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Abstract

Multi-expert ensemble models for long-tailed learning
typically either learn diverse generalists from the whole
dataset or aggregate specialists on different subsets. How-
ever, the former is insufficient for tail classes due to the high
imbalance factor of the entire dataset, while the latter may
bring ambiguity in predicting unseen classes. To address
these issues, we propose a novel Local and Global Logit Ad-
justments (LGLA) method that learns experts with full data
covering all classes and enlarges the discrepancy among
them by elaborated logit adjustments. LGLA consists of two
core components: a Class-aware Logit Adjustment (CLA)
strategy and an Adaptive Angular Weighted (AAW) loss.
The CLA strategy trains multiple experts which excel at
each subset using the Local Logit Adjustment (LLA). It also
trains one expert specializing in an inversely long-tailed
distribution through Global Logit Adjustment (GLA). More-
over, the AAW loss adopts adaptive hard sample mining
with respect to different experts to further improve accuracy.
Extensive experiments on popular long-tailed benchmarks
manifest the superiority of LGLA over the SOTA methods.

1. Introduction
Deep learning has brought profound improvements to

various vision tasks, including classification, detection, seg-
mentation, etc. The success of deep learning is undoubtedly
inseparable from large-scale well-designed datasets, such as
ImageNet [9], COCO [25] and Places [51], which usually
exhibit approximately uniform distribution over different
classes. However, constructing these artificially balanced
datasets is extremely difficult: sufficient instances must be
collected for the tail classes whose samples are few by na-
ture. According to the inherently existing power law [43],
most real-world data follows a long-tailed distribution: a
few head classes occupy a large portion of samples, while
most tail classes only have small portions. It is challenging
to learn directly from these long-tailed data, because deep
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Figure 1: Our LGLA exhibits advantageous performance,
i.e., Top-1 Acc (%), over existing SOTA approaches on
most long-tailed benchmarks, all under the same settings
for fair comparisons. On iNaturalist 2018, though surpassed
on Many-shot, LGLA achieves superiority over others on
Medium-/Few-shot and the overall dataset (“All”).

learning models tend to be dominated by the head classes
that appear most during training, while resulting in poor
performance on tail classes. This paper aims to mitigate
such problems in model training on long-tailed data.

Among the existing literature coping with the long-tail
problem, some design class re-balancing strategies for train-
ing, including re-sampling [3, 12, 17, 33] or cost-sensitive
learning [24, 20, 2, 40, 34]. In addition, decoupled learn-
ing proposes a two-stage training process that decouples the
representation learning and the classifier learning [18, 23] to
preserve the broken feature representation caused by the re-
balancing methods. Most recent efforts rely on ensemble
learning to achieve state-of-the-art performances on long-
tail visual recognition, where multiple experts are trained in
a complementary manner, then aggregated together for in-
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Figure 2: (a) Some ensemble methods train generalists (ψΩ1,...,3 ) on the entire dataset S that is severely imbalanced. (b) Some
others train specialists on individual subsets (S1,...,3) that are less imbalanced, but these specialists may suffer from limited
perceptions. (c) Our method trains all experts on the entire dataset S, with a novel CLA strategy to ensure an adaptive
local/global awareness for the experts. Assuming this is a three-expert model, the first two experts ψl

Ω1,2
controlled by LLA

excel at different subsets (marked with smile symbols), while the last expert (ψg
Ω3

) optimized by GLA will further boost the
ensemble results and delivers superior performance.

ference. The ensemble process involves averaging the pre-
dictions of each expert to make the final decision. These
experts are commonly trained either using the entire dataset
to create generalists [39, 21] (Figure 2a) or by combin-
ing specialists trained on different subsets [1, 6, 41] (Fig-
ure 2b). However, the former approach experiences a high
level of data imbalance during training, while the latter re-
stricts the vision of each model seeing only a subset of the
training data, which impairs the capabilities of each special-
ist as well as the overall ensemble model since they only en-
counter a limited number of classes and lack effective col-
laboration during training.

Inspired by the above insights, we propose a novel
framework for long-tailed recognition: the Local and
Global Logit Adjustments (LGLA) framework. LGLA
contains two core parts: the Class-aware Logit Adjust-
ment (CLA) strategy and the Adaptive Angular Weighted
(AAW) loss. CLA has two adjustment strategies, namely
Local Logit Adjustment (LLA) and Global Logit Adjust-
ment (GLA). LLA trains multiple experts on the whole
dataset but specializing in non-overlapping subsets and pos-
sessing the most comprehensive knowledge in their respec-
tive areas. Meanwhile, GLA trains one expert that achieves
a global perspective and excels at handling inversely long-
tailed distributions. AAW further improves classification
performance by introducing adaptive hard sample mining,
which enhances discriminative ability by capturing and re-
weighting hard samples for each expert during training.

The core insight of LGLA is simple: each skill-diverse
expert should always have access to the whole data during
training. The various skills of each expert controlled by
LLA within a certain subset, as well as the capability of
the last expert learned by GLA, should be obtained through
an adaptive approach, instead of arbitrarily restricting their

training data. Besides, the sharing of the same vision for
all experts would also eliminate possible ambiguity during
their ensemble.

As illustrated in Figure 2, instead of training generalists
on the full dataset (Figure 2a), or training specialists on par-
tial subsets (Figure 2b), LGLA (Figure 2c) combines the ad-
vantages of both the generalist and the specialists by train-
ing experts all on the full data, leading to diversely skilled
recognition ability w.r.t both fine-grained subsets and the
whole data distribution.

To sum up, LGLA inherits the strengths of generalists
and specialists, resulting in improved classification perfor-
mance on long-tailed data. As illustrated by Figure 1, under
a fair setting ensuring the same backbone and same train-
ing data, our approach achieves superior performance over
existing methods on most public benchmarks. Overall, our
contributions can be summarized as follows:

• We propose a novel Local and Global Logit Adjust-
ments (LGLA) method to boost long-tailed recognition
tasks. LGLA possesses the merits of more fine-grained
optimization, higher diversity among experts, and an
entire feature space learning.

• We propose a Class-aware Logit Adjustment (CLA)
strategy to instruct differentiated learning among ex-
perts, and an Adaptive Angular Weighted (AAW) loss
for adaptive instance re-weighting, which better han-
dles samples of different difficulties.

• Extensive experiments on popular long-tailed bench-
marks, including CIFAR-10/100-LT [8], ImageNet-
LT[27], iNaturalist 2018 [36] and Places-LT [51] have
demonstrated the superiority of LGLA over the SOTA
competitors, as shown by Figure 1.
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2. Related Work
This section introduces existing methods for long-tailed

learning. We focus on training strategies and intentionally
exclude methods that require a large amount of extra
training or pre-training data. [28, 35].

Class Re-balancing Class re-balancing handles long-
tailed distribution problem by re-balancing the contribution
of each class during training. This method can be divided
into two types: re-sampling and cost-sensitive learning.
The re-sampling methods re-balance data distribution by
over-sampling the tail classes [3, 12] or under-sampling
the head classes [11, 17, 33]. However, over-sampling
often causes tail category overfitting, while under-sampling
inevitably neglects a large amount of information from head
data. On the other hand, the cost-sensitive learning methods
emphasize the tail classes by assigning larger weights on
them [24, 20, 2, 40] or randomly neglect the gradients from
head classes [34] by assigning different weights in loss
for different samples. Nevertheless, cost-sensitive learning
often makes the network difficult to optimize, especially
on large-scale data [30]. It also brings more performance
fluctuations on tail classes [43].

Decoupled Learning Although yielding great im-
provement in classifying long-tailed data, re-balancing
methods often suffer from the degeneration of feature
representation during the representation learning stage.
To cope with this, two-stage decoupled methods are
proposed [18, 4, 16, 44, 50], which first train a feature
extractor with standard instance-balanced sampling, then
fine-tune the classifier with class-balanced sampling.
Previous works focusing on classifier learning can be
summarized in three ways: cRT, NCM and τ -norm [18].
Decoupled learning makes it more convenient and effective
to combine re-balancing strategies, since it only trains the
classifier and thus will not impair representation learning.
However, two-stage learning makes the training process
more redundant and complex than end-to-end learning.

Ensemble Learning Ensemble learning utilizes com-
plementary knowledge by training and aggregating
multiple experts, which can be further divided into two
categories: The first category [39, 21, 46, 50] directly
trains each expert on the whole dataset. For example,
NCL [21] highlights the importance of cooperation by
conducting distillation between every two model pairs.
RIDE [39] brings about diversified experts by maximizing
the KL-divergence between the predicted probabilities
from diverse models. However, training on a highly
imbalanced dataset inevitably causes negligence in the
sample-few classes. The second category [41, 1, 6] often
trains each expert on a subset of training data, which leads

to a less severe data imbalance problem and results in better
performance. For instance, ResLT [6] trains three experts
on three subsets respectively corresponding to the all,
the medium+tail, and the tail classes, and combines their
outputs as the final result. However, the learned feature
space of each expert in ResLT is incomplete with unseen
classes, which would bring ambiguity to the ensemble
results. Unlike these methods, our LGLA takes advantages
of both strategies above. Through an adaptive training
on the whole data for all experts, and by leveraging a
novel logit adjustments strategy combining LLA and GLA,
LGLA achieves advantageous performance on most public
benchmarks over existing approaches.

3. Methodology
3.1. Preliminaries

As shown by Figure 3, LGLA consists of K experts
with a shared backbone fΩ. Denote the experts as Ψ =
{ψl

Ω1
, ..., ψl

ΩK−1
, ψg

ΩK
}, with ψl

Ω1≤k≤K−1
being the K − 1

experts controlled by LLA and the last expert ψg
ΩK

learned
by GLA; Ωk is the parameter of the k-th expert. We use
Wk = {W 1

k ,W
2
k , ...,W

C
k } ∈ Rd×C to represent the weight

of the last FC layer within the classifier of the k-th expert
(which is not shared across experts), where C is the number
of classes, d denotes the dimension of features. Note that
the rows W 1≤j≤C

k of Wk can also be regarded as the center
of the learned features w.r.t the k-th expert on the j-th class.

Let S = {xi, yi} be the training data, with xi being the
i-th image and yi the corresponding label. Given xi, the
backbone fΩ extracts features zi = fΩ(xi) from xi, then
the classifier ψΩk

obtains the logit vi = ψΩk
(zi) from zi. It

is straightforward to apply softmax onto the logit vi as:

p(xi) =
exp (vyi

i )∑C
j=1 exp

(
vji

) , (1)

with vji being the j-th value of vi. Losses like cross-entropy
are then imposed on p(xi) for training.

3.2. Class-aware Logit Adjustment Strategy

The vanilla softmax suffers from the negligence of the
discrepancy between the posterior distributions of training
and test data, leading to biases under long-tailed scenarios.
In order to encourage greater intra-class compactness and
inter-class separability, logit adjusting – a strategy proposed
by face recognition approaches [10, 37, 26] – also reveals
its potential in some long-tailed learning methods [31, 29,
2, 48]. Existing methods employ logit adjustment with the
following formula:

p(xi) =
exp (vyi

i + T (yi))∑C
j=1 exp

(
vji + T (j)

) , (2)
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Figure 3: The framework of LGLA: (1) A shared backbone fΩ for feature learning and a group of experts ψl|g
Ωk

for ensemble
learning. (2) CLA strategy conbines LLA and GLA: LLA trains K − 1 experts to be skilled w.r.t different subsets. The smile
symbol marks the specialized classes, while in the non-specialized regions, experts are still affected by long-tailed data. GLA
is proposed to deal with it, which learns an expert excelling at an inversely long-tailed distribution. Finally, the ensemble
result presents uniform distribution. (3) AAW loss is designed to adaptively re-weight hard samples (in the light purple area)
whose angles are greater than expert-associated references (θref ) during training.

where T (·) is a logit adjustment function conditioning only
on class labels. Unlike such logit adjustment used by exist-
ing methods [31, 29, 2, 48], our proposed Class-aware Logit
Adjustment (CLA) strategy cooperates with K experts pre-
senting different adjustments for different experts, and the
probability output of the k-th expert can be formulated as:

p(xi, k) =
exp

(
vyi

i,k + T (k, yi)
)

∑C
j=1 exp

(
vji,k + T (k, j)

) . (3)

Unlike the T (j) in Eq. 2 which conditions only on the
class label j, T (k, j) in Eq. 3 is designed to reflect the
awareness of the k-th expert w.r.t the j-th class. In spe-
cific, we first sort all the classes in descending order ac-
cording to their cardinality; then we divide all the C classes
into K − 1 groups C = {C1, C2, ..., CK−1}, ensuring that
the number of samples ∥Sk := {(xi, yi) : yi ∈ Ck}∥
belonging to each group Ck is approximately equal, i.e.
∥Sp∥ ≊ ∥Sq∥, 1 ≤ p, q ≤ K−1. Through this way,C1 con-
tains mostly the head classes while CK−1 includes mostly
the tail classes. The entire training dataset can be denoted
as S = S1

⋃
S2

⋃
...
⋃
SK−1.

Now, we list the designed CLA function T (k, j) of the
k-th expert model for the class j as follows:

T (k, j) =


log(nj), j ∈ Ck, k ̸= K

log(nmax), j /∈ Ck, k ̸= K

τ · log(nj), k = K

(4)

where nj is the frequency of class j, nmax denotes the fre-
quency of the largest class, and τ is a hyper-parameter.

To illustrate the intuition behind our design, we substi-
tute Eq. 4 into Eq. 3, obtaining the following equation:

P (xi, k) =
exp

(
vyi

i,k

)
∑C

j=1 exp
(
vji,k +M (yi, j, k)

) , (5)

withM (yi, j, k) := T (k, j)−T (k, yi). M(yi, j, k) adjusts
the decision boundaries between the ground truth class yi
and all the other non ground truth classes j for the k-th ex-
pert. Its formulation can be expanded as:

M(yi, j, k) =

log(
nj

nyi
), yi ∈ Ck, j ∈ Ck, k ̸= K

log(nmax

nyi
)[> 0], yi ∈ Ck, j /∈ Ck, k ̸= K

log(
nj

nmax
)[< 0], yi /∈ Ck, j ∈ Ck, k ̸= K

log(nmax

nmax
)[= 0], yi /∈ Ck, j /∈ Ck, k ̸= K

τ · log( nj

nyi
), yi, j ∈ C, k = K

. (6)

Local Logit Adjustment We propose Local Logit Adjust-
ments (LLA) to meticulously explore subset representation
ability and eliminate ambiguity from unseen classes. LLA,
denoted by the first four lines (k ̸= K) in Eq. 6, trains the
first K − 1 experts with full data and restricts their spe-
cialization to the sample groups S1, ..., SK−1. In specific,
when yi ∈ Ck and j ∈ Ck, indicating that both the two
classes yi and j belong to the group that the k-th expert is
skilled in, then M(yi, j, k) = log(nj/nyi

) which is posi-
tive when nyi

< nj while negative when nj < nyi
. As
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(a) yi ∈ Ck (b) yi /∈ Ck

Figure 4: The decision boundary of first K−1 experts con-
trolled by LLA in different scenarios. (a) The ground truth
class yi is in the specialized area. (b) The ground truth class
yi is not in the specialized area.

depicted by Figure 4a, this means that during the training,
the decision boundary (blue line) would be pushed toward
yi with a margin of m = | log(nj/nyi

)| (upper green line)
if the size of class yi is smaller, while pushed toward j with
the same margin m (lower green line) if the size of class j
is smaller, to ensure that the samples in the smaller classes
are more emphasized. However, when yi ∈ Ck and j /∈ Ck,
meaning that the k-th expert specializes in yi but does not
care about j, M = log(nmax/nyi

) > 0: the boundary is
pushed toward yi by a larger margin (red line in Figure 4a)
so that samples in the class yi are more emphasized.

Figure 4b shows the other two cases when yi /∈ Ck. If
j ∈ CK , the decision boundary (pink line) is moved from
yi to j, highlighting the classes j in Ck that are specialized
by the k-th expert. If both yi and j are not in Ck, the clas-
sification loss degrades to the vanilla Softmax (blue line),
since the expert does not care about both of them. Generally
speaking, the design of the LLA always extracts more dis-
criminative feature representations for classes in Ck (where
the k-th expert is good at, k ̸= K) by tightening their deci-
sion boundaries.
Global Logit Adjustment LLA enables the first K − 1 ex-
perts to acquire specialized knowledge on certain subsets.
However, the non-specialized subsets trained with original
Softmax are still susceptible to the long-tailed distribution.
To address this issue and further promote the ensemble per-
formance, we introduce Global Logit Adjustment (GLA),
presented in the last line (k = K) of Eq. 6. GLA trains
another expert to learn an inversely long-tailed distribu-
tion, which offsets the long-tailed distribution of the non-
specialized subsets in the first K − 1 experts. The decision
boundary for this expert has an offset of τ · log(nj/nyi

),
with a scaler τ > 1 to amplify the margin and adjust the
ensemble results.

Figure 3 also shows the L2 norms of per-class weights
from the classifiers of a three-expert LGLA model. Higher
norms in a classifier usually contribute more to the perfor-
mance [50]. The first two experts excel at the first and last

subsets, respectively, while the last expert is skilled in the
inversely long-tailed distribution. The ensemble weights are
obtained by averaging the weights of all experts, resulting in
an approximately uniform among various categories, which
shows the effectiveness of our proposed LGLA on a uni-
form test set. It is noteworthy that LGLA enlarges the va-
riety among all the experts meanwhile ensures the integrity
of each learned feature space.

3.3. Adaptive Angular Weighted Loss

Hard sample mining emphasizes hard instances during
training by giving them higher weights in loss. During the
process of training, tail classes iterate fewer times than head
classes and gradually become hard to score, so the instance-
level re-weighting approach is important and effective for
long-tailed learning. However, it is strenuous to find suit-
able weights to fit the model. Existing approaches like
OHEM [32] score hard examples with high weights, yet it
ignores the optimization of easy samples; Focal loss [24]
reduces the weights of simple samples, while paying more
attention to hard samples, but it does not consider the na-
ture of distribution within long-tailed learning. Different
from these methods, we propose a novel Adaptive Angular
Weighted (AAW) loss to address hard instances for long-
tailed data and re-weight them adaptively during training.

We measure the difficulty of the i-th sample w.r.t the k-th
expert using the angle between the input feature (fyi

k ) of the
last FC layer and its corresponding class centers of the k-th
expert (W yi

k ) in the cosine space, which is formulated as:

θyi

k = arccos

(
W yi

k · fyi

k

||W yi

k || · ||fyi

k ||

)
. (7)

For each iteration, we computeK−1 reference angles using
θrefk = mean(θyi

k ), yi ∈ Ck to guide the optimization of
samples belonging to different groups. Based on the fact
that features with larger cosine distances are more difficult
to learn, we define an instance in Ck with the angle greater
than θrefk as the hard sample and make its weight increase to
1 + θyi

k − θrefk . Meanwhile, the samples whose angles are
smaller than the reference angles will not be neglected by
keeping their weights unchanged. Therefore, AAW loss can
adaptively re-weight those instances away from the class
center during different training phases, and the re-weighting
function is formulated as:

g(θyi

k , θ
ref
k ) =

{
1, θyi

k ≤ θrefk

1 + θyi

k − θrefk , θyi

k > θrefk

(8)

Cooperated with CLA, the overall loss of our proposed
LGLA is formulated as:

L = − 1

N

K∑
k=1

N∑
i=1

g(θyi

k , θ
ref
k ) log

exp
(
vyi

i,k + T (k, yi)
)

∑C
j=1 exp

(
vji,k + T (k, j)

)
(9)
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Method CIFAR-100-LT CIFAR-10-LT
100 50 100 50

CB Focal loss [8] 38.7 46.2 74.6 79.3
LDAM+DRW [2] 42.0 45.1 77.0 79.3
LDAM+DAP [16] 44.1 49.2 80.0 82.2
LDAM+M2m [19] 43.5 – 79.1 –
BBN [50] 39.4 47.0 79.8 82.2
LFME [41] 42.3 - - -
CAM [47] 47.8 51.7 80.0 83.6
RIDE [39] 49.1 - - -
Logit Adj. [29] 43.9 - 77.7 -
LADE [15] 45.4 50.5 – –
MiSLAS [49] 47.0 52.3 82.1 85.7
Hybrid-SC [38] 46.7 51.9 81.4 85.4
DiVE [14] 45.4 51.3 - -
SSD [22] 46.0 50.5 - -
ACE [1] 49.6 51.9 81.4 84.9
PaCo [7] 52.0 56.0 - -
ResLT [6] 49.7 54.5 - -
NCL [21] 54.2 58.2 85.5 87.3
Ours 56.5 60.6 87.8 90.2
Ours (GC) 57.2 61.6 87.5 89.8

Table 1: Top-1 accuracy (%) on CIFAR-100-LT and
CIFAR-10-LT with IF=100/50. All the methods use the
ResNet-32 backbone. The best and the secondary results
are marked in bold and underline, respectively.

3.4. Advantages over Previous Methods

In general, four appealing properties of LGLA make it
stand out among previous multi-expert ensemble methods:
First, LLA makes experts extremely explore the represen-
tation ability in each subset. Preserving the merits of pre-
vious ensemble specialists methods [1, 41], we also shrink
down the specialized area to a subset with a lower imbal-
ance factor, which is more helpful to extract the discrimi-
nation among long-tailed classes. Different from them, all
the experts in LGLA possess the same feature space, which
is more reasonable to fuse the logits for obtaining stunning
ensemble performance. Secondly, the number of experts
in LGLA depends on the number of subsets, which can be
easily expanded for a more fine-grained optimization, and
experiments in Figure 7 verify that more experts can get
better results. Thirdly, AAW loss can adaptively re-weight
hard samples in training to further improve the recognition
ability. Finally, as shown in Figure 6, the ensemble model
can bias to a specific region, like many, medium, or few
split, by increasing the weights of the logit from the k-th
expert, which makes our method adapt to test sets with dif-
ferent class distributions.

4. Experiments
4.1. Datasets and Protocols

We validate the effectiveness of our proposed method
on five major long-tailed datasets: CIFAR-10/100-LT [8],
ImageNet-LT[27], iNaturalist 2018 [36] and Places-
LT [51]. CIFAR-10/100-LT [8] are the different long-tailed
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Figure 5: Accuracy gain comparisons between our method
and SOTA on all the many-/medium-/few-shot. Experi-
ments are conducted on CIFAR-100-LT dataset (IF=100).

versions of the original CIFAR datasets [20], with 10 and
100 classes, respectively. Both of them follow an expo-
nential decay in the sample sizes across different classes,
which is controlled by an Imbalance Factor (IF). IF eval-
uates how imbalanced a dataset is, denoted as the ratio
of the number of the largest class to that of the smallest
class. Two values of IF, namely 50 and 100 are used for
each dataset. ImageNet-LT [27] is created from the Im-
ageNet [9] dataset following the Pareto distribution with
power value α = 6. It obtains 115K images from 1,000
classes with the IF=256. Places-LT is a terribly imbalanced
version of Places [51], containing 62.5K samples of 365 cat-
egories with the IF=996. iNaturalist 2018 [36] is currently
the largest long-tailed visual dataset, possessing 437.5K im-
ages from 8,142 classes with the IF=512.

We evaluate our proposed method on balanced test sets
after long-tailed training and report the top-1 accuracy on
all categories. We follow [27], to divide a validation dataset
into three subsets: many (with more than 100 instances),
medium (with 20 to 100 instances), and few (with less than
20 instances) splits.

4.2. Implementation Details

Following [2, 21, 39], we adopt ResNet-32 [13] as
the backbone for CIFAR-10/100-LT, ResNet-50/ResNeXt-
50 [42] for ImageNet, ResNet-50 for iNaturalist 2018 and
pretrained ResNet-152 for Places-LT, respectively. In addi-
tion, current ensemble methods [46, 21] constitute indepen-
dent convolution layers and a fully-connected layer as an
expert. However, we find that group convolution provides
a better alternative, which can slightly promote classifica-
tion accuracy on many test sets without introducing addi-
tional parameters. The effect of group convolution will be
discussed in 4.4. Moreover, following [21, 7], we use Ran-
dAugment [5] on all the benchmarks except Places-LT, and
8 NVIDIA Tesla V100 GPUs are employed for training. We
exclude methods that rely on a large amount of extra train-
ing or pre-training data [28, 35] for fair comparison.
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Method ImageNet-LT Places-LT
ResNet-50 ResNeXt-50 ResNet-152

OLTR [27] - - 35.9
BALMS [31] - - 38.7
BBN [50] 48.3 49.3 -
NCM [18] 44.3 47.3 36.4
cRT [18] 47.3 49.6 36.7
τ -norm [18] 46.7 49.4 37.9
LWS [18] 47.7 49.9 37.6
RIDE [39] 55.4 56.8 -
DisAlign [45] 52.9 – -
DiVE [14] 53.1 - -
SSD [22] - 56.0 -
ACE [1] 54.7 56.6 -
PaCo [7] 57.0 58.2 41.2
ResLT [6] - 57.6 41.0
NCL [21] 59.5 60.5 41.8
Ours 59.7 60.9 42.0
Ours (GC) 59.6 61.1 -

Table 2: Top-1 accuracy (%) on ImageNet-LT and Places-
LT. For Places-LT, we only report the result of “Ours”, due
to the usage of pretrained model following [7, 6, 21].

Method iNaturalist 2018
Many Medium Few All

OLTR [27] 59.0 64.1 64.9 63.9
BBN [50] 49.4 70.8 65.3 66.3
DAP [16] - - - 67.6
cRT [18] 69.0 66.0 63.2 65.2
τ -norm [18] 65.6 65.3 65.9 65.6
LDAM+DRW [2] - - - 68.0
Logit Adj. [29] - - - 66.4
CAM [47] - - - 70.9
RIDE [39] 70.9 72.4 73.1 72.6
ACE [1] - - - 72.9
PaCo [7] - - - 73.2
ResLT [6] 73.0 72.6 73.1 72.9
NCL [21] 72.7 75.6 74.5 74.9
Ours 69.9 76.1 77.4 75.9
Ours (GC) 70.1 76.2 77.6 76.2

Table 3: Top-1 accuracy (%) on iNaturalist 2018 with
ResNet-50.

4.3. Comparing with Existing Methods

Experimental results on the major long-tailed bench-
marks, including CIFAR-10/100-LT [8], ImageNet-LT[27],
iNaturalist 2018 [36] and Places-LT [51] are listed in Ta-
ble 1 2 3, respectively, demonstrating the superiority of our
method over the state-of-the-art. To ensure the fairness of
comparisons, we list the results of LGLA with both the orig-
inal network and K-group convolution (denoted by GC).
It is worth noting that without additional explanation, the
number of experts in LGLA is set to 3 for fair comparisons
with other three-expert ensemble modules [46, 21, 39, 1].
CIFAR-10/100-LT. Table 1 suggests that our proposed
LGLA consistently outperforms the state-of-the-art by a
large margin on CIFAR-100-LT and CIFAR-10-LT with
IF=50 and IF=100. Concretely, compared with the cur-

Method w/o RandAug w/ RandAug
Softmax 41.88 47.97
BALMS 47.97 55.24
NCL 49.22 54.42
Ours (GC) 49.58 57.15

Table 4: Top-1 accuracy (%) of distinct models on CIFAR-
100-LT (IF=100) trained with or without RandAugment.

Softmax BALMS CLA AAW Acc.
✓ 47.97

✓ 55.24
✓ 56.53

✓ ✓ 56.51
✓ ✓ 57.15

Table 5: Ablation studies on CIFAR-100-LT (IF=100).
A three-expert BALMS [31] model is trained with
RandAugment[5] to illustrate the effectiveness of the pro-
posed CLA and AAW.
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Figure 6: Effects of the fusion weights controlled by LLA.

rent SOTA[21], obvious improvements are gained by 2.3%
(IF=100) and 2.4% (IF=50) on CIFAR-100-LT, and 2.3%
(IF=100) and 2.9% (IF=50) on CIFAR-10-LT. When us-
ing “GC”, the accuracies are further improved to 57.2%
(IF=100) and 61.6% (IF=50) on CIFAR-100-LT without in-
troducing additional parameters. Class-wise accuracy gain
with NCL is compared in Figure 5, which shows the effec-
tiveness of LGLA on medium-/few-shot.
ImageNet-LT. We report the results on ImageNet-LT with
different backbones in Table 2. It can observe that the
performance is further improved to 59.7% with backbone
ResNet-50 and 61.1% (GC) with backbone ResNeXt-50.
iNaturalist 2018. Table 3 presents the performance com-
parison of LGLA and other SOTA competitors on iNatural-
ist 2018. We find that LGLA results in around 3% better
performance on few-shot, showing the effectiveness of our
method on tail classes. Finally, there is around 1.3% (GC)
performance gain over SOTA in all categories.
Places-LT. Following previous work [7, 6, 21], we use a
pretrained model on ImageNet and fine-tune 30 epochs on
Places-LT. So that we only provide results with the original
expert network. As shown in Table 2, we can observe that
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Figure 7: Comparing different expert numbers for each
split (All and Many-/Medium-/Few-shot) of CIFAR-100-LT
with IF=100.

our proposed LGLA still yields a state-of-the-art result on
the extremely imbalanced benchmarks Places-LT at 42.0%.

4.4. Component Analysis

Data augmentation. Data augmentation techniques have
proved to be useful in long-tailed learning. Many works
adopt data augmentation for obtaining richer feature rep-
resentations. For example, [1, 47, 49] use Mixup and
[21, 7] employ RandAugment [5]. Following PaCo [7] and
NCL [21], RandAugment is used in our method. In or-
der to investigate the effect of data augmentation, we con-
duct experiments of different ensemble methods with and
without RandAugment. From Table 4, we can observe that
RandAugment brings significant improvement to classifica-
tion accuracies. However, our method sees a major perfor-
mance increase over the current SOTA methods irrespective
of whether RandAugment is used or not.
CLA. We evaluate the effectiveness of CLA on CIFAR-
100-LT. The first three rows of Table 5 show the classifi-
cation accuracies of a three-expert model trained with Soft-
max, BALSM, and CLA respectively. It observes that com-
pared with Softmax and BALSM, CLA considerably im-
proves the performance by 8.56% and 1.29% respectively.

To validate that LLA is actually making experts ex-
cel at a specific data region, we train a 4-expert model
on CIFAR-100-LT, with each expert specializing in Many-
/Medium/Few-shot, respectively. The weight of the last
expert controlled by GLA is fixed, we increase the fusion
weight of each expert from 0.1 to 0.9 and evaluate the en-
semble model on each split. Figure 6 shows that when
we raise the fusion weight of an expert, the corresponding
accuracy on the ensemble model simultaneously increases,
which makes LGLA adapt to different class distributions.
AAW loss. As shown in Table 5, we apply AAW to different

CIFAR-100-LT ImageNet-LT(Res50) ImageNet-LT(ResX50) iNaturalist 2018
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Figure 8: Comparisons of Independent Convolution (IC)
and Group convolution (GC) with different methods.

classification losses, namely BALMS, and CLA, to explore
the effects of the proposed Adaptive Angular Weighted
(AAW) loss. There can be seen obvious increases in ac-
curacy by adding AAW to BALMS (55.24% to 56.51%),
and CLA (56.53% to 57.15%). This indicates that AAW is
helpful to improve performance on long-tailed data.
Number of experts. LGLA is a multi-expert model, and
we evaluate the performance under different numbers of ex-
perts. From Figure 7, we can observe that increasing the
number of experts from 2 to 7 brings obvious improvements
to “All” classes. In specific, The performance is greatly im-
proved when only using a small number of experts, how-
ever, when K > 3, the performance gains tend to be stable.
Independent Convolution vs. Group Convolution. The
current ensemble methods [39, 21, 46, 31] construct each
expert with Independent Convolution (IC) layers and a
fully-connected layer, but we find that using Group Convo-
lution (GC) instead of IC can achieve better results without
introducing extra parameters. When using GC, represen-
tations should be firstly concatenated K times and then K
groups of convolution are utilized for representation learn-
ing. Then the obtained K groups of features are sent to K
independent fully-connected layers, respectively. Figure 8
shows the results of LGLA using IC and GC with current
SOTA [21] which employs IC for comparison. It observes
that GC results in relatively higher accuracies and whether
IC or GC is used, our method achieves better performance.

5. Conclusion
This paper presents a novel Local and Global Logit Ad-

justments (LGLA) method for long-tailed learning. LGLA
consists of two main components: CLA and AAW. The
CLA strategy, applies LLA to extract more discriminative
features for each subset and applies GLA to further build
superior ensemble performance. The AAW loss also boosts
performance by capturing and adaptively re-weighting hard
instances according to the deviations between features and
class centers. Extensive experiments on popular long-tailed
benchmarks highlight the effectiveness and superiority of
our LGLA over SOTA methods.
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