Enhanced Meta Label Correction for Coping with Label Corruption

Mitchell Keren Taraday
Technion – Israel Institute of Technology
mitchell@campus.technion.ac.il

Chaim Baskin
Technion – Israel Institute of Technology
chaimbaskin@technion.ac.il

Abstract

Traditional methods for learning with the presence of noisy labels have successfully handled datasets with artificially injected noise but still fall short of adequately handling real-world noise. With the increasing use of meta-learning in the diverse fields of machine learning, researchers leveraged auxiliary small clean datasets to meta-correct the training labels. Nonetheless, existing meta-label correction approaches are not fully exploiting their potential. In this study, we propose an Enhanced Meta Label Correction approach abbreviated as EMLC for the learning with noisy labels (LNL) problem. We re-examine the meta-learning process and introduce faster and more accurate meta-gradient derivations. We propose a novel teacher architecture tailored explicitly to the LNL problem, equipped with novel training objectives. EMLC outperforms prior approaches and achieves state-of-the-art results in all standard benchmarks. Notably, EMLC enhances the previous art on the noisy real-world dataset Clothing1M by 1.52% while requiring \( \times 0.5 \) the time per epoch and with much faster convergence of the meta-objective when compared to the baseline approach. \(^1\)

1. Introduction

The remarkable success of Deep Neural Networks (DNNs) for visual classification tasks is predominantly due to the availability of massive labeled datasets. In many practical applications, obtaining the required amounts of reliable labeled data is intractable. As a result, numerous works over the past decade have sought ways to reduce the amount of labeled data required for classification tasks. Notably, semi-supervised learning exploits unlabeled data \([32, 23]\), transfer learning exploits prior knowledge obtained from different tasks \([7, 38]\), and self-supervised learning exploits data augmentations for label agnostic representation learning \([3, 11]\). Nonetheless, for many applications, the quality of the labeled data can be sacrificed for the sake of its quantity. A prominent example is the process of crawling search engines and online websites as demonstrated by \([17, 31]\). The crawling process is often easy to automate however results in significant amounts of label noise with complicated patterns. A fundamental problem with such data, however, is that classical learning methodologies tend to fail when significant label noise is present \([35]\). Therefore, designing learning frameworks that are able to cope with label corruption is a task of great importance.

While traditional methods for learning with noisy labels (LNL) are capable of handling data with immense artificial, injected noise, their ability to handle real-world noise remains highly limited. Thus, noisy labeled datasets alone limit the capability of learning from real-world noisy labeled datasets. Luckily, in many real-world applications, while obtaining large amounts of labeled data is infeasible, obtaining small amounts of labeled data is usually attainable. Thus, the paramount objective is to find methods that can incorporate both large amounts of noisy labeled data and small amounts of clean data. A natural choice is to adopt a meta-learning framework, a popular design regularly used for solving various tasks. Consequently, recent

\(^1\)Project page: https://sites.google.com/view/emlc-paper.
trends in LNL leverage meta-learning using auxiliary small clean datasets. Prominent examples include meta-sample weighting [25, 37], meta-robustification to artificially injected noise [16], meta-label correction [40], and meta-soft label correction [30].

In this work, we propose EMLC – an enhanced meta-label correction approach for learning from label-corrupted data. We first revise the bi-level optimization process by deriving a more accurate meta gradient used to optimize the teacher. In particular, we derive an exact form of the meta-gradient for the one-step look-ahead approximation and suggest an improved meta-gradient approximation for the multi-step look-ahead approximation. We further provide an algorithm for efficiently computing our derivations using a modern hardware accelerator. We empirically validate our derivations, demonstrating a significant improvement in convergence speed and training time. We further propose a dedicated teacher architecture that employs a feature extraction to generate initial predictions and incorporates them with the noisy label signal to generate refined soft labels for the student. Our teacher architecture is completely independent of the student, avoiding the confirmation bias problem. In addition, we propose a novel auxiliary adversarial training objective for enhancing the effectiveness of the teacher’s label correction mechanism. As demonstrated in fig. 1, our teacher proves to have a superior ability of purifying the training labels.

Our contributions can be summarized as follows:

• We derive fast and more accurate procedures for computing the meta-gradient used to optimize the teacher.
• We design a unique teacher architecture in conjunction with a novel training objective toward an improved label correction process.
• We combine these two components into a single yet effective framework termed EMLC. We demonstrate the effectiveness of EMLC on both synthetic and real-world label-corrupted standard benchmarks.

2. Related work

The LNL problem was previously addressed by various approaches. For instance, multiple works iteratively modified the labels to better align with the model’s predictions [24, 26], estimated the noise transition matrix [8], or applied a regularization [21, 36]. The common pitfall of these methods is the phenomenon that DNNs tend to develop a confirmation bias, which causes the model to confirm the corrupted labels. To this end, Han et al. [9] proposed a two-model framework that employs a cross-model sample selection for averting the confirmation bias problem. Being remarkably successful, many follow-up works tried to build on the two-model framework by either improving the sample selection process or using semi-supervised tools to exploit the high-loss samples and leveraging label-agnostic pretraining [2, 15, 39].

Nevertheless, there is still a noticeable gap between the effectiveness of LNL methods and fully supervised training, especially on datasets with real-world noise. In numerous practical scenarios, acquiring substantial quantities of labeled data may be impractical, but obtaining a small amount of labeled data is typically achievable. This observation motivates the use of meta-learning for tackling the LNL problem. Consequently, multiple researchers have tried to exploit auxiliary small labeled datasets to apply meta-learning for LNL research.

Outside of LNL research, meta-learning has begun to appear in diverse fields in machine learning, including neural architecture search [18], hyperparameter tuning [20], few-shot learning [6] and semi-supervised learning [23]. Meta-learning often involves two types of objectives: an inner (lower-level) objective and a meta (upper-level) objective. Usually, meta-learning tasks are equipped with a large training set and a small validation set. The validation data (in many cases) is necessary for updating the meta-objective.

In the context of LNL, researchers leverage meta-learning to mitigate the effect of the label noise. In particular, [25, 37] try to weight samples to degrade the effect of noisy samples on the loss. MLNT [16] use a student–teacher paradigm and try to artificially inject random labels into the data used to train the student model. The student is encouraged to be close to the teacher model that does not observe the noisy data. Meta-label correction [40] and MSLC [30] follow the student–teacher paradigm but, unlike MLNT [16], use the teacher to produce soft training targets for the student. The soft targets are produced in such a way that when the student is trained with respect to these targets, it performs well on the clean data.

EMLC builds upon the meta-label correction framework, which, as presented in prior work [40, 30], does not appear to have fully exploited its potential. We claim that the main pitfall of current label correction frameworks is that their teacher architecture is strongly entangled to the student, resulting in a severe confirmation bias. On the contrary, EMLC is composed of a completely independent teacher, averting this problem. In addition, EMLC leverages artificial noise injection for robust training. Opposed to [16] however, we propose adversarial noise injection that we discover to be more effective for robustifying models against label noise. Another major difference is that we use the artificial noise injection to better train the teacher whereas [16] use it to train the student.

3. Methods

In this section we discuss the distinct components of the proposed method. We start by introducing the reader to the
The goal is to optimize the parameters \( w \) of parameterized predictors \( f_w \) of the true one: \( c \). The restriction on the corrupted distribution is that for each class \( D = (x, y) \) and the corrupted distribution: \( \tilde{D} = (x, \tilde{y}) \). The restriction on the corrupted distribution is that for each class \( c \in \{1, ..., C\} \), the most probable corrupted label will match the true one: \( c = \arg \max_y p(\tilde{y} = j | y = c) \). Given a family of parameterized predictors \( \{ f_w : \mathcal{X} \to \mathcal{Y} \} \), the high level goal is to optimize the parameters \( w \) to minimize the true expected risk: \( \mathcal{R}(f) = \mathbb{E}_{(x, y)}[\ell(f_w(x), y)] \) for some loss function \( \ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+ \) by accessing mostly \( \tilde{D} \). In practice, \( \tilde{D} \) is most likely inaccessible and rather we are given i.i.d. samples of it \( \{(x_i, \tilde{y}_i)\}_{i=1}^n \). In the setting of interest, we are also supplied with a small set of clean i.i.d. samples \( \{(x_j, y_j)\}_{j=1}^m \) where \( m \ll n \).

### 3.2. From ERM to Meta-Learning

According to the ERM principle in supervised learning, \( f_w \) should be optimized by considering the empirical risk:

\[
    w^* = \arg \min_w \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)
\]

(1)

To make optimization feasible, \( \ell \) is chosen to be a differentiable function. In particular, if we generalize \( f_w \) to model a probability distribution, \( p_w(y|x) \), the cross-entropy loss [4] is most commonly used:

\[
    w^* = \arg \min_w \frac{1}{n} \sum_{i=1}^n CE(y_i, p_w(y|x_i))
\]

(2)

In our case, the labels \( \tilde{y}_i \) are possibly corrupted. Therefore, applying the ERM principle would give rise to noisy label memorization (due to the universal approximation theorem) leading to a severe degradation in the obtained predictor’s performance [19, 35]. This problem is addressed by replacing \( y_i \) with a label correction architecture \( q_\alpha(y|x_i, \tilde{y}_i) \), which will produce corrected (soft) labels for training \( p_w \). For the ease of reading, from this point on, we refer to \( p_w \) as the student architecture and \( q_\alpha \) as the teacher architecture. Recall that the real goal is to optimize the student to minimize the true expected error. Hence, given a small set of clean samples, the teacher should produce soft labels in a way that would cause the optimized student to have small empirical risk on the clean set, as demonstrated in fig. 2. Therefore, the objective may be formalized as the following bi-level optimization problem:

\[
    \min_\alpha \mathcal{L}(w^*(\alpha))
\]

(3)

\[
    s.t \ w^* = \arg \min_w \tilde{\mathcal{L}}(w, \alpha)
\]

(4)

where:

\[
    \mathcal{L}(w^*(\alpha)) = \frac{1}{m} \sum_{j=1}^m CE(y_j, p_w^*(\alpha)(y|x_j))
\]

(5)

\[
    \tilde{\mathcal{L}}(w, \alpha) = \frac{1}{n} \sum_{i=1}^n CE(q_\alpha(y|x_i, \tilde{y}_i), p_w(y|x_i))
\]

(6)

Note that under relatively mild conditions, \( w^* \) can be written (locally) as a function of \( \alpha \). This can be observed from stationary conditions applied to eq. (4): \( \nabla_w \tilde{\mathcal{L}}(w, \alpha) = 0 \) and applying the implicit function theorem.
3.3. Bi-Level Optimization

Bi-level optimization problems appear in diverse sub-fields in machine learning and in meta-learning in particular [18, 20, 6, 23]. Such problems are composed of an outer level optimization problem that is usually constrained by another inner level problem. We relate to the upper level problem parameters as the meta-parameters and to the parameters in the lower level as the main parameters. The fact that each meta-parameter value defines a new lower level problem makes applying gradient-based optimization methods to such situations particularly difficult due to the iteration complexity. A solution to this problem is to approximate gradient-based optimization methods efficiently. Our first observation is that the straightforward manner is inefficient, as it requires computing higher-order derivatives of large DNNs. In this section, we establish an efficient method for carrying out the meta-gradients when updating the teacher. In the next section.

Algorithm 1 Bi-Level Optimization via k-step SGD Look-ahead Approximation

Input: Clean and noisy datasets $D, \overline{D}$, number of training steps $T$, initial parameters $w^{(0)}, \alpha^{(0)}$, learning rates $\eta_w, \eta_\alpha$.

Output: Optimized parameters $w^{(T)}, \alpha^{(T)}$.

1: for $t = 0, \ldots, T-1$ do 
2: \hspace{1em} // Sample clean and noisy batches from the datasets 
3: $B, \overline{B} \leftarrow \text{Sample}(D), \text{Sample}(\overline{D})$
4: \hspace{1em} // Update $w$ by descending $\overline{L}(w, \alpha)$ w.r.t $w$
5: $w^{(t+1)} \leftarrow w^{(t)} - \eta_w \nabla_w \overline{L}(w^{(t)}, \alpha^{(t)}) |_{w=w^{(t)}}$
6: \hspace{1em} if $t \mod k = k - 1$ then
7: \hspace{2em} // Unroll $w^{(t+1)}(\alpha)$ to compute the meta gradient
8: $g_\alpha = \text{META}_\nabla \overline{L}(w^{(t+1)}(\alpha), \alpha)$
9: \hspace{2em} // Update $\alpha$ by descending $\overline{L}(w^{(t+1)}(\alpha))$ w.r.t $\alpha$
10: $\alpha^{(t+1)} \leftarrow \alpha^{(t)} - \eta_\alpha g_\alpha$
11: \hspace{1em} else 
12: $\alpha^{(t+1)} \leftarrow \alpha^{(t)}$
13: end if
14: end for

During training, the higher order dependencies of $w$ on $\alpha$ are neglected, thereby allowing the meta-gradient to be computed, as we discuss in the next section.

3.4. Revisiting the Meta-Gradient Approximation

As opposed to Meta-Label Correction [40], we propose better approximations for both the single and multi-step meta-gradients when updating the teacher. In the next section, we establish an efficient method for carrying out the meta-gradient computation.

We explicitly differentiate between the cases $k = 1$ and $k > 1$. We begin by deriving the one-step approximation meta-gradient.

Proposition 1. (One-Step Meta-Gradient) Let $g_w := \nabla_w \overline{L}(w^{(t+1)})$ where $w^{(t+1)}$ are the student’s new parameters obtained when last updated. Let $H_{w\alpha}^{(t)} := \nabla_{w\alpha} \overline{L}(w^{(t)}, \alpha^{(t)})$ where $w^{(t)}$ are the student’s original parameters (before its update). Let $\alpha^{(t)}$ be the teacher’s parameters before its update. Then, the one-step meta-gradient at time $t$ denoted by $\nabla_\alpha^{(t)}$ is given by:

$$[\nabla_\alpha^{(t)}]^T = -\eta_w g_w^T H_{w\alpha}^{(t)}$$

(7)

The proof of proposition 1 is given in the appendix. We proceed by considering the case of $k > 1$. In this case, we do not compute the exact meta-gradient. Instead, we approximate it.

Proposition 2. (k-step Meta-Gradient Approximation with Exponential Moving Average of Mixed Hessians) Assume that $t \mod k = k - 1$ and let $g_w := \nabla_w \overline{L}(w^{(t+1)})$ where $w^{(t+1)}$ is the student’s new parameters obtained when last updated. Consider the mixed Hessians in the last $k$ steps: $H_{w\alpha}^{(\tau)} := \nabla_{w\alpha} \overline{L}(w^{(\tau)}, \alpha^{(\tau)})$ where $t - k + 1 \leq \tau \leq t$. Let $\alpha^{(t)} = \alpha^{(t-k+1)} = \ldots = \alpha^{(t-k+1)}$ be the teacher’s parameters before its update. Then, the k-step meta-gradient denoted by $\nabla_\alpha$ can be approximated by:

$$[\nabla_\alpha]^T \approx -\eta_w g_w^T \sum_{\tau=t-k+1}^t \gamma_{w\alpha}^{\tau} H_{w\alpha}^{(\tau)}$$

(8)

where $\gamma_{w\alpha}^{\tau} = 1 - \eta_w$.

The proof of proposition 2 is given in the appendix.

3.5. Computational Efficiency of the Meta-Gradient

Calculating the one-step meta-gradient as in proposition 1 or the multi-step meta-gradient as in proposition 2 in a straightforward manner is inefficient, as it requires computing higher-order derivatives of large DNNs. In this section, we provide a few workarounds that allow us to carry out the computations efficiently. Our first observation is that the sample-wise mixed Hessian can be expressed as a product of two first-order Jacobians. Formally:

Proposition 3. Let us consider the sample-wise lower loss: $\ell_i(w, \alpha) := CE(q_\alpha(y|x, \overline{y}_i), p_w(y|x_i))$. Recall from eq. (6) that $\overline{L}(w, \alpha) = 1/n \sum_{i=1}^n \ell_i(w, \alpha)$. Denote by $J_w(i) := J_w(\log(p_w(y|x_i)))$ and by $J_\alpha(i) := J_\alpha(q_\alpha(y|x_i, \overline{y}_i))$. We claim that:

$$\nabla_{w\alpha} \overline{L}(w, \alpha) = -[J_w(i)]^T [J_\alpha(i)]$$

(9)

The proof of proposition 3 is given in the appendix.

Corollary 3.1. Using proposition 1, the one-step meta-gradient can be expressed as:

$$[\nabla_\alpha^{(t)}]^T = \frac{\eta_w}{n} \sum_{i=1}^n g_w^T [J_{w\alpha}(i)]^T [J_\alpha(i)]$$

(10)
Using proposition 2 the k-step meta-gradient approximation can be expressed as:

\[
[\nabla_\alpha (t)]^T = \frac{\eta_w}{n} \sum_{i=1}^{n} \sum_{\tau=t-k+1}^{t} \gamma_{\alpha w}^{t-\tau} g_w^T [J_{w(\tau)}(i)]^T [J_{\alpha(i)}(i)]
\]

(11)

Corollary 3.1 can be exploited to compute the meta-gradient efficiently as demonstrated in Algorithm 2.

In terms of computation, the FPMG algorithm can be easily batchified and hence takes roughly only three times the computation required for a single backward mode AD used in a simple lower level update. In terms of memory (in addition to the original and updated student parameters), only the intermediate variables that accumulate for a one-student gradient and an \( n \times C \) matrix for storing the JVPs for all the samples, must be stored, which is very efficient.

Since the computation grows linearly with the number of batches, the only bottleneck in the approach is the memory required to store all the \( k + 1 \) versions of the student’s parameters obtained in its optimization process. This is a standard snag in such bi-level optimization problems [6, 41]. A summary of the differences of FPMG from MLC’s [40] meta gradient computation is given in the appendix.

### 3.6. Teacher Architecture and Optimization

Recall that the key to applying meta-learning to the LNL problem lies in the **teacher** architecture. The teacher

![Teacher Architecture Diagram]

**Figure 3**: The proposed teacher architecture (left) and typical teacher’s output distributions when fed with clean/noisy sample (right). In our architecture, the sample is initially fed to a feature extractor to obtain a representation \( h_i \) and then to a classifier to obtain an initial prediction \( \hat{y}_i \). The (possibly) noisy label is then fed to an embedding layer to obtain a label embedding \( z_i \). Both of the embeddings are then concatenated and are fed to an MLP which produces a weight \( w_i \in (0, 1) \). Finally, \( w_i \) is used to gate the initial prediction and the noisy label to produce the final prediction.

![Algorithm 2: Fast and Precise Meta Gradients (FPMG)]

**Algorithm 2** Fast and Precise Meta Gradients (FPMG)

**Input**: Student weights obtained from the inner problem iterations \( w(t-k+1), \ldots, w(t+1) \), last teacher weights \( \alpha(t) \).

**Output**: Meta-gradient for the current iteration \( \nabla_\alpha (t) \).

1: \( g_w \leftarrow \nabla_w L(w(t+1)) \) \hspace{1cm} // Student feedback gradient

2: \( \nabla_\alpha (t), d_w \leftarrow 0_\alpha, 1 \)

3: for \( t = t, \ldots, t - k + 1 \) do

4: \hspace{1cm} for \( i \in \mathcal{B} \) do

5: \hspace{2cm} // Compute JVP using forward mode AD

6: \hspace{2cm} jvp_i \leftarrow [J_{w(t)}(i)] g_w

7: \hspace{2cm} // Compute VJP using backward mode AD

8: \hspace{2cm} res_i \leftarrow (jvp_i)^T [J_{\alpha(t)}(i)]

9: \hspace{1cm} end for

10: // Accumulate the contribution of \( \tau \) to \( \nabla_\alpha \)

11: \( \nabla_\alpha (t) \leftarrow \nabla_\alpha (t) + d_w \frac{\eta_w}{n} \sum_{i=1}^{n} r e s_i \)

12: \( d_w \leftarrow (1 - \eta_w) d_w \) \hspace{1cm} // Update discount factor

end for

\( q_\alpha(y|x_i, \hat{y}_i) \) aims to correct the labels of (possibly) corrupted sample–label pairs, given the sample and its corresponding (possibly) corrupted label. Thus, it is important to design an appropriate teacher architecture. We propose a teacher architecture which is especially tailored for correcting corrupted labels. In contrast to MLC [40] and MSLC [30], our teacher architecture possesses its own feature extractor and a classifier to produce its own predictions. As a result, the proposed label correction procedure is comp-
Table 1: Comparison with state-of-the-art methods in test accuracy (%) on CIFAR-10 and CIFAR-100 datasets corrupted with multiple levels and types of noise. The reported standard deviations are based on 5 runs using different seeds for each setting.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>CIFAR-10</th>
<th>CIFAR-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>20% 50% 80% 90%</td>
<td>20% 50% 80% 90%</td>
</tr>
<tr>
<td>Cross-Entropy</td>
<td>86.8 79.4 62.9 42.7</td>
<td>62.0 46.7 19.9 10.1</td>
</tr>
<tr>
<td>MLNT [16]</td>
<td>92.9 88.8 76.1 58.3</td>
<td>67.7 58.0 40.1 14.3</td>
</tr>
<tr>
<td>MLC [40]</td>
<td>92.6 88.1 77.4 67.9</td>
<td>66.5 52.4 18.9 14.2</td>
</tr>
<tr>
<td>MSLC [30]</td>
<td>93.4 89.9 69.8 56.1</td>
<td>72.5 65.4 24.3 16.7</td>
</tr>
<tr>
<td>FasTEN [14]</td>
<td>91.94 90.07 86.78 79.52</td>
<td>68.75 63.82 55.22 –</td>
</tr>
<tr>
<td>EMLC (k = 1)</td>
<td>91.8 91.16 90.95 90.71 91.81</td>
<td>72.48 67.08 60.37 54.04</td>
</tr>
<tr>
<td>EMLC (k = 5)</td>
<td>93.53 92.63 89.89 89.57 91.82</td>
<td>73.05 68.61 60.51 52.49</td>
</tr>
</tbody>
</table>

\[
L(\alpha) = L_{CE}(\alpha) + L_{BCE}(\alpha) + L_{META}(w^*(\alpha)) \quad (12)
\]

4. Experiments

In this section, we extensively verify the empirical effectiveness of EMLC, both qualitatively and quantitatively.

In subsections 4.1 and 4.2 we verify the empirical effectiveness of EMLC on the three major benchmark datasets used in the literature [25, 40, 16, 14, 30] about meta-learning for LNL. We inject synthetic random noise at multiple levels and of assorted types into the CIFAR-10 and CIFAR-100 datasets [13], which are correctly labeled datasets. On the other hand, the Clothing1M dataset [31] is a massive dataset collected from the internet, containing many mislabeled examples. In all our experiments on the benchmark datasets we validate EMLC with both the single-step look-ahead optimization strategy and the multi-step optimization strategy.

In subsection 4.3 we discuss the efficiency of the proposed meta-learning procedures used in EMLC in terms of computation time and speed of convergence.

In the appendix we perform ablation studies on the distinct components of EMLC and on the number of look-ahead steps.

4.1. CIFAR-10/100

CIFAR-10 is a 10 class dataset consisting of 50k training and 10k testing RGB tiny images. Likewise, CIFAR-100 is a 100 class dataset with images of the same dimensionality and the same total amount of training and testing images.

To evaluate the effectiveness of the EMLC framework, we follow previous works on meta-learning for LNL [25, 16, 14, 30] and adopt the standard protocol for validating...
We compare our results with previous methods in table 1. The student model when its validation score is the highest. We report our results on the CIFAR datasets with 40% noise and is injected with artificial label noise. As these are standard in LNL research, we refer the reader to the appendix for more details on these settings.

<table>
<thead>
<tr>
<th>Method</th>
<th>Extra Data</th>
<th>Test accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-entropy</td>
<td>✓</td>
<td>69.21</td>
</tr>
<tr>
<td>Joint-Optim [27]</td>
<td>✓</td>
<td>72.16</td>
</tr>
<tr>
<td>P-correction [34]</td>
<td>✓</td>
<td>73.49</td>
</tr>
<tr>
<td>C2D [39]</td>
<td>✓</td>
<td>74.30</td>
</tr>
<tr>
<td>DivideMix [15]</td>
<td>✓</td>
<td>74.76</td>
</tr>
<tr>
<td>ELR+ [19]</td>
<td>✓</td>
<td>74.81</td>
</tr>
<tr>
<td>AugDesc [22]</td>
<td>✓</td>
<td>75.11</td>
</tr>
<tr>
<td>SANM [28]</td>
<td>✓</td>
<td>75.63</td>
</tr>
<tr>
<td>Meta Cleaner [37]</td>
<td>✓</td>
<td>72.50</td>
</tr>
<tr>
<td>Meta-Learning [16]</td>
<td>✓</td>
<td>73.47</td>
</tr>
<tr>
<td>MW-Net [25]</td>
<td>✓</td>
<td>73.72</td>
</tr>
<tr>
<td>FaMUS [33]</td>
<td>✓</td>
<td>74.40</td>
</tr>
<tr>
<td>MLC [40]</td>
<td>✓</td>
<td>75.78</td>
</tr>
<tr>
<td>MSLG [1]</td>
<td>✓</td>
<td>76.02</td>
</tr>
<tr>
<td>Self Learning [10]</td>
<td>✓</td>
<td>76.44</td>
</tr>
<tr>
<td>FaSTEN [14]</td>
<td>✓</td>
<td>77.83</td>
</tr>
<tr>
<td>EMLC (k = 1)</td>
<td>✓</td>
<td>79.35</td>
</tr>
<tr>
<td>EMLC (k = 5)</td>
<td>✓</td>
<td>78.16</td>
</tr>
</tbody>
</table>

Table 2: Comparison with state-of-the-art methods in test accuracy (%) on Clothing1M. The methods in the lower part of the table use extra clean data, while the methods in the upper part do not (above an below the dividing line).

EMLC proves to be very effective, obtaining state-of-the-art results in all the experiments. Notably, EMLC superbly surpasses prior works when facing high noise levels, maintaining an accuracy of more than 90% in CIFAR-10 and more than 50% in CIFAR-100 at a 90% noise rate. Furthermore, EMLC shows an impressive improvement over the state-of-the-art methods of 2.16% on CIFAR-10 and 3.58% on CIFAR-100 in medium-level 50% noise setting. We observe that although both the one-step and multi-step strategies are superior to prior methods, the multi-step strategy worked the best. Regarding the number of steps chosen for the multi-step strategy, in our experiments we found that \(k = 5\) was optimal. In the appendix we show that \(k = 5\) is indeed optimal for the 50% noise rate in CIFAR-100.

### 4.2. Clothing1M

Clothing1M is a large-scale clothing dataset obtained by crawling images from several online shopping websites. The dataset consists of 14 classes. The dataset contains more than a million noisy labeled samples as well as a small set (around 50K) of clean samples and small validation and testing datasets. We follow prior works on LNL [15, 22, 16] and use ResNet-50 architecture [12] pretrained on ImageNet. We train both architectures for 5 epochs, using both the single-step and multi-step look-ahead strategies. Additional experimental details can be found in the appendix. As in the CIFAR experiments, we report the results using the student model with the highest validation score. We compare our results with previous approaches in table 2. As can be observed, our method reaches a clear-cut result on the challenging Clothing1M dataset that surpasses the state-of-the-art methods by 1.52%. In addition, the results show a significant improvement of over 3.5% to MLC [40]. In contrast to our CIFAR experiments, in the Clothing1M experiment, the one-step meta-gradient proved to be better than the multi-step meta-gradient, showing the essence of both strategies. Qualitatively, we visually compare the validation set representations of the trained student model of EMLC and MLC [40] using a t-SNE [29] plot in fig. 4. As can be observed, EMLC manages to keep the same categories clustered whereas MLC [40] fails to do so on multiple categories.

### 4.3. Meta-Learning

We now discuss the empirical effectiveness of our meta-gradient approximation and computation, demonstrated on the Clothing1M dataset.

In terms of speed of convergence, we compare the convergence, in MLC [40] and EMLC, of the student’s meta-evaluation loss. Recall that the meta-learning objective is to reduce this loss. The loss dynamics are presented in fig. 5. Note that the meta-regularization loss of EMLC converges in the first two epochs for both \(k = 1\) and \(k = 5\). In con-
In contrast, MLC’s [40] regularization loss has yet to converge at this point and has a much noisier optimization process. In addition, it can be observed that our method (for both $k = 1$ and $k = 5$) has a lower clean feedback loss compared to MLC. In the Clothing1M experiment, however, the single-step optimization process dominates the multi-step optimization process in terms of the final loss value, which correlates with the final accuracy.

In terms of computation, we compare the time required by EMLC and MLC [40] to complete a single epoch (in hours) using a single A6000 GPU. We find out that MLC [40] takes 7.241 hours whereas EMLC takes 3.67 hours with $k = 1$ and 3.467 hours with $k = 5$. Our approach is twice as fast as MLC [40] despite using a noticeably larger teacher model. This indicates that our meta-gradient computation is extremely efficient, and allows the deployment of our method to large scale datasets.

5. Discussion

In this paper we proposed EMLC – an enhanced meta-label correction framework for the learning with noisy labels problem. We proposed new meta-gradient approximations for both the single and multi-step optimization strategies and showed that they can be computed very efficiently. We further offered a teacher architecture that is better aimed to handle label noise. We present a novel adversarial noise injection mechanism and train the teacher architecture using both regular supervision and meta-supervision.

EMLC surpasses previous methods on benchmark datasets, demonstrating an extraordinary performance improvement of 1.52% on the real noise dataset Clothing1M.

Our proposed meta-learning strategies are accurate and fast in terms of computation and speed of convergence. As such, despite their application to LNL, we persume that our proposed meta learning strategies can be exploited in other distinct meta-learning problems.
References


[27] Daiki Tanaka, Daiki Ikami, T. Yamasaki, and Kiyoharu Aizawa. Joint optimization framework for learning with


