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Abstract
With the maturity of depth sensors, the vulnerability of

3D point cloud models has received increasing attention in
various applications such as autonomous driving and robot
navigation. Previous 3D adversarial attackers either fol-
low the white-box setting to iteratively update the coordi-
nate perturbations based on gradients, or utilize the output
model logits to estimate noisy gradients in the black-box
setting. However, these attack methods are hard to be de-
ployed in real-world scenarios since realistic 3D applica-
tions will not share any model details to users. Therefore,
we explore a more challenging yet practical 3D attack set-
ting, i.e., attacking point clouds with black-box hard labels,
in which the attacker can only have access to the predic-
tion label of the input. To tackle this setting, we propose
a novel 3D attack method, termed 3D Hard-label attacker
(3DHacker), based on the developed decision boundary al-
gorithm to generate adversarial samples solely with the
knowledge of class labels. Specifically, to construct the
class-aware model decision boundary, 3DHacker first ran-
domly fuses two point clouds of different classes in the spec-
tral domain to craft their intermediate sample with high
imperceptibility, then projects it onto the decision bound-
ary via binary search. To restrict the final perturbation
size, 3DHacker further introduces an iterative optimization
strategy to move the intermediate sample along the deci-
sion boundary for generating adversarial point clouds with
smallest trivial perturbations. Extensive evaluations show
that, even in the challenging hard-label setting, 3DHacker
still competitively outperforms existing 3D attacks regard-
ing the attack performance as well as adversary quality.

1. Introduction
Deep Neural Networks (DNNs) are known to be vulner-

able to adversarial examples [37, 10], which are indistin-
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Figure 1. Illustration of our motivation. Our 3D hard-label setting
cannot access any model details of the hidden layer or the logits
of the output layer. To tackle this setting, we develop a spectrum-
based decision boundary algorithm to iteratively optimize the best
adversarial sample only with the knowledge of the predicted label.

guishable from legitimate ones by adding trivial perturba-
tions but often lead to incorrect model prediction. Many
efforts have been made into attacks on the 2D image field
[7, 30, 21, 39]. However, in addition to image-based 2D
attacks, 3D point cloud attacks are also crucial in vari-
ous safety-critical applications such as autonomous driving
[5, 49, 14], robotic grasping [41, 56], and face challenges in
realistic scenarios.

Existing 3D point cloud attack methods [38, 54, 57, 43]
generally delve into achieving high attack success rate and
maintaining the imperceptibility of adversarial examples.
However, these 3D attack methods still suffer from two
main limitations: (1) Most of them are deployed in white-
box setting where the attackers have the full knowledge
of victim models including network structure and weights.
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This setting makes the attacks less practical since most
real-world 3D applications will not share their model de-
tails to users. (2) The quality of their adversarial examples
are limited. Since most previous works simply utilize ge-
ometric distance losses or additional shape knowledge to
implicitly constrain the perturbations according to gradient
search or gradient optimization, their adversarial examples
fail to properly keep the original 3D object shape and eas-
ily have irregular surface or outliers. Although some at-
tackers [51, 46, 43, 16] try to modify few points or design
geometry-aware perturbations, their adversarial samples are
hard to achieve optimal due to the greedy search in the op-
timization process.

Based on the above observations, in this paper, we make
the attempt to explore a more challenging yet practical 3D
attack setting, i.e., attacking 3D point clouds with black-box
hard labels, in which attackers can only have access to the
final classification results of the model instead of the model
details. Compared to previous general 3D black-box setting
[16] that still has the knowledge of predicted logits scores
of the input, our hard-label setting is more difficult since
we only access the prediction labels of the input and cannot
rely on the changes of the final predicted logits for updating
the perturbations. To tackle this new attack setting while
improving the quality of adversarial examples compared to
previous works, we aim to exploit the decision boundary
mechanism [24, 26, 23] as the core idea to generate adver-
sarial point clouds by determining the class-aware model
decision boundary for searching the mispredicted boundary
cloud with small distance to the source cloud, as shown in
Figure 1. Based on the concave-convex decision boundary,
it can easily optimize samples with lowest perturbations.

However, directly adapting previous 2D decision bound-
ary mechanisms [36, 18, 26, 24, 23] into the 3D point
cloud field may face several challenges: (1) Previous 2D
decision-boundary attackers [24, 23] generally generate ad-
versarial images on decision boundary by calculating the
weighted average of each pixel value between source and
target images. However, 3D point cloud data mainly con-
tain coordinates with optional point-wise values, which is
unordered and irregularly sampled. Therefore, directly cal-
culating the weighted average of the point coordinates be-
tween two point clouds would make no sense, since it will
disarrange the relations of neighboring points and deform
the 3D object shape. Although one solution would be to
solely add coordinate-wise perturbations to generate the de-
cision boundary, this operation is not geometry-aware and
easily leads to outliers and uneven point distribution (val-
idated in our Experiment Section). (2) In the 2D field, in
addition to achieving high imperceptibility, the averaged
image also preserves the semantic features of the original
image since their pixel relations are implicitly maintained.
However, the structural representations of 3D point clouds

in the latent space will be easily broken when modifying
points in the data domain. Therefore, it is critically chal-
lenging to maintain both smooth appearance and geomet-
ric characteristics for generating high-quality 3D adversar-
ial examples. (3) Almost all 2D decision boundary mecha-
nisms solely utilize pixel-wise iterative walking to move the
image along the decision boundary for optimization. How-
ever, directly applying the point-wise walking on 3D point
clouds may stuck into the local optimum, since the opti-
mized cloud on the decision boundary may not have the
smallest perturbation and fail to overcome the large convex
area without additional guidance as shown in Figure 1.

To address the above challenges, we propose a novel
spectrum-based decision boundary attack method, called
3D Hard-label attacker (3DHacker). Instead of fusing the
point cloud via coordinate-wise average operation, we pro-
pose to fuse point clouds in the spectral domain, which
not only preserves the geometric characteristics of both
point clouds in coordinate-aware data domain, but also pro-
duces the smooth structure of the generated sample for
achieving high imperceptibility. Specifically, our 3DHacker
consists of two parts-——boundary-cloud generation with
spectrum-fusion and boundary-cloud optimization along
the decision boundary. (1) During the boundary-cloud gen-
eration, we aim to attack a benign source-cloud into the
class of target-clouds at their decision boundary with triv-
ial perturbations. To be specific, we first perform Graph
Fourier Transform (GFT) on each point cloud to obtain its
graph spectrum, then fuse the spectrum of source-cloud and
target-clouds with proper fusion rate with further inverse
GFT to generate corresponding candidate point clouds. In
this manner, we can obtain the decision boundary between
the point clouds of different class labels. We select the
best candidate with slightest distortion and project it on
the decision boundary to obtain the boundary-cloud. (2)
In boundary-cloud optimization stage, we perform itera-
tive walking strategy on the boundary-cloud along the de-
cision boundary aiming at further minimizing the distance
between boundary-cloud and source-cloud. Each iteration
starts from a perturbation generated by gradient estima-
tion and then reduces the distortion through binary search-
ing coordinates in the adversarial region. To jump out of
the local optimum during optimization, we further design
a spectrum-wise walking strategy in addition to the point-
wise one. The boundary cloud optimized by the above two
walking strategies will be taken as the final adversarial sam-
ple of the source cloud with high imperceptibility.

To sum up, our main contributions are three-fold:

• We achieve 3D point cloud attack in a more challeng-
ing yet practical black-box hard-label setting, and in-
troduce a novel method 3DHacker based on decision
boundary algorithm with point cloud spectrum.

• We propose spectrum-based decision boundary gener-

14341



ation for preserving high-quality point cloud samples.
Moreover, we introduce a new generation pipeline for
boundary point clouds, and propose a joint coordinate-
and spectrum-aware iterative walking strategy to alle-
viate the local optimum problem.

• Experimental results show that the proposed 3DHacker
achieves 100% of attack success rates with the compet-
itive perturbations compared to existing attack meth-
ods, even in the more challenging hard-label setting.

2. Related Work
Adversarial attack on 3D point cloud. Following pre-
vious studies on the 2D image field, many works [46, 44,
51, 55, 38, 54, 57] adapt adversarial attacks into the 3D vi-
sion community[11, 53, 48, 50, 42, 40, 3, 33, 34, 45]. [46]
propose point generation attacks by adding a limited num-
ber of synthesized points/clusters/objects to a point cloud.
[51] utilize gradient-guided attack methods to explore point
modification, addition, and deletion attacks. Their goal is
to add or delete key points, which can be identified by cal-
culating the label-dependent importance score referring to
the calculated gradient. Recently, more works [29, 52, 38]
adopt point-wise perturbation by changing their xyz co-
ordinates, which are more effective and efficient. [29]
modify the FGSM strategy to iteratively search the de-
sired pixel-wise perturbation. [38] adapt the C&W strategy
to generate adversarial examples on point clouds and pro-
posed a perturbation-constrained regularization in the over-
all loss function. Besides, some works [22, 20, 35, 8] at-
tack point clouds in the feature space and target at perturb-
ing less points with lighter distortions for an impercepti-
ble adversarial attack. However, the generated adversarial
point clouds of all above methods often result in messy
distribution or outliers, which is easily perceivable by hu-
mans and defended by previous adversarial defense meth-
ods [58, 32, 25]. Although [43] improves the imperceptibil-
ity of adversarial attacks via a geometry-aware constraint,
the adversarial samples sometimes also deform local sur-
faces and are still noticeable.
Decision boundary based 2D attacks. Decision boundary
based attack method [1] is widely used in 2D filed, which
is an efficient framework that uses final decision results of a
classification model to implement hard-label black-box at-
tack. Decision boundary is the boundary of classification
model that separates different classes in the input space. In
2D field, the decision boundary attack process starts with
two origin images called source-image and target-image
with different labels. Next, it performs a binary search
to obtain a boundary-image on the decision boundary be-
tween source-image and target-image. Then, the random
walking algorithm is conducted on boundary-image with
the goal of minimizing the distance towards target-image
and maintaining the label same as source-image. Based on

this general attack framework, various 2D decision bound-
ary based attacks are proposed committed to improve the
random walking performance and query efficiency. [2, 36]
propose to choose more efficient random perturbation in-
cluding Perlin noise and DCT in random walking step in-
stead of Gaussian perturbation. [4] conduct a gradient es-
timation method using Monte-carlo sampling strategy in-
stead of random perturbation. [24, 23, 26] improve the
gradient estimation strategy through sampling from repre-
sentative low-dimensional subspace. However, to our best
knowledge, there is no decision boundary based attack in
3D vision community so far, and directly adapting these 2D
methods into 3D field may face many challenges.

3. Methodology
3.1. Notations and Problem Definition

3D point cloud task. Generally, a point cloud consists of
an unordered set of points P = {pi}ni=1 ∈ Rn×3 sampled
from the surface of a 3D object or scene, where each point
pi ∈ R3 is a vector that contains the coordinates (x, y, z)
of point i, and n is the number of points. In this paper, we
mainly focus on the basic point cloud classification task.
Given a point cloud P as input, a learned classifier f(·)
predicts a vector of confidence scores f(P ) ∈ RC . The fi-
nal predicted label is y = F (P ) = argmaxi∈[C]f(P )i ∈
Y, Y = {1, 2, 3, ..., C} that represents the class of the orig-
inal 3D object underlying the point cloud, where C is the
number of classes.
Hard-label attack setting on 3D point cloud. In the hard-
label attack setting, the attackers can only access the final
predicted label y = F (P ) instead of the model parame-
ters f(·) and the confidence scores (logits) f(P ) for gra-
dient optimization. Therefore, we aim to search the deci-
sion boundary of the classification model to determine the
difference between 3D object classes, and utilize the de-
cision boundary to estimate the positive gradient for up-
dating the perturbation. The perturbed adversarial sample
Padv is slightly generated from correctly classified source
sample Ps labeled as ytrue such that the predicted label
yadv = F (Padv) ̸= ytrue. We define an indicator func-
tion φ(·) of a successful attack as:

φ(Padv) ≡

{
1, if yadv ̸= ytrue,

−1, if yadv = ytrue,
(1)

where ys is the true label of source point cloud Ps, yadv =
F (Padv) is the label of Padv predicted by the 3D model.

3.2. Overview of Our 3DHacker Framework

To tackle the challenging 3D hard-label attack setting, in
this section, we introduce the overall pipeline of our pro-
posed 3DHacker, which starts with one source-cloud Ps of
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Figure 2. Overall pipeline of our proposed 3DHacker. The boundary-cloud generation module first fuses the source cloud with a set of
target clouds in the spectral domain to construct candidate clouds, then selects the best one and projects it onto the decision boundary to
obtain the boundary cloud via binary search. After that, the boundary-cloud optimization module iteratively moves the boundary cloud
along the decision boundary via a joint coordinate-spectrum iterative walking strategy to achieve the best place with smallest distortion.

benign label ytrue that is correctly classed by model f(·),
and a group of target-clouds {Ptar} of class labels {ytar},
ytar ̸= ytrue. 3DHacker aims to generate a boundary cloud
on the model decision boundary between the source and tar-
get point clouds as the adversarial sample, which has a dif-
ferent class label of the source cloud while sharing the same
object shape with it. As shown in Figure 2, our 3DHacker
consists of two main parts —— A boundary-cloud gen-
eration module is first utilized to produce a high-quality
adversarial point cloud on the decision boundary, then a
boundary-cloud optimization module is exploited to fur-
ther optimize the adversarial point cloud along the decision
boundary for achieving smallest perturbations.
First step: Boundary-cloud generation with spectrum-
fusion. In this step, we first perform the fusion method be-
tween a source cloud Ps and multiple target clouds Ptar to
obtain candidate point clouds Pcan to construct the decision
boundary. Then we select a best adversarial Pcan such that
φ(Pcan) = 1 and D(Ps,Pcan) is the smallest, where D
is the distance metric. After that, we project the best Pcan

onto the decision boundary via binary search algorithm to
obtain the boundary cloud Pb.

Previous 2D decision boundary mechanisms generally
fuse the source and target samples via the pixel-wise av-
erage operation. However, directly applying this strategy
into 3D domain is ineffective since 3D coordinate-wise
fusion between point clouds will result in outlier prob-
lem and destroy the 3D object geometric shape, leading to
poor imperceptibility. To address this issue, we introduce
a new spectrum-fusion method, which fuses point clouds
in the spectral domain to preserve the geometric topology.
Instead of fusing point-wise coordinations, the spectrum-
fusion method first transforms both source and target point

clouds into the spectral domain for representing their geo-
metric characteristics, then fuses their spectral contexts and
transforms the fused geometric characteristics back to the
data domain as the adversarial sample Pcan. In this manner,
the fused point cloud not only preserves the specific char-
acteristics of the original point clouds, but also has more
smooth geometric surface due to the spectrum advantages
[15, 13], leading to high imperceptibility. Although with a
slight and smooth perturbation, Pcan still possesses a strong
potential to confuse the model f(·) with a structure distor-
tion learned from spectral characteristics of the Ptar.
Second step: Boundary-cloud optimization along the de-
cision boundary. Although we can obtain the boundary
cloud Pb in the first step, this Pb is not the best optimal one
due to the specific concave-convex structure of the decision
boundary. Therefore, we propose to update Pb along the de-
cision boundary via the iterative walking strategy to search
for a high-quality Pb that has the lowest geometric distance
to the source cloud.

Previous 2D decision boundary mechanisms generally
conduct the iterative walking strategy with pixel-wise off-
sets, which can not be directly applied into the 3D domain
since point-wise coordinate walking will lead to local op-
timum object shape. The reason is, although this bound-
ary cloud is well optimized and still remains adversarial, it
may get stuck in the local concave area with a large neigh-
boring convex area, and the estimated gradients towards
this convex will lead to a larger geometric distance to the
source cloud. To alleviate this issue, we extend the point-
wise coordinate walking with a new spectrum walking as
additional guidance for jumping out of such local optimum.
That is, we update the boundary cloud Pb along the deci-
sion boundary with coordinate modification for shape re-
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finement and spectrum modification for maintaining the ge-
ometric smoothness and high imperceptibility. At last, the
updated Pb on the decision boundary is our final generated
adversarial sample. In the following, we will provide more
details about each step.

3.3. Boundary-Cloud Generation with Spectrum-
Fusion

Given the source cloud Ps and T number of target clouds
Ptar, we aim to generate a desired boundary-cloud Pb of
label yb ̸= ytrue with a minimized distance D(Ps,Pb).
Specifically, for each pair of Ps and Ptar, we first conduct
Graph Fourier Transform (GFT) [15] to obtain their corre-
sponding spectrum coefficient vector x̂s and x̂tar. Consid-
ering that low-frequency components mainly represent the
basic 3D object shape while high-frequency components
encode find-grained details [13], we then fuse their spec-
trum coefficient vectors with different fusion weights for
low and high frequencies, and perform inverse GFT (IGFT)
to transform the fused spectrum coefficient vector back to
data domain for obtaining the candidate-cloud Pcan. In
this way, we can get T candidate-clouds Pcan for T tar-
get clouds Ptar. The above process can be formulated as:

x̂low = αlowGFT(Ps)L + (1− αlow)GFT(Ptar)L,

x̂high = αhighGFT(Ps)H + (1− αhigh)GFT(Ptar)H ,

Pcan = IGFT(x̂low ⊞ x̂high),
(2)

where GFT (Ps)L,GFT (Ps)H denotes conducting GFT
on Ps and splitting its spectrum coefficient into the low
L and high H frequencies. x̂low ⊞ x̂high denotes piecing
two coefficient vectors into a complete one. For spectrum-
fusion, we use different fusion weights αlow and αhigh for
low and high spectrum frequencies since the lowest 32 fre-
quencies account for almost 90% of energy and the other
992 spectrum frequencies account for 10% of energy [28],
which lead to point clouds more sensitive to modifications
on the lowest 32 frequencies than higher frequencies.

After obtaining T candidate clouds, we conduct adver-
sarial evaluation on each candidate cloud to select the best
one as the boundary cloud Pb. To be specific, we select
the best boundary-cloud P b

can from the adversarial candi-
date clouds with the slightest distortion measured by dis-
tance metric D(Ps,Pcan):

P b
can = argminP i

can
D(Ps,P

i
can)(i = 1, 2, ..., T ),

s.t. φ(P i
can) = 1,maxj(

∥∥pi
can,j − ps,j

∥∥
2
) ≤ ε,

(3)

where P i
can denotes the i-th candidate-cloud, pi

can,j de-
notes the j-th points in P i

can, ps,j ∈ Ps denotes the point
with lowest distance from pi

can,j . The distance measure-

ment function D(·) is formulated as:

D(Ps,Pcan) = DChamfer(Ps,Pcan)

+ γ1DHausdorff (Ps,Pcan) + γ2DV ariance(Ps,Pcan),
(4)

where DChamfer and DHausdorff measure the distance be-
tween two point clouds following [43]. DV ariance is the
variance of distance between two point clouds. γ1 and γ2
are penalty parameters. We then project the P b

can onto the
decision boundary to obtain the boundary-cloud Pb. Specif-
ically, we conduct a binary search strategy [31] to move
P b

can towards Ps until reaching the decision boundary as:

Pb = βPs + (1− β)P b
can, (5)

where β is the moving ratio in binary search.

3.4. Boundary-Cloud Optimization Along Decision
Boundary

The goal of boundary-cloud optimization is to further
minimize the distance between the boundary cloud Pb

and the source cloud Ps by moving Pb along the deci-
sion boundary to the optimal place so that the perturbation
is smallest yet imperceptible while Pb keeps adversarial.
Specifically, we utilize the iterative walking algorithm to
optimize the point cloud Pb by two steps: 1. Estimate upda-
tion gradient and move the point cloud along it, 2. Project
the moved point cloud back to the decision boundary.

1.Estimate updation gradient and move the point cloud
along it. As for initialization, we take Pb obtained in Sec-
tion.3.3 as the initial boundary-cloud P

(0)
b . For the next

step, we denote P
(t)
b as the boundary-cloud obtained in

the t-th walking iteration which is exactly on the decision
boundary. We aim to estimate a gradient direction of P (t)

b

for improving the gap between the adversarial and the true
class labels while preserving the geometric distance, so that
we can make P

(t)
b more aggressive with small distortion

and can further move it towards source cloud Ps. Specif-
ically, we utilize the point-wise walking to conduct Monte
Carlo method [19] to obtain the estimated gradient vector
▽S(t) under the guidance of indicator function φ(·):

▽S(t) =
1

B

B∑
i=1

φ(P
(t)
b + vi)vi, (6)

where vi is the sampled move vectors obeying a normal dis-
tribution and B is the number of vectors sampled in Monte
Carlo method. Then we move P

(t)
b along ▽S(t) with a step

size ξ by:

P temp
b = P

(t)
b + ξ

▽S(t)∥∥▽S(t)
∥∥
2

. (7)

14344



2. Project the moved point cloud back to decision bound-
ary. After moving the point cloud along the estimated gra-
dient, it will leave the decision boundary. Thus we conduct
a binary search strategy to move P temp

b towards Ps until
reaching the decision boundary again. With multiple such
walking iterations, we take the last P (t)

b with the best opti-
mization as the final adversarial point cloud.

So far, the optimization algorithm is complete, and we
generate a desired adversarial point cloud P

(t)
b . However,

as mentioned in Section.3.2, there remains the local opti-
mum problem. To address it, in addition to the point-wise
walking strategy, we also conduct a spectrum-wise walking
to bring a great movement for cloud features and escape the
convex area. Specifically, we maintain other operations and
solely replace the coordinate gradient walking in Eq.5 and
Eq.6 with a spectrum gradient walking as:

▽S(t) =
1

B

B∑
i=1

φ(IGFT (GFT (P
(t)
b ) + ui))ui, (8)

P temp
b = P

(t)
b + ξspe

▽S(t)∥∥▽S(t)
∥∥
2

, (9)

where ξspe is a step size for spectrum walking. By combin-
ing two walking operations for multi-step walking, the spec-
trum walking is able to perform large movement to jump
out of local optima for a better optimization region, while
the coordinate walking is able to perform slight movement
to gradually fine-tune for getting the best optimization point
in such region. The iterative walking algorithm is detailed
in Algorithm.1. The optimized point cloud is our final ad-
versarial sample.

Algorithm 1: Joint Spectrum&Coordinate Walking

Input: Boundary cloud P
(0)
b , iteration step R, best

optimized cloud list Best = []
Output: Adversarial point cloud Padv

1 Best[0] = P
(0)
b ;

2 for i = 1 : R do
3 conduct coordinate walking: P (i)

b → P
(i+1)
b ;

4 if P (i)
b = P

(i+1)
b then

5 conduct spectrum walking:
P

(i+1)
b → P

(i+1)
b ;

6 else
7 Best.append(P (i+1)

b );
8 end
9 end

10 Select Padv ∈ Best with the smallest distance D;

4. Experiments
4.1. Dataset and 3D Models

Dataset. We use ModelNet40 [45] in our experiments
to evaluate the attack performance. ModelNet40 con-
sists of 12,311 CAD models from 40 object categories, in
which 9,843 models are intended for training and the other
2,468 for testing. Following the settings of previous work
[43, 27, 13], we uniformly sample 1024 points from the sur-
face of each object and scale them into a unit ball. For the
adversarial point cloud attacks, we follow [46, 13] and ran-
domly select 25 instances for each of 10 object categories
in the ModelNet40 testing set, which can be well classified
by the classifiers of interest.
3D Models. We use three 3D networks as the victim mod-
els: PointNet [33], PointNet++ [34], DGCNN [42]. Exper-
iments on other models can be found in supplementary.

4.2. Implementation Details

Attack Setup. We set K = 10 to build a K-NN graph to
conduct Graph Fourier Transform (GFT). The weights of
Hausdorff distance loss and variance loss e.g.γ1 and γ2 in
Eq.4 are set to 2.0 and 0.5, respectively. For the spectrum
fusion rate α in Eq.2, the low frequencies weight αlow are
set to 0.85 and the high frequencies weight αhigh are set to
0.2. We use B = 50 queries in the Monte Carlo algorithm
to estimate the gradient. We conduct R = 200 iteration
rounds during boundary-cloud Optimization stage. We set
ξ = ∥P (t)

b − Ps∥2/
√
t in Eq.7 and ξspe = 5.0 in Eq.8.

Evaluation Metrics. To quantitatively evaluate the effec-
tiveness of our 3DHacker, we measure the perturbation size
via three metrics: (1) L2-norm distance Dnorm [6]; (2)
Chamfer distance Dc [9]; (3) Hausdorff distance Dh[17].

4.3. Evaluation on Our 3DHacker Attack

Comparison with existing methods. To investigate the ef-
fectiveness of our attack, we perform several existing white-
box adversarial attacks and one black-box adversarial at-
tack for quantitative comparison as shown in Table 1. Ta-
ble 1 shows that our 3DHacker achieves smaller perturba-
tion sizes than the black-box model and achieves very com-
petitive results with white-box models. Since our 3DHacker
conducts global perturbations to origin point clouds which
possess a strong potential to confuse the victim models with
a structure distortion, this global perturbations produce a
higher Chamfer distance Dc compared with 3D-ADVp and
SI-Adv because Dc measures the average squared distance
between each adversarial point and its nearest original point
and we modify all the points leading to a large sum of dis-
placements. Instead, attacking by modifying a few points in
3D-ADVp and SI-Adv has advantage in Dc because most
of the distance is equal to 0. However, 3DHacker performs
better in Dh since we conduct relatively average perturba-
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Table 1. Comparative results on the perturbation sizes of adversarial point clouds generated by different attack methods under 100% ASR.

Setting Attack Model Details PointNet [33] PointNet++ [34] DGCNN [42]
Para. Logits Dh Dc Dnorm Dh Dc Dnorm Dh Dc Dnorm

White-Box

FGSM [47] ✓ ✓ 0.1853 0.1326 0.7936 0.2275 0.1682 0.8357 0.2506 0.189 0.8549
PGD [30] ✓ ✓ 0.1322 0.1329 0.7384 0.1623 0.1138 0.7596 0.1546 0.1421 0.7756

AdvPC [12] ✓ ✓ 0.0343 0.0697 0.6509 0.0429 0.0685 0.6750 0.0148 0.0623 0.6304
3D-ADVp [46] ✓ ✓ 0.0105 0.0003 0.5506 0.0381 0.0005 0.5699 0.0475 0.0005 0.5767
LG-GAN [57] ✓ ✓ 0.0362 0.0347 0.7184 0.0407 0.0238 0.6896 0.0348 0.0119 0.8527
GeoA3 [43] ✓ ✓ 0.0175 0.0064 0.6621 0.0357 0.0198 0.6909 0.0402 0.0176 0.7024

SI-Advw [16] ✓ ✓ 0.0204 0.0002 0.7614 0.0310 0.0004 1.2830 0.0127 0.0006 1.1120
Black-Box SI-Advb [16] × ✓ 0.0431 0.0003 0.9351 0.0444 0.0003 1.0857 0.0336 0.0004 0.9081
Hard-Label
Black-Box Ours × × 0.0136 0.0017 0.8561 0.0245 0.0023 0.9324 0.0129 0.0026 0.9030

Table 2. Resistance of the black-box attacks on defended point cloud models.

Defense Attack PointNet [33] PointNet++ [34] DGCNN [42]
ASR(%) Dh Dc Dnorm ASR(%) Dh Dc Dnorm ASR(%) Dh Dc Dnorm

SOR[58] SI-Advb [16] 89.7 0.0420 0.0009 3.0193 78.9 0.0436 0.0025 1.3843 72.0 0.0341 0.0009 1.6480
Ours 90.4 0.0100 0.0023 1.2486 82.7 0.0218 0.0043 1.3759 85.4 0.0124 0.0031 1.2387

Drop(30%) SI-Advb [16] 96.9 0.0426 0.0003 1.3680 70.1 0.0473 0.0023 1.4538 71.2 0.0400 0.0004 0.8598
Ours 97.2 0.0179 0.0016 0.8391 71.3 0.0298 0.0031 1.2810 78.5 0.0195 0.0033 1.1742

Drop(50%) SI-Advb [16] 93.6 0.0420 0.0002 1.3844 67.6 0.0501 0.0013 1.9193 75.2 0.0358 0.0004 0.6992
Ours 95.4 0.0182 0.0023 0.8328 77.4 0.0285 0.0032 1.4735 76.8 0.0172 0.0036 1.2914

tions to point cloud which does not count on a few outliers
to confuse the victim models, leading to imperceptible and
having the potential to bypass the outlier detection defense.
Visualization results. We provide visualization on adver-
sarial samples generated by our 3DHacker, SI-Advw[16]
(white box attack) and SI-Advb[16] (black box attack) in
Figure 3. Our 3DHacker can alleviate the outlier point prob-
lems and produce more imperceptible adversarial samples.
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Figure 3. Visualization results of adversarial samples.
Resistance to Defenses. To evaluate the robustness of our
3DHacker against different adversarial defenses, we con-

duct the experiments on two widely used defense methods:
Statistical Outlier Removal(SOR) [58] and Simple Random
Sampling(SRS) [47]. Following the defense experiments
setting on SRS in [16], we conduct SRS by randomly drop-
ping 30% and 50% of input points respectively. As shown in
Table 2, (1) Our 3DHacker can achieve a higher attack suc-
cess rate than SI-Advb when attacking the model protected
by SOR. This is because our method alleviates the outlier
point problems and selects the best adversarial samples with
the smallest perturbations, while SI-Advb still suffers from
the perturbed point of outlier in the sharp component. (2) As
for SRS defense, our 3DHacker still achieves a better attack
than SI-Advb as we generate the adversarial sample with
high similarity to the original one in both geometric topol-
ogy and local point distributions. Overall, our 3DHacker is
much more robust to existing defense strategies.

4.4. Ablation Study

Investigation on different strategies for boundary-cloud
generation. To verify the effects of our spectrum fusion
method in boundary-cloud generation stage, we conduct
the experiments by replacing the spectrum fusion method
with different strategies while maintaining the latter pro-
cedure and settings in boundary-cloud optimization stage
the same. Specifically, two general strategies are compared:
traditional coordinate fusion (which fuses source-cloud and
target-cloud in coordinate space with proper fusion rate)
and simple random perturbation (which directly add point-
wise noise to source-cloud to reach the decision bound-
ary). As shown in Table 3, our spectrum fusion achieves
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Table 3. Investigation on different strategies in the boundary-cloud
generation stage. Victim model: PointNet.

Generation Strategy Dh Dc Dnorm

Spectrum Fusion 0.0136 0.0017 0.8561
Coordinate Fusion 0.0275 0.0038 1.4379

Random Perturbation 0.0256 0.0023 0.9673

Table 4. The effect of different walking methods in the boundary-
cloud optimization stage. Victim model: PointNet.

Coordinate
Walking

Spectrum
Walking Dh Dc Dnorm

✓ ✓ 0.0136 0.0017 0.8561
✓ × 0.0198 0.0047 1.5827
× ✓ 0.0598 0.0109 3.1746

Table 5. Analysis on Iteration Round R. Victim model: PointNet.
Iteration Rounds R Dh Dc Dnorm

R = 100 0.0185 0.0024 1.1613
R = 150 0.0152 0.0022 0.9470
R = 200 0.0136 0.0017 0.8561
R = 250 0.0131 0.0016 0.8487

Table 6. Sensitivity analysis on Numbers of selected samples B in
Monte Carlo algorithm. Victim model: PointNet.

selected samples B Dh Dc Dnorm

B = 10 0.0164 0.0023 1.3725
B = 30 0.0141 0.0018 0.9636
B = 50 0.0136 0.0017 0.8561
B = 70 0.0139 0.0017 0.9073

the smallest perturbations than other strategies in all met-
rics, this is because: (1) coordinate fusion will destroy to
geometric structure by averaging different shapes of 3D ob-
jects; (2) random perturbation will lead to outliers and un-
even point distribution without geometric awareness. Their
visualized adversarial samples are shown in Figure 4 (a,b,c),
where our samples are more imperceptible.
The effect of different walking methods for boundary-
cloud optimization. In the boundary-cloud optimization
stage, we design a spectrum walking method in addition to
the coordinate one to jump out of the local optimum. To
investigate the effect of each walking strategy, as shown in
Table 4, we remove one of them to conduct the ablations for
comparison. From this table, without spectrum walking, the
attack process is easily trapped into the local optimum, lead-
ing to larger perturbations. Without coordinate walking, as
shown in Figure 4 (d), it is hard to measure the point-wise
imperceptibility for optimization, thus achieving the worst
performance. By utilizing both of them, our model can pre-
serve both high imperceptibility and geometric smoothness.
Sensitivity on the iteration rounds R. As shown in Ta-
ble.5, we conduct the ablation on the iteration rounds R
of the boundary-cloud optimization. Our model achieves
the best performance when R is set to 250. However, the
model with R = 250 is slightly better than the model with
R = 200, but leads to much more time consumption. To
balance both the performance and time cost, we choose
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Figure 4. Visualization on different ablations.

Figure 5. Influence of different spectrum fusion rates.
R = 200 in our all experiments. Visualization on adver-
sarial point clouds of different R is shown in Figure 4.
Sensitivity on number B in Monte Carlo algorithm. As
shown in Table 6, we conduct the ablation on the number B
of selected samples in Monte Carlo algorithm. It shows that
we achieve the smallest perturbation when B = 50.
Influence of different spectrum fusion rate. The spec-
trum fusion rate αlow and αhigh decide the fusion weights
of rough shape and fine details in Eq.2, respectively. Here,
we modify αlow and αhigh to analyze their influence on at-
tack quality. In Figure 5, by balancing perturbation size and
attack success rate, we set αlow = 0.85, αhigh = 0.2.

5. Conclusion
We introduce a new and challenging 3D attack setting,

i.e., attacking point clouds with black-box hard labels. To
address this practical setting, we propose a novel attack
method called 3DHacker based on our decision boundary
algorithm, which adopts spectrum fusion to generate bound-
ary clouds with high imperceptibility and employs an ad-
ditional spectrum walking strategy to move the boundary
clouds along the decision boundary for further optimization
with trivial perturbations. Experiments validate both effec-
tiveness and robustness of our 3DHacker.
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