cls Avg. Acc.(%)

Imagine [54] 20 76.76 - -
PODNet [8] 20 74.58 68.83 62.48
UCIR [18] 20 67.82 - 57.25
DDE [19] 20 75.41 65.11 -
CwD [51] 20 76.91 - -
AFC [22] 20 75.75 72.47 71.97

Foster [58] 20 75.72 75.28 69.76
Imagine [54] 10 74.94 - -
PODNet [8] 10 70.40 60.18 41.47
UCIR [18] 10 64.04 - -
DDE [19] 10 73.00 - -
AFC [22] 10 74.85 70.46 63.28

Foster [58] 10 71.46 65.91 58.79
EWC [24] 0 20.40 18.43 5.9

LwF MC [31] 0 31.18 13.22 -
MUC [37] 0 35.07 - -
SDC [64] 0 61.12 - -
PASS [66] 0 61.80 - -
SSRE [67] 0 67.69 - -

Ours 0 75.52 69.87 75.70

Table 2. Comparison with state-of-the-art methods trained from
scratch on ImageNet-SubSet. We list rehearsal-based methods
with 20 images per class and their variant with 10 images. The best
results among exemplar-free methods are marked in bold. Results
are averaged across three trials.

follow the training strategy proposed in DeiT(without dis-
tillation) [56], using AdamW as the optimizer with initial
learning of 5e-4. For class-incremental learning with a pre-
trained backbone, we follow prior works [60,61] using ViT-
Base as our backbone.

Setting notation. We denote class-incremental learning
settings in form of: ‘Bx-Ty’, which means the first task
contains x classes, and the rest classes are evenly divided
into y tasks to incrementally learn. For example, ‘B50-T10’
means the first task contains 50 classes and the rest classes
are divided into 10 tasks evenly.

4.2. Non-pretrained Class-incremental Learning

In this section, we evaluate our method under the stan-
dard non-pretrained incremental learning setting [8, 9, 18,
19, 22, 24, 31, 37, 51, 58, 63, 64, 66, 67].

Comparison with prompted-based methods. In the
popular non-pretrained scenario, we first compare our
method with prompted-based methods L2P [61] and Du-

alPrompt [60]. Since existing prompt-based methods rely
on a pretrained backbone to conduct incremental learning,
for the non-pretrained setting, we treat the first task dur-
ing incremental learning as a ‘pretraining’ task and train a
backbone in a supervised manner. Later, we re-implement
L2P and DualPrompt according to the official code and con-
duct incremental learning on the rest tasks based on the pre-
trained weight. In this way, we can study the situation when
future tasks are totally disjoined from the pre-trained task.

The experiment results are shown in Table 1. In terms of
average accuracy, our proposed method outperforms L2P
and DualPrompt by a large margin under different settings
of the number of tasks. The forgetting metric of L2P and
DualPrompt is incredibly low. We found they basically
maintain the first task’s performance and perform poorly
on new tasks. Therefore the forgetting metric (which can
be regarded as an average maximum accuracy drop) is low.
Nevertheless, our method still achieves competitive results
on forgetting compared to these two methods. We validate
this observation by varying the number of classes at the first
task and the total number of tasks on two different datasets.

Comparison with exemplar-free methods. To compare
the proposed method with pioneering exemplar-free [31,64,
66, 67] works fairly, we conduct experiments on ImageNet-
Subset and CIFAR100 under different numbers of tasks.
The detailed results on ImageNet-Subset are listed in Ta-
ble 2. For the 10-task setting, we find that our method
outperforms other exemplar-free methods by a large mar-
gin. Specifically, our method achieves 75.52% average
accuracy, which is 7.95%, 13.84%, 14.52% higher than
the state-of-the-art methods SSRE [67], PASS [66] and
SDC [64]. On CIFAR100, our method still performs bet-
ter than other exemplar-free methods(see Table 3). Specif-
ically, our method outperforms the exemplar-free method
SSRE by 2.56%, 1.65%, and 0.66% on average accu-
racy under 5, 10 and 20 task settings. Comparison with
rehearsal-based methods. To show the effectiveness of
our adaptive-prompting scheme, we further report the re-
sults of rehearsal-based methods on ImageNet-Subset and
CIFAR100 under different numbers of tasks and different
sizes of memory budgets.

The comparison results of different settings on
ImageNet-Subset are shown in Table 2. Our method (w/o
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B50-T10 B50-T5 B40-T20 B30-T14Methods Mem
Per cls Avg. Acc.(%)

Imagine [6] 20 66.47 68.01 - -
PODNet [8] 20 66.70 62.65 58.92 53.91
UCIR [18] 20 62.77 56.75 42.88 45.07
CwD [51] 20 70.30 - - -
AFC [22] 20 64.98 66.49 62.19 72.47
DDE [19] 20 65.42 64.12 - -
Foster [58] 20 77.54 67.69 56.87 53.80

Imagine [54] 10 64.41 67.08 - -
PODNet [8] 10 60.09 62.03 55.78 55.93
UCIR [18] 10 56.95 59.95 42.88 45.07
AFC [22] 10 61.77 63.98 57.06 58.81
DDE [19] 10 64.41 61.47 - -
Foster [58] 10 57.70 60.51 33.18 54.57
EWC [24] 0 24.48 21.20 15.89 15.89

LwF MC [31] 0 45.93 27.43 20.07 21.05
MUC [37] 0 49.42 30.19 21.27 -
SDC [64] 0 56.77 57.00 58.90 -
PASS [66] 0 63.47 61.84 58.09 56.61
SSRE [67] 0 65.88 65.04 61.70 -

Ours 0 66.68 66.83 62.41 57.57

Table 3. Comparison with state-of-the-art methods trained from
scratch on CIFAR100. We list rehearsal-based methods with 20
images per class and their variant with 10 images. The best results
are marked in bold. Results are averaged across three trials.

exemplars) achieves 75.52% Avg. Acc. at B50-T10 setting,
outperforming PODNet [8] and AFC [22] (both 20 exem-
plars per class) by 1.06% and 0.23%. To explore the effec-
tiveness of our proposed method under a long incremental
process, we also conduct experiments of B50-T50 (i.e. 50-
task incremental learning). When the learning process gets
longer from 10 tasks to 50 tasks, our performance main-
tains around 75% and outperforms other methods by a large
margin. This is mainly because our proposed extendable
candidate list in the APG enables our method to learn in
long incremental tasks while other methods suffer greatly
from the forgetting problem. When we tighten the memory
budget, rehearsal-based methods face a drastic performance
drop. Compared with Foster [58] and AFC [22] (both kept
10 images per class) under the B50-T10 setting, our method
achieves 4.56% and 0.67% higher average accuracy. Even
for a method like Imagine [54] which requires an extra aux-
iliary dataset to diversify the limited memory, our method
still outperforms it by 0.7% accuracy when it kept 10 im-
ages per class. More results on CIFAR100 are in Table 3.

4.3. Evaluation with Pretrained Backbone

Incremental learning with intensive pretrained back-
bone. To demonstrate the flexibility of the proposed
method, we further extend our method to the setting with
pretrained weight and conduct experiments with the pre-
trained weight as previous methods [60, 61] did. We fol-
low previous works [60, 61] to load an ImageNet 21k pre-
trained weight [56] for the vanilla ViT-Base/16. We con-
duct experiments on two different datasets CIFAR100 and

Methods
CIFAR100

B0-5
CIFAR100

B0-10
CIFAR100

B0-20
A↑ F↓ A↑ F↓ A↑ F↓
ImageNet-21K Pretraining

Upper Bound 90.80 - 91.22 - 91.53 -
FT 43.30 51.02 28.38 69.31 17.63 84.32

L2P [61] 88.65 88.64 88.64 7.35 86.57 9.31
DualPrompt [60] 89.56 89.12 89.12 5.16 87.61 6.92

Ours 88.48 89.35 89.35 6.01 88.64 6.51
Tiny-ImageNet Pretraining

Upper Bound 89.42 - 89.37 - 88.44 -
FT 43.16 50.95 28.36 69.61 17.65 84.25

L2P [61] 84.68 9.49 82.51 7.78 78.69 8.12
DualPrompt [60] 84.54 8.25 81.71 9.70 79.13 11.18

Ours 87.72 7.56 87.61 7.16 87.50 7.49

Table 4. Comparison to state-of-the-art prompt-based meth-
ods with ImageNet-21k/Tiny-IamgeNet pretrained weights on CI-
FAR100. The best and the second best results are marked in bold.
‘A’ means Avg. Acc and ‘F’ indicates the forgetting metric. Our
method effectively alleviates reliance on the strong pretraining
(Tiny-ImageNet pretraining) and can still benefit from pretraining
(ImageNet-21k pretraining).

ImageNet-R following DualPrompt [60]. For each dataset,
we conduct 5, 10, and 20 incremental tasks to validate dif-
ferent methods. Furthermore, we also conduct an upper
bound and a finetuning baseline (FT) for reference. An
upper bound is constructed by treating all training samples
available across tasks and turning the pretrained ViT back-
bone using supervised training strategies. The FT baseline
is to turn the whole backbone (also initialized with the pre-
trained weight) without any constraint on the old knowledge
during the learning.

As shown in Table 4, our method makes comparable per-
formance when the number of tasks is 5. When the learning
sequence becomes longer, our method outperforms L2P and
DualPrompt by a larger margin. Specifically, our proposed
method outperforms DualPrompt and L2P by 1.03% and
2.07% on average accuracy on 20-task incremental learn-
ing on CIFAR100. A similar conclusion can be observed
under a more challenging dataset ImageNet-R in Table 5.
As the training procedure gets longer, the superiority of our
model begins to emerge. On 20-task incremental learning
on ImageNet-R, we achieve 0.74% and 3.06% improvement
compared with DualPrompt at average accuracy and forget-
ting respectively.

It is worth mentioning that our method does not rely
on a complex and delicate prompting pattern (i.e. focus on
where or how to insert prompts), only utilizing the vanilla
way [21] to insert the prompts. Experiments in this sec-
tion show that adaptive-prompting is an effective design and
the static selection process from a prompt pool in previ-
ous methods [60, 61] can be the limitation of prompt-based
methods.
Further analysis on different pretraining weights. To in-
vestigate the effect of the gap between pretrained knowl-
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Methods
ImageNet-R

B0-T5
ImageNet-R

B0-T10
ImageNet-R

B0-T20
A↑ F↓ A↑ F↓ A↑ F↓

Upper Bound 77.47 - 77.87 - 78.90 -
FT 37.73 46.23 24.76 63.14 18.66 72.35

L2P [61] 66.86 5.02 66.61 9.37 64.08 8.64
DualPrompt [60] 73.02 3.73 72.57 4.68 70.48 7.47

Ours 72.36 6.37 73.27 8.59 71.22 7.39

Table 5. Comparison with state-of-the-art methods with ImageNet-
21k pretrained weights on ImageNet-R. The best results are
marked in bold. ‘A’ means Avg. Acc and ‘F’ indicates the for-
getting metric. Even with the use of strong pretraining (Table 2),
our method also achieves comparable performance to other meth-
ods.

Configs w/o APG w/ APG Avg.
Acc.(%)Lcls LconC LconA Lattn Ltri

c-1
√

19.37
c-2

√ √
71.84

c-3
√ √ √

73.46
c-4

√ √ √ √
74.70

c-5
√ √ √ √

75.59
c-6

√ √ √ √
73.60

Full
√ √ √ √ √

75.94

Table 6. Effectiveness of each loss function of the proposed
method. ‘c-x’ denotes different training configs. ‘Full’ indicates
the default full model. Experiments are conducted on ImageNet-
Sub under non-pretrained 10-task setting. The best result is
marked in bold.

edge and future tasks, we further conduct experiments on
CIFAR100 using TinyImageNet pretrained weights [20].
As shown in Table 4, we can observe that our method out-
performs L2P by 3.04%, 5.10% and 8.81% on Avg. Acc.
under 5, 10 and 20 tasks. Across different pretraining
strategies (ImageNet-21k and TinyImageNet in Table 4 and
standard non-pretrained in Table 1), our method achieves
1.03%, 8.37% and 39.54% higher Avg. Acc. compared
with the DualPrompt under the 20-task setting. It is mainly
because the pretrained knowledge dominates the incremen-
tal performance for existing prompt-based methods, making
their methods fail when the semantic gap between the pre-
trained task and incremental tasks is relatively large. By
contrast, our method breaks the reliance on the strong pre-
trained backbone since the APG can effectively learn to re-
duce the negative effect of the semantic gap.

4.4. Ablation Studies

In this section, we discuss the effectiveness of each loss
function proposed in Sec. 3. We perform ablation studies
on the ImageNet-Subset with a vanilla non-pretrained ViT
backbone under the 10-task incremental learning setting.

The effectiveness of knowledge pool. Our knowledge pool
is served in two aspects: one is the constraint on the APG
(LconA) and the second is to guide the classifier (LconC). In
Table 6, c-1 indicates we only apply the classification loss

(a) The impact of which layers that
APG augments into.

(b) The impact of the number of
generated prompts.

Figure 3. We conduct experiments on the impact of the layer of
equipping the APG (a) and the impact of the number of generated
prompts (b). All experiments are conducted on ImageNet-SubSet
at non-pretrained 10-task incremental learning setting.

Lcls and the performance is far from satisfactory because
the network is inaccessible to any old knowledge. We can
observe that with the constraint LconC on the classifier, the
unbalance problem of the classifier [62] can be greatly alle-
viated (Avg. Acc. from 19.37% to 71.84%). This indicates
that the knowledge vector can represent the original classes
well, which can effectively overcome forgetting. With the
help of LconA, the APG is able to output effective prompts
for the old classes. The average accuracy is boosted from
71.84% to 73.46%. This is mainly because the trainable
module APG is facing severe forgetting problems during
learning which can be effectively addressed by LconA.
The effectiveness of the APG and the associated losses.
To further alleviate the forgetting problem, we design two
losses in Sec. 3 to guide the APG to learn class-specific
knowledge while training. The first one is Lattn, which
guides the attention operation in the APG to be more class-
related. With the Lattn loss, the performance increases
from 73.46% to 74.70%. The triplet Ltri serves as a con-
straint that avoids the APG to generate degraded prompts
and narrows the distance between two prompts with the
same classes, bringing a performance boost of 1.24% (com-
pares c-4 with the full model).
The impact of the location of the APG. As stated in Sec. 3,
the proposed APG takes the intermediate feature from layer
Ll and generates the class-specific prompts. In order to in-
vestigate the impact of the location l, we conduct exper-
iments on l = {6, 7, 8, 9, 10}, and results are shown in
Fig. 3(a). It is shown that our method performs consistently
when the APG is inserted to layers l ∈ {6, 7, 8, 9} but drops
at layer l = 10. It is mainly because the deeper level of the
backbone encodes more task-specific information and it is
not suitable for the APG for aggregating knowledge. Our
model performs best when l = 9, and we choose l = 9 as
our default setting to balance the complexity and the perfor-
mance.
The impact of the number of prompts. As stated in Sec. 3,
the Multi-head Self Attention (MSA) is referred to per-

1713



form the cross-attention operation. Such a multi-head prop-
erty allows us to generate any number of prompts to insert
into deep layers. To explore the impact of the number of
prompts, we conduct experiments on NP ∈ {0, 1, 2, 3, 4},
whose results are in Fig. 3(b). Compared with the base-
line (NP = 0), we achieve 4.1% accuracy improvement
when generating 1 prompt. When the number of prompts
increases, the performance stays around 75%. This indi-
cates that with the trainable APG, the generated prompt is
powerful enough for a single prompt to instruct deeper lay-
ers. Therefore, we choose NP = 1 as the default.

5. Conclusion
In this work, we reveal the fact that existing prompt-

based models achieve impressive performance in class-
incremental learning but unfortunately they are affected by
strong pretrained backbones. The potential gap between
the pretraining task and future tasks could be a stumbling
block to existing prompting schemes in incremental learn-
ing. We therefore contribute a learnable adaptive-prompting
scheme. The extensive experiments show that our method
obtains satisfactory performance without pretraining and
also achieves comparable performance to other models un-
der strong pretraining. In addition to adopting the knowl-
edge from the pretraining task to other tasks, our work also
shows that the prompt-based model can adaptively learn
new knowledge when current knowledge is not sufficient
for future tasks, which makes prompt-based models possi-
ble for more general incremental learning (e.g, more com-
plicated tasks, multi-modality data).
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