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Abstract

Compressive autoencoders (CAEs) play an important
role in deep learning-based image compression, but large-
scale CAEs are computationally expensive. We propose a
framework with three techniques to enable efficient CAE-
based image coding: 1) Spatially-adaptive convolution
and normalization operators enable block-wise nonlinear
transform to spend FLOPs unevenly across the image to
be compressed, according to a transform capacity map.
2) Just-unpenalized model capacity (JUMC) optimizes the
transform capacity of each CAE block via rate-distortion-
complexity optimization, finding the optimal capacity for
the source image content. 3) A lightweight routing agent
model predicts the transform capacity map for the CAEs
by approximating JUMC targets. By activating the best-
sized sub-CAE inside the slimmable supernet, our approach
achieves up to 40% computational speed-up with minimal
BD-Rate increase, validating its ability to save computa-
tional resources in a content-aware manner.

1. Introduction

In recent years, neural image compression (NIC) is be-
ing actively investigated, which reveals its great potential
in terms of compression efficiency and capacity for per-
ceptual optimization [2, 3, 6, 24]. After initial attempts,
the specific variants of autoencoders, namely compressive
autoencoders (CAEs), have become a popular architecture
choice in follow-up studies. The adoption of CAE for
learning compact nonlinear representation of image signals
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leads to great success, yielding comparable or superior rate-
distortion trade-offs when compared with the existing state-
of-the-art codecs. Due to the learning-based nature of NIC,
the number of incurred floating-point operations (FLOPs) is
higher than those of legacy algorithms by orders of magni-
tude. By replacing traditional linear transforms (i.e., DCT,
DST) with neural network-based nonlinear transforms, the
inference computational costs will be huge although with
much better representation capacity. Such a dilemma hin-
ders the practical deployment of NIC codecs, which calls
for an efficient way to reduce the computational overhead
of CAEs without harming their performance advantages.

Early works have demonstrated that the scale of CAEs
is highly related to the image quality or bitrate [3]. The
more radical quality objective in loss function will de-
mand more latent channels allocated. Therefore, the con-
verged model with inadequate channels will suffer from
rate-distortion degradation. A larger redundant model car-
ries no penalty or reward in terms of rate-distortion crite-
ria. In this case, the well-studied channel pruning meth-
ods may fit the needs for complexity-mitigation. However,
since neural image codecs are originally trained with di-
versified picture and block content and involve distortion-
sensitive reconstruction, the contribution of each channel
takes effect on individual inputs. Henceforth, when chan-
nel pruning approaches are applied to remove unimpor-
tant channels [12, 23, 41], excessive channel elimination
can lead to severely-degraded rate-distortion performance.
Therefore, the static way of one-shot channel pruning may
not be suitable for further rate-distortion-complexity opti-
mization, which can be crucial to the coding performance.
Conversely, we would like to investigate the dynamic rout-
ing solution to benefit the underexplored rate-distortion-
complexity (RDC) trade-off-oriented optimization.

In this paper, we emphasize the importance of employ-
ing content-adaptive optimization at run-time. The overall
framework of AdaNIC is illustrated in Figure 1. By de-
signing and training a lightweight adaptive routing agent
under the rate-distortion lossless objective, and proposing
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Figure 1. Illustration of the proposed AdaNIC framework. Lower middle: SA-CAE, a slimmable CAE supernet powered by spatially-
adaptive operators. SlimE&SlimD: slimmable encoder&decoder for neural-based transform. AE&AD: arithmetic encoder&decoder.
Upper middle: transform routing agent (RA) sub-system, including teacher and student routing agents and their learning pipeline. D:
knowledge distillation loss as devised by Hinton et al. in [13]. A: action loss, we use cross-entropy loss between the output action of the
agent and the optimal JUMC choice. S: surrogate loss, we adopt mean-squared error (MSE) as the criterion for ∆ routing cost regression.
∆Cost: transform capacity downgrade cost defined in Section 3.4. JUMC: just-unpenalized model capacity determined by a threshold ϵ.
Upper sides: (a) examples of patch-level routing costs. (b) details of the lightweight routing agent (student model).

the spatially-adaptive signal transform operators for fine-
grained transform-capacity allocation, the optimal sub-CAE
with minimal redundant parameters and computations can
serve the corresponding input patches. In this way, the max-
imal system throughput can be achieved.

Since the action space of dynamic routing is devised as
sample or region-adaptive, it can be seamlessly integrated
into other feasible solutions for accelerating neural nonlin-
ear transform that results in a static lightweight model and
improves their performance by joint optimization. The ra-
tionale behind this is that the speed-up effects of AdaNIC
come from exploiting the differences of required transform
capacity among uncompressed content, which is not con-
flicting with efforts of acquiring a computationally-efficient
model. The interesting side of the proposed “routing” ap-
proach is that it makes coding decisions at run-time, which
is similar to the traditional RDO process or fast algorithms
that are commonly adopted by modern image/video coding
standards. Such kind of run-time trade-offs can bring about
more flexibility when a codec system is responsible for the
processing of a wide variety of content, enabling better rate-
distortion or complexity tradeoffs through customized be-
haviors.

The contributions of our work can be summarized as fol-
low: (1) a novel way of accelerating neural image codecs
with content-adaptive transform routing (2) definition of
unpenalized rate-distortion objective (3) network design of
lightweight routing agent and its learning mechanism (4)
an original spatially-adaptive convolution operator for fine-

grained capacity allocation. The proposed solution utilizes
a novel action space, which is content-adaptive (in image
level or patch level), so additional optimization techniques
(for example, model pruning / AutoML methods) shall be
compatible with the trade-offs discussed in this work.

2. Related Work

2.1. Development of Image Compression

Compression technology is crucial for the production,
storage, and transmission of digital multimedia assets.
Some standardized compression methods for still image
compression include JPEG [26], PNG [27], JPEG2000 [28],
WebP [22], and HEIF [18].

Encouraged by the success of deep learning methods in
various aspects of science and technology, the problem of
learned image compression soon attract the interest of the
research community. By substituting the engineered pre-
diction, quantization or entropy coding modules with neural
networks [7, 21, 30, 34], the capabilities of individual steps
can be improved. Moreover, deep neural networks (DNNs)
can be applied to image quality assessment [31] and en-
hancement by pre-processing [10] and post-processing [9].

Initially, recurrent neural networks (RNNs) are applied
to extract image representations in an iterative (residual-
based) way [16, 25, 33]. However, the approach of it-
erative inference is considered inefficient, despite its ben-
efits for spatially-adaptive processing and variable rate.
Later, CNN-based CAEs [2, 32] succeed in achieving bet-
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ter performance-efficiency trade-offs. Some key designs
of CNN-based CAEs include the hyperprior branch [3]
that transmits performance-sensitive side information via
auxiliary bitstream, the generalized divisive normalization
(GDN) layer [1] for noise-free normalization, and non-
linearity.

To make continuous improvements for the compression
performance, modern techniques such as visual attention
mechanism, non-local architecture, residual learning, auto-
regressive (AR) CNN model for context modeling, proba-
bilistic mixture model (e.g. GMMs) for entropy modeling,
and so forth [5, 6, 24]. Among them, the AR context model
is well-known as a sweet burden – it not only boosts the
compression performance by a good margin but also sig-
nificantly lengthens the coding and decoding process, as its
data dependencies strictly prohibit parallel acceleration at
run-time.

2.2. Practical Neural Image Compression

The sub-optimal processing efficiency of CAE-based
NIC codecs restricts their practical usage and massive
deployment. To decouple the indivisible parameter set
and multiple rate-distortion objectives, some works [8, 32,
36] implement variable-rate codecs by feature modulation.
Now that the inference of a full network is consistently re-
quired, the coding process for lower quality levels could be
extended.

Taking advantage of the concept of slimmable neural
networks, a specific CAE variant with variable transform
capacity, namely SlimCAE, is introduced. Following the
aforementioned rule, Yang et al. [35] propose an algo-
rithm to search for the optimal (maximum) quality objec-
tive bound to the specific sub-CAE, where quality coeffi-
cients gradually reduce until relative RD performance stops
improving.

The computational complexity also plays a critical role
in the deployment of NIC codecs. In [15], model compres-
sion techniques are utilized to search for efficient CAE ar-
chitectures, which is conducted by adding a weighted group
LASSO regularization term concerning model FLOPs.
Moreover, parallel-friendly architecture for context model-
ing is proposed to break down the path dependence of pixel-
level AR modeling and alleviate latency caused by waiting.
In [11], He et al. build a checkerboard-styled context model,
which accelerates the generation of entropy parameters by
applying a two-pass decoding pipeline. Both approaches
focus on the delivery of an efficient static model, taking no
advantage of content-adaptive computation.

2.3. Comparison

To highlight the varying motivation and effects, we com-
pare the performance relative to independent CAEs (includ-
ing time/space complexity and rate-distortion performance)

Motivation Method Rel. Perf. (indepedent CAEs as the anchor)
Param. size FLOPs / latency RD-Optimality

Variable Rate
BScale [32] ↓ ↑ Degraded (med)

CCAE [8], MAE [36] ↓ ↑ Degraded (low)
SAFT [29] ↓ ↑ Near lossless

SlimCAE [35] ↓ - Near lossless
Faster Codec AdaNIC - ↓ Near lossless (managed)

Table 1. Comparison between the proposed method and related
work.

of various recent works to the proposed method, in Table 1.
Note that model size and coding time are metrics for the
complexity of the different codecs, while RD-Optimality
evaluates compression efficiency.

As shown in Table 1, previous works share the capabil-
ity of reducing space complexity (storage consumption) of
neural image compression by devising a single model that
adapts to multiple quality levels (or bitrate targets). The in-
troduced penalty in terms of time complexity and compres-
sion efficiency varies from severe to mild, according to their
specific designs. In contrast, the proposed method aims at
improving the overall throughput and puts no effort into re-
ducing the number of independent models. Meanwhile, the
proposed method barely introduces any additional storage
overhead, which is guaranteed by our underlying architec-
ture – a slimmable neural network [38, 39] with shared pa-
rameters.

3. Methods
3.1. Overview

As illustrated in Figure 1, the proposed AdaNIC frame-
work is established as follows. First of all, we achieve
dynamic capacity of neural transform units based on net-
work slimming. Afterward, we extend the definition of
existing slimmable operators, to support fine-grained con-
trol of spatially-adaptive transform capacity, which is the
core component of the proposed SA-CAE module. Then,
to gain optimal capacity control for the SA-CAE, a rate-
distortion degradation tolerance-guided approach of capac-
ity downgrading is devised as just-unpenalized model ca-
pacity (JUMC). Finally, an efficient yet powerful learning
machine is proposed to capture the resulting rate-distortion
characteristics of SA-CAE at different capacity levels and
learn to make optimal routing decisions based on its learned
representations.

3.2. Dynamic Transform Capacity

The neural transform unit is composed of a 2D signal
convolution layer and a consecutive GDN layer, where the
heavy computational burden is imposed to dense feature
maps by massive feature extraction operations.

We first look into the rate-distortion performance of a
typical CAE architecture, i.e., the mean-scale hyperprior
CAE introduced in [24]. Following the paradigm of Slim-
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CAE [35], we build up a slimmable supernet, whose ac-
tivated channel number can be adjusted at run-time. By
testing the coding performance of sub-models, we find that
the observed degradation of coding performance caused by
CAE capacity downgrading also heavily depends on differ-
ent picture samples and texture patches, as depicted in Fig-
ure 2. To summarize, diversified coding performance and

(a) example pictures from the Kodak dataset

(b) rate-distortion performance drifting with different capacity

Figure 2. Illustration of alteration in rate-distortion performance
caused by local transform capacity downgrading (N = 192 →
N = 176). Dark and light dots (with orange, green and purple col-
ors) correspond to the rate-distortion metrics before & after CAE
downgrading, respectively. Arrows indicate the rate-distortion
changes for internal coding blocks in example pictures.

varying responses to transform capacity downgrading can
be witnessed. The importance of gaining adaptive control
of model capacity can be noted. If a static NIC codec is op-
timized to process all the inputs indiscriminately, the com-
putational efficiency and coding performance will not easily
get an optimal state for most input data, since their underly-
ing differences in capacity demand are ignored. To over-
come this deficiency, we propose to implement dynamic
transform capacity for various inputs.

3.3. Spatially-Adaptive Operators for NIC

To construct a neural network computation graph that
supports spatially-adaptive slimmable inference, the ba-
sic neural network operators should be redefined. Con-
cretely, the involved operators include 2D convolution /
transposed convolution, and generalized divisive normal-
ization (GDN). Inspired by the slimmable variants of those
operators in [35], we establish a set of spatially-adaptive
operators that are capable of applying an elastic set of fil-
ters to part of the input tensor or processing part of the in-
put tensors with some different channel number. The modi-
fied signal convolution operators, namely SA-Conv and SA-

+4

+2

+3

Base

SA-C
onv

SA-G
D
N

TCM

Figure 3. Illustration of the spatially-adaptive transform unit. The
input tensor can be a dense one, or have spatially variable channel
numbers. TCM: Transform Capacity Map.

TConv, are controlled by a transform capacity map (TCM),
which describes the designated spatial distribution of the
output channel number. Correspondingly, the SA-GDN op-
erator takes its role of nonlinear normalization based on the
valid channel numbers at different spatial locations. An ex-
ample of a neural transform unit established by the modified
operators is shown in Figure 3. The inverse transform op-
erations are handled by a similar module equipped with the
SA-TConv operator with an equivalent definition. Assum-
ing no stride and padding is applied, the output feature map
F ∈ RTCM(x,y)×H′×W ′

can be computed with a fixed-
sized input feature map X ∈ RC×H×W :

F (m,x, y) =

C∑
n=1

k∑
u=−k

k∑
v=−k

W (m,n, u, v) ·X(n, x− u, y − v),
(1)

where W ∈ RC′×C×K×K is the weight tensor of the SA-
Conv tensor. C ′ represents the maximum number of filters
supported by the operator.

To achieve real acceleration on existing hardware, block-
based TCM is adopted for efficient implementation. If the
granularity of TCM is very fine (e.g. pixel-level), the over-
head of memory access (i.e. addressing) and limited choice
for on-device convolution algorithms may restrict the con-
version of reduced FLOPs to inference speedup. Follow-
ing the block-based policy, the computation of 2D convolu-
tion is evolved by the proposed tiling-based partition mech-
anism. First, the input feature map is cropped to smaller
pieces by the specific scheme shown in Figure 4, which
guarantees the minimal occurrence of overlapped pixels and
optimal efficiency. Afterward, the divided feature maps are
individually processed to generate convolution results. Fi-
nally, intermediate results are merged to reconstruct a full-
sized output feature map. The aforementioned strategy is
developed by analysis of the sliding-window rule of convo-
lution and is inspired by the underlying design of many AI
accelerators [20].

Following the common practice of using a fixed filter
number across layers in CAE, the TCM for the ith stage is
up-sampled from the next stage on the encoder side, keep-
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Figure 4. Illustration of the original and partitioned feature map.
To ensure the dimension of output feature map strictly equals to
one fourth of the input’s, zero-padding is applied to the original
feature map as marked with green tiles. By formulating suitable
partition and padding schemes, exactly-consistent behavior with
the original operator can be observed when a static full-capacity
map is assigned to the divided blocks.

ing the capacity allocation invariant in the direction of net-
work depth. The 2× up-sampling is applied to align the
dimension with the stride-2 convolution:

TCM (i)(x, y) = TCM (i+1)(⌊x
2
⌋, ⌊y

2
⌋), (2)

and that C in Eq. (1) can be replaced by:

C̃ = min(C, TCM(x, y)). (3)

The local performance of a block can get affected by its
neighboring blocks under only one circumstance, where the
up or the left-sided block assigned with fewer output chan-
nels gets processed by spatially-adaptive operators in the
preceding layer. In this case, the reduced information on
the edges of the input feature map may have a slight im-
pact on the results, which are limited to pixels near the two
borders.

3.4. Find Just-Unpenalized Model Capacity

Traditionally, the loss function of CAE is given as the
joint rate-distortion objective:

L = λ×D +R, (4)

where the distortion term D is evaluated by the L2 loss func-
tion for objective quality, and the rate term R is estimated
based on variational inference. When the balancing factor
λ is fixed, the optimality of the codec can be evaluated by
the loss value.

As shown in Figure 2, the capacity downgrade of trans-
form units results in various kinds of outcomes. Hence,
evaluation of potential downgrading options is a necessary
yet challenging problem. On one hand, the shifting on the
curve cannot be scored solely by the distance metric, as the
direction of the delta vector also plays an important role in
its effects. On the other hand, although the rate and distor-
tion metrics after downgrade can be considered in the neigh-
borhood of those achieved at the highest capacity, the slope
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Figure 5. Illustration of the maximum tolerable rate-distortion
penalty, controlled by a threshold ε.

alone cannot reflect the degree of loss in terms of compres-
sion performance. Inspired by Eq. (4), the cost of a down-
grade is defined as:

D′ =
λ′

µ
×D (5)

∆Cost =L′
new − L′

old

= µ× (D′
new −D′

old) +Rnew −Rold,
(6)

where µ is the new balancing factor used when considering
the rate-distortion trade-offs under the scenario of capac-
ity routing, which can be within a certain range centering
µ0 = 1. The distortion criterion in Eq. (6) is firstly nor-
malized by the balancing factor for routing cost λ′ assigned
for computing L′, which can take a different value than λ
in Eq. (4). Note that Eq. (6) is established when L′, D, R
are evaluated on a fine-grained basis, which means picture /
block-level rate-distortion data are used instead of dataset-
averaged results. By adding a tolerance threshold ε to the
original objective, the maximum tolerance of achieved cod-
ing loss L′

max is defined as:

L′
max = L′

old + ε. (7)

Following Eq. 7, the constrained rate-distortion results
for the routing targets can be viewed as the area under the
red line in Figure 5. Based on similar triangles, we have:

µ = tan θ, d =
ε

µ
cos θ

ε = dµ sec θ = d
√

1 + µ2.

(8)

By setting the balancing factor µ (or the angle of θ as
depicted in Figure 5) and the extrapolating distance d to
the coding cost line L′

old before routing, the threshold of
added coding cost is thereby determined. Inspired by the
concept of just-noticeable distortion (JND) [37] and just-
recognizable distortion (JRD) [40], among all the candidate
routing targets that fit in the designated range of negligible
coding penalty, the sub-model capacity with the minimum
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computational overhead becomes the desired action of the
dynamic transform routing. Defined by Eq. (9), the label of
expected action ztrue is named as just-unpenalized model
capacity (JUMC):

ztrue = min(W ),W = {w|L′
w ≤ L′

max}, (9)

where the capacity W is indicated by the maximum num-
ber of filters in the main auto-encoder branch. L′

w is the
coding cost evaluated with capacity w. During inference,
JUMC serves as TCM elements to control the scale of SA-
CAE. The computational complexity is minimized because
the “number of filters” - “FLOPs / inference latency“ func-
tion is monotonically increasing for an SA-CAE.

The w choice is limited to multiple fixed levels to sim-
plify the label generation and ease the burden of paired
learning models. Binary search algorithms are adopted to
further accelerate the labeling process. If a fine-grained list
of w is supported, a binary search with limited steps of itera-
tion can offer an approximate solution to the optimal routing
target.

3.5. Transform Routing Agent Subsystem

As depicted in Figure 1, the training of a dynamic rout-
ing agent involves a two-stage learning pipeline. In the first
stage, a large-scale learning model is employed to capture
the rate-distortion responses of the SA-CAE model for var-
ious input signals, at all supported transform capacity lev-
els. Thereafter, a lightweight student model is participated
to learn by approximating the behavior of the pre-trained
teacher model. The lightweight architecture of the student
model can make the overhead of online routing decision
generation close to negligible, hence facilitating its deploy-
ment in real-world coding workload.

The architecture of the teacher model can be summa-
rized as two patch-level predictor branches built on top
of a shared backbone Fbb. The backbone is a CNN-
based feature extractor based on stacked inverted-residual
blocks [14]. Two prediction heads are placed to handle dif-
ferent learning objectives. For the routing head, a set of tar-
get JUMC labels ztrue is generated by evaluating Eq. (9).
For the ∆Cost head, extracted features are made use of to
learn the mapping to the downgrade cost vector:

Frt : Fbb(x) → zpred,

Fdc : Fbb(x) → ∆Costpred.
(10)

Frt and Fdc are similarly constructed with two consecutive
fully-connected layers, with a hard-swish activation func-
tion inserted in the middle. The parameters of Frt and Fdc

are optimized with the action loss function A and the surro-
gate loss function S, respectively:

A(zpred, ztrue) = CrossEntropy(zpred, ztrue),

S(∆Costpred,∆Costtrue)

= MSE(∆Costpred −∆Costtrue).

(11)

The combined loss function L for the teacher model is for-
mulated as:

L = γ ×A+ (1− γ)× S. (12)

where γ is the balancing factor of the two correlated learn-
ing objectives. To control the scale of the student model, a
lightweight student model with a minimized backbone and a
single routing head is customized as in Figure 1 (b), to sup-
port online decision-making under a stricter resource con-
straint. The distillation loss function for the student model
is given as:

D(zpred,zteacher, ztrue)

= σ ×KL(zpred, zteacher) + (1− σ)×A(zpred, ztrue),
(13)

where KL stands for the Kullback-Leibler divergence [17],
and σ is the weighting factor that control the usage of dis-
tillation targets.

4. Experiments
4.1. Implementation Details

The proposed methods, as well as the representative
methods for comparison, are implemented based on Py-
Torch deep learning framework. We use a combination of
the CLIC professional and mobile training sets for model
training. The Kodak dataset and the combined CLIC vali-
dation set are reserved for verification.

For the AdaNIC codec, multiple supernets targeting
different quality levels (and bitrates) are independently
initialized with corresponding architecture presets. The
architecture-criterion mapping is shown in Table 2.

Level q = 1 q = 2 q = 3 q = 4 q = 5

N [96, 112, 128, 144, 160] [128, 144, 160, 176, 192]
M [128, 160, 192, 224, 256] [192, 224, 256, 288, 320]
λ 1.2× 102 4.4× 102 1.6× 103 6.1× 103 1.2× 104

Table 2. Architecture and optimization hyper-parameters of the
proposed SA-CAE supernet in detail. A set of λ coefficients are
manually assigned to control the approximate range for the result-
ing bitrate. N and M denote the channel number of the main
branch and the channel number of the hyperprior branch, respec-
tively. Each quality level q corresponds to a dedicated supernet,
embedded with 5 capacity levels (C1-C5, from low to high) differ-
entiated by corresponding N and M numbers.

The training process lasts for 1.6M iteration with a batch
size of 8, taking about four days per quality level for the
supernet, and one day for the teacher & student RA, with
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Figure 7. Illustration of the inference latency achieved by different
methods on the CLIC validation set.

two NVIDIA Tesla V100 GPUs. Considering the continu-
ing use of a deployed codec system, the additional training
cost of RA subsystem is deemed negligible.

4.2. Results

The evaluated rate-distortion-complexity results are
given in Table 3. For each row in the table, individual su-
pernets for the first 4 quality levels (q=1,2,3,4) are tested.
The Bjøntegaard-delta-rate (BD-rate) is computed based on
curve fitting as introduced in [4], which reflects the compre-
hensive coding performance (compression efficiency) at the
concerned range of bitrates. The data regarding inference
speed provided in the table are obtained by averaging re-
sults from different quality levels. The last two rows repre-
sent the coding performance achieved with the ground truth
label ztrue and the labels generated by the routing agent
zpred, respectively. In Figures 6 - 8, the visualization of
rate-distortion characteristics, inference latency, and the re-
lationship between the two aspects are provided.

As it can be summarized from Table 3, the proposed
routing agent can generally produce an additional speedup
of 10%-25% for both CPU / GPU platforms over uni-
form slimming, at better or comparable compression perfor-
mance. The BD-Rate increase is strictly-limited to within
1.0%, which means the achieved rate-distortion results can
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Figure 8. Illustration of the performance advantage in terms of
“rate-distortion-complexity” trade-offs achieved by the proposed
methods on the CLIC validation set.

be considered as unpenalized when compared to the sub-
CAE with the highest capacity. The success in controlling
the potential rate-distortion penalty highlights the value of
the JUMC concept as proposed in Section 3.4.

By comparing the proposed method to DS-Net [19],
which is a SOTA implementation of dynamic width for
high-level vision tasks, the results are presented in Table 4.
In can be observed that the proposed solution outperforms
picture-level approaches in terms of speed-up, highlighting
the effects of fine-grained control of model capacity.

4.3. Visual Quality

In Figure 9, two patches with the lowest and highest
ztrue values are illustrated for comparison. Based on simi-
lar visualization efforts conducted on a large scale, it can be
summarized that plain regions are generally more friendly
to a CAE model with lower transform capacity, while im-
age patches with intricate texture tend to have little room for
capacity downgrade. We can also learn from picture that al-
though the image below requires ztrue = 192 to avoid sig-
nificant RD degradation in assessed by objective metrics,
the image reconstructed with the sub-CAE with lowest dy-
namic transform capability still have fair visual quality. It
hints that criteria that more closely-related to the results of
subjective quality assessment should be used in future work,
to better eliminate perceptual redundancy on a fine-grained
basis.

4.4. Ablation Study

The effectiveness of the proposed architecture for rout-
ing agent is demonstrated by performing ablation stud-
ies. First, we investigate various approaches that capable
of reducing the inference overhead of the routing agent
model, including decreasing input resolution, and using
the lightweight architecture. The acceleration results are
reported in Table 5. We also present the predictive per-
formance gain achieved by adopting the proposed double-
headed architecture for the teacher model, and the single-
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Kodak Dataset (n=25) CLIC Validation Set (n=102)

Method BD-Rate (%) CPU Speedup (%) GPU Speedup (%) BD-Rate (%) CPU Speedup (%) GPU Speedup (%)
SA-CAE @ C4 0.5% 14.02% 6.31% 0.3% 9.69% 6.28%
SA-CAE @ C3 1.4% 27.26% 32.62% 0.8% 21.67% 32.61%
SA-CAE @ C2 3.4% 43.11% 48.03% 2.9% 36.00% 48.05%
SA-CAE @ C1 9.8% 62.92% 95.08% 11.3% 56.55% 95.10%
JUMC True 0.6% 28.28% 31.63% 0.6% 29.83% 42.14%
JUMC Pred 0.7% 28.93% 32.74% 0.9% 30.22% 42.90%

Table 3. Overview of coding performance and inference time complexity of the proposed method. The SA-CAE supernets at their highest
capacity are chosen as the anchors for rate-distortion performance and inference latency data in the table. “SA-CAE @ CY” indicates the
uniform adoption of y-th capacity of the supernet.

Method Dataset BD-Rate (%) Speedup (%)

Uniform Slim CLIC Val +0.84 21.7/32.6
DS-Net + RA-JUMC (Picture-Level) CLIC Val +0.05 8.6/10.3
SA-CAE + RA-JUMC (Patch-Level) CLIC Val +0.90 30.2/42.9
Uniform Slim Kodak +1.39 27.2/32.6
DS-Net + RA-JUMC (Picture-Level) Kodak -0.62 1.7/0.1
SA-CAE + RA-JUMC (Patch-Level) Kodak +0.74 28.9/32.7

Table 4. Comparison to SlimCAE [35] & DS-Net [19] baselines.

41.86dB 0.8025 bpp
39.38dB 2.4854 bpp

41.83dB 0.8110 bpp
36.63dB 2.3534 bpp

𝑧!"#$ = 128
𝑧!"#$ = 192

Figure 9. Image patches with polarized ztrue labels. Rate-
distortion metrics are marked in different colors.

Model Input Resolution FLOPs CPU Time GPU Time

Teacher 256× 256 297M 35.93ms 0.28ms
Student 256× 256 77M 12.18ms 0.19ms
Teacher 128× 128 77M 22.33ms 0.23ms
Student 128× 128 21M 6.77ms 0.17ms

Table 5. Inference overhead of the proposed routing agents.

headed student agent optimized with knowledge distillation
in Table 6. Results are tested with the highest quality level
q = 5. Due to significant loss in decision-making criteria,
the input down-sampling method is abandoned.

The results are in accordance with the effectiveness of
the proposed double-headed teacher / single-headed student
architecture, the positive effects of knowledge distillation
and the necessity of using full-resolution image patches as
model input. The agents as proposed in Section 3.5 can
achieve the best predictive performance as per their design
constraints.

Model Routing ∆Cost KD Hi-res Acc.↑ Deg. ↓ MAE ↓
Teacher ✓ / ✓ 86.3% 2.0% 0.1471
Teacher ✓ / ✓ 56.9% 2.9% 0.5294
Teacher ✓ ✓ / ✓ 90.2% 2.0% 0.0980
Teacher ✓ ✓ 80.4% 6.9% 0.2157
Teacher ✓ ✓ ✓ 76.5% 5.9% 0.2451
Student ✓ ✓ 77.5% 8.8% 0.2549
Student ✓ ✓ 81.4% 4.9% 0.1961
Student ✓ ✓ ✓ ✓ 83.3% 3.9% 0.1863
Student ✓ ✓ ✓ 84.3% 2.9% 0.1569

Table 6. Predictive performance of the proposed routing agents
under different ablation settings. “Routing” and “∆Cost” stands
for the routing head and the cost head. “KD” on/off correspond
to σ = 0.5/0.0 in Eq. (13). “Hi-res” denotes the input reso-
lution of 256 × 256. “Acc.”, “Deg.”, and “MAE” correspond
to decision accuracy, proportion of routing decisions exceeding
JUMC (which causes undesired rate-distortion degradation), and
the mean-absolute-error between the predicted decision and the
JUMC labels.

5. Conclusion

In this paper, we present a novel way for the flexible
model-capacity control for CAEs. The comprehensive so-
lution includes a set of novel spatially-adaptive operators,
an optimal capacity assignment algorithm based on degra-
dation cost thresholding, and a learning system for dy-
namic transform routing, which is lightweight yet robust.
The neural-based transform is thereby streamlined with the
guidance from an online-generated capacity map, and ad-
ditional convolution filters can be applied only to blocks
where they are profitable. The superior experiment re-
sults reveal that a new perspective of joint rate-distortion-
complexity optimization for neural image compression has
been established by acknowledging and predicting the dif-
ferences in terms of coding efficiency and signal-transform
capacity requirements across images and patches.
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[1] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. Den-

sity modeling of images using a generalized normalization
transformation. arXiv preprint arXiv:1511.06281, 2015. 3
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