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Figure 1. The figure shows the level sets of the proposed Tangent Sampson error. In contrast to classical Sampson error, the proposed error
function applies to arbitrary central camera models; in this case a 360 panoramic image and a fisheye camera. Given a relative pose and a
pair of points (highlighted in red), we vary a point on one image while keeping the other fixed, and thus get the values on each image. A
given color corresponds to a constant value of reprojection error, with purple indicating near-zero errors along the epipolar curve.

Abstract

In this paper we introduce the Tangent Sampson error,
which is a generalization of the classical Sampson error in
two-view geometry that allows for arbitrary central cam-
era models. It only requires local gradients of the dis-
tortion map at the original correspondences (allowing for
pre-computation) resulting in a negligible increase in com-
putational cost when used in RANSAC or local refinement.
The error effectively approximates the true-reprojection er-
ror for a large variety of cameras, including extremely wide
field-of-view lenses that cannot be undistorted to a single
pinhole image. We show experimentally that the new er-
ror outperforms competing approaches both when used for
model scoring in RANSAC and for non-linear refinement of
the relative camera pose.

1. Introduction

Estimating two-view geometry from a set of sparse 2D-
2D correspondences is a common sub-problem in many vi-
sion applications. Each correspondence (p;, p,) € R? xR?

constrains the geometry via the epipolar constraint,

(p2; 1)TE(py;1) = 0, 1)

where E = [t]x R € R3*3 is the essential matrix and the
points p;, p, are on the normalized image plane. This con-
straint ensures that the 2D-2D correspondence can be ex-
actly triangulated (i.e. with zero reprojection error) using
the camera pair extracted from E. However when the mea-
surement (p,,p,) is inexact, it is natural to measure how
close this correspondence is to being consistent with a given
epipolar geometry. This is for example used for determin-
ing inlier matches during robust estimation, or as a loss to
be minimized when refining an initial estimate of E.
Under the assumption of i.i.d. Gaussian noise, the ML-
estimate of the closest consistent correspondence, some-
times called the gold-standard estimate in the literature
[12], is found by minimizing the squared reprojection error,

Eyr = min [p; —7(X)[]* + lp, — 7(RX +1)[I*, ()
XeR3

where m : R?® — R? is the camera projection function.
For identical pinhole cameras with unit aspect ratio and no
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skew, this can be reformulated as finding the corrected nor-
malized image points, i.e. the closest pair of 2D points that
satisfy the epipolar constraint exactly,
Exrr = _min Py = B[ + lp2 = 921> )
Dy, 2G

st (P 1)TE(py:1) = 0.

The closed-form solution to (3) can be found as a root to
a degree-six polynomial (see [13]), or via iterative meth-
ods [20]. In robust estimators, e.g. RANSAC, it is often nec-
essary to evaluate these residuals thousands (or potentially
millions) of times for each image pair, which in practice
means that cheaper approximate error metrics are favored.

These approximate or surrogate error metrics can be di-
vided into two categories: image-based (approximating the
true reprojection error) or geometry-based (measuring some
geometric quantity, e.g. angles, instead). In the first cate-
gory we have the epipolar distance, i.e. distance from the
point to the corresponding epipolar line. This can be inter-
preted as assuming zero noise on one of the keypoints. The
error is often computed symmetrically and thus called the
symmetric epipolar distance, having the form

dIEd,>  |dlEd;|?
(‘:2 - | 2 + 2 ’ 4
SED = End | T (B wnds]? @

where Eq5 € R2*3 refers to the first two rows of E, and
di = (py;1) € R3. Another image-based error is the
Sampson error, which is a first-order approximation of £,
(see Sec. 2.1 for details):

£2 = |d£Ed1|2
T 1 Endi? + [(BT)i2de

®)

Both of these errors can after appropriate rescaling (using

the focal lengths) be expressed in pixels and thus are natural

to interpret in terms of the keypoint detection noise levels.
In the second category, an example is the cosine error,

|d} Edy |*
[da|[? | Eda |2

|d} Ed|*
[ ETdy|* [|da ][>

which (symmetrically) measures the cosine between the
normal of the epipolar plane Ed; € R® and correspond-
ing point dy € R3. Another geometric error is the algebraic
residual,

Earc = |d3Ed,|, (7

which was given a geometric interpretation in [19].

Most of the literature has focused on the pinhole cam-
era case, and the image-based errors above (Esgp and Eg)
measure the error in the image plane assuming this model.
For non-pinhole cameras, we either have to undistort the
image such that Egpp and Eg are applicable, or use the

Figure 2. Undistorting the image deforms the level-sets of the re-
projection error and introduces a radial bias in the optimization.

geometry-based error metrics (e.g. Ecs or Earg). How-
ever, undistorting to a pinhole image (which is not always
possible for large field-of-view cameras) will introduce a
radial-bias into the error (see Figure 2).

In this paper we instead propose the Tangent Sampson
error E7g, a version of the classical Sampson error that has
been generalized to handle arbitrary camera models. Com-
pared to current alternatives it has the following benefits;

¢ It is cheap to evaluate (similar in cost to the original
Sampson error) since it only requires computing the
camera model forward-projection and Jacobian once
(which can be pre-computed for each point).

* Since it measures errors in the original image, it is
easier to set meaningful thresholds in pixels. This is in
contrast to geometric error functions, where it is not al-
ways clear how to relate the thresholds (e.g. in angles)
to the keypoint detection noise in pixels.

« It works for arbitrary central camera models, only
requiring that we can compute a Jacobian of the cam-
era projection function at each correspondence. This
also allows the formulation to work for cameras mod-
eled via look-up tables, where the Jacobian can be es-
timated via interpolation of finite differences.

In Section 2.1 we first recall the derivations for the orig-
inal Sampson error. Next, in Section 3 we propose our gen-
eralization to arbitrary central camera models, and in Sec-
tion 4 we experimentally show that the proposed error out-
performs the competing methods on a variety of camera and
lens configurations.

2. Related Work

The Sampson error was introduced in [23] to approx-
imate the geometric distance from a point to a conic. The
proposed approach was to linearize the equation of the conic
around the given point, rendering a closed-form solution
for the new distance, now from the point to a line. This
idea proved useful for estimating distances to other implicit
surfaces, notably those set by constraints of a fundamental
matrix [22].

The fundamental matrix is only applicable to perspective
cameras, and a lot of subsequent work in computer vision
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focused on generalizing it to non-linear camera models, to-
gether with some notion of a reprojection error. A well-
known example is the division model from Fitzgibbon [8].
It maps a point p on the normalized image plane to the cor-
responding bearing vector d by

d=(p; 1+ A|p|?). (8)

The original paper [8] already discusses a way of approx-
imating the gold-standard error for the new model: first,
undistort the original points of the correspondence; next,
apply the closed-form triangulation from [13], and distort
the projections back onto the original image. The result-
ing points are then approximate minimizers of (2). A faster
iterative scheme for the optimal error was later proposed
in [16], which adapts the idea of [20], originally developed
for pinhole cameras, to the division model.

Several camera models with closed-form expressions for
epipolar curves were proposed. In [25], epipolar curves are
represented by cubics, in the rational model [5] — by con-
ics, and in [2] — by circles. With such models, we can use
the Sampson approximation to estimate the distance from
one point of the correspondence to the epipolar curve of the
other, and vice versa. Note that this gives us an approxi-
mation of the symmetric epipolar distance, not the Samp-
son error, because for the latter we would need to optimize
both point positions simultaneously, and this would move
the epipolar curves as well.

All these models were proposed with the goal of search-
ing for the intrinsic parameters together with the epipo-
lar geometry. Indeed, [2] and [5] even provide their own
versions of a fundamental matrix on a lifted image space.
These matrices can be estimated directly from point corre-
spondences, and then decomposed to provide the distortion
parameters and relative pose up to an irreducible ambiguity.
We, on the other hand, constrain ourselves to the calibrated
case, and thus can afford much greater generality.

There are also various heuristic generalizations of the
symmetric epipolar distance to general non-linear camera
models that have been used in practice. One approach is
to project the bearing vector of one point of the correspon-
dence onto the epipolar plane given by the other. The pro-
jected vector is then mapped back onto the image to provide
an approximate corrected point, for which the error can be
computed. Mathematically, this is expressed as

ny = Edl/HEdln, No = ETdQ/HETdQH, (9)
"

”2 (10)

2
Exspp = Py — 7 (di — nanidy)

+lpy — 7 (d2 — nandy)

where p; and p, are the points on the images, d; and ds
are the corresponding bearing vectors, n; and ny are the

normals of the epipolar planes. We have encountered this
formulation in private codebases, but we are not aware of its

origin. We call it the projective symmetric epipolar error.
While this does not give us exact distances to the epipolar
curves even in the pinhole case, it often provides a reason-
able approximation. The main problem with this approach
is that it requires calculating 7(p) every time, making it
rather computationally heavy for some camera models.

From the probabilistic perspective, the geometric error
is only justified as long as the noise in the correspondences
stays standard Gaussian and i.i.d. A natural generaliza-
tion is to allow for arbitrary covariances in point positions.
For example, when the keypoints are searched on a multi-
resolution image pyramid, the standard deviation of the po-
sition can be taken as the downscaling factor of the level
on which the point was found. For conics and fundamental
matrices, covariance-aware error formulations were derived
in [3]. We will show how this approach is generalized to
our proposed error formulation in Section 3.2.

In [1 1] the authors propose another first-order approxi-
mation of the reprojection error. The method builds on the
optimal triangulation method from [13] and differentates
the sixth-order polynomial that has the optimal geometric
error as its first root. The first-order approximation is then
given by one step of the Newton-Raphson iteration on this
polynomial starting from zero. In the paper, this error is
only derived for conics. While it would also work for fun-
damental matrices, this does not generalize to the nonlinear
camera model setting we are interested in.

Finally, we would like to note that the Sampson error
can also be derived for homographies [4]. Our method is
applicable there as well, but with larger computational cost,
which somewhat defeats its original purpose.

2.1. The Sampson Approximation

Traditional Sampson error [22, 23] approximates the ge-
ometric error, i.e. the distance to the closest pair of points
which satisfy the epipolar constraint. Given a correspon-
dence z = (p;,p;) € R? x R? and essential matrix
E € R3*3_ this can be formalized as

EL(z, E)=min |2 - 2| (11)
st. C(2)=0,

where £ = (P, Po) € R? x R? is the corrected correspon-
dence and the epipolar constraint is

C(ﬁ) = (1325 1)TE(1315 1) =0. (12)

Since (11) does not admit a simple closed form solution, the
idea in [23] is to linearize the epipolar constraint, C'(2) = 0,
at the original correspondence z, i.e.

Ei(z,E) =min ||z - z| (13)
st. C(z)+Jc(2—2)=0,
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where Jo = 0C(z)/dz is the Jacobian of the constraint,
evaluated at z. Introducing a Lagrangian for (13),

Lz = 2= 2" +A(C(2) + Jo( - 2), (14
we get the first-order constraints as

N A
Z2=z-2J,

5 C(z)+Jc(2—2)=0. (15)

Inserting the first equation into the second yields

C(z)

A
Clz)= S| JcP=0 = 2=2— JL. (16
Thus the minimum in (13) is given by
Clz) 1| _ Cz)?
£Z = H JLI| = . (17)
S [P R [ Tell?

Replacing C(z) with the epipolar constraint, we arrive at
the classical formula for the Sampson error:

£2 — ((po; )TE(py; 1))2 .
B DIP + [[(ENa(ps; D]?

(18)

3. Generalizing the Sampson Error

The Sampson error derived in the previous section as-
sumes a pinhole projection model. However, many cam-
eras, in particular those with wide field-of-view, require a
more complex model. One popular choice is the Kannala-
Brandt [14] model in which a 3D point d = (X,Y, Z)T in
the camera coordinate system is projected as

04 me> (cr)
7'('( ) /7172_"_],2 (fyyv Cy (19)
04 = 0(1 + k16 + kob* + k36° + £46%)  (20)

0 =atan2(\/ X2 +Y2 Z), (21)

where k1, ..., k4, fz, fy, Cz, ¢y are the intrinsic parameters.
We now consider arbitrary central camera models and
derive a generalization of the Sampson error. We assume
that we have some forward projection function 7 : R? — €,
where Q@ C R? is the image plane. In the case of the
Kannala-Brandt model this is given by (19), but our deriva-
tions work for any differentiable model with central projec-
tions, i.e. 7(Ad) = w(d) VA > 0. Similarly we define the
(normalized) unprojection, 7=1 :  — S? as mapping im-
age points onto the corresponding unit-vectors in 3D. The
geometric error (11) then becomes Epyr, (2, E) =

min |2 — z|? (22)

st. C(2)=7"py)TEr ' (p;) =0. (23)

In practice, most camera models only define the forward
projection 7, and unprojection ! is solved for iteratively.
For example, (19) does not have a closed-form inverse. This
makes it non-trivial to directly compute its Jacobians re-
quired for the Sampson approximation. To avoid this com-
putation we rely on the inverse function theorem. The vari-
ant that we will use can be found in the book [6]. It is
tailored to functions that map higher-dimensional inputs to
lower-dimensional outputs. We rephrase it here for reader’s
convenience, adapting the notation to our needs and losing
some generality:

Theorem 1. [6, Theorem 1F.6] Let 7 : R? — R2 be con-
tinuously differentiable in a neighborhood around d € R3.
Further, suppose that its Jacobian J at d has full rank.
Then, there exists a neighborhood V of p = w(d) and a
continuously differentiable function 71 :V = R3 such
that m(n=1(p)) = p Vp € V and whose Jacobian is
given by J T, the Moore-Penrose pseudoinverse of J.

The construction of 7—1 in the proof from [6] also gives

us that ;jl(i)) = d. Note that 7 admits many right-
inverses, but they only differ in lengths assigned to un-

projected bearing vectors. Thus, 7—1 that the theorem gives
us need not coincide with 71 that maps points to unit vec-
tors. However, the following result shows that when we
evaluate J at a unit vector d = 7~ (p), J' actually gives
us the Jacobian of 7~ 1:

Corollary 1. Let d € 5% and J = 95 € R**3. Then the

Jacobian of 7=t at p = w(d) is given by Ji.

Proof. Since the only difference between 7—1 from theo-
rem | and 71 is the norm of the output, we can write

7Y p) = h(z=1(p)) VpeV, (24)

where h : v — v/||v]| is the normalization function. We
also have d = 7=1(p). Thus, the Jacobian of 7! at p is

given by
or'  on|  or!

= =T —-dd")Jt=Jf.
Jp ov|,_q Op ( )J J (25

O

In the last equation we used dT.J T — 0, which is true
in general for any null-vector d of the matrix J, but in our
case can also be seen from the following lemma that gives
a closed-form expression for J .

Lemma 1. Letd € R® and J = 9% € R?*3. Then, J' is
given by
1

M= TG, x gy @ XD (dxg], @0

where g,, g, € R3 are the two rows of the Jacobian J.
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Proof. Simple calculations show that JM = Isyo. It re-
mains to show that MJ € R3*3 is symmetric. For ease of
notation introduce « = d - (g, x g,)). Then we have

aMJ = (g, xd)gl + (d x g,)g] = (27)

= [d]x (—9,91 +9.9]) = [d]x[g, x g.]x.  (28)
Since the projection function 7 does not depend on the norm
of d, i.e. 7(d) = w(Ad) VA > 0, we have that Jd =
0. Since d is then orthogonal to both g, and g, we have
g, x g, = vd for some v € R. Inserting into (28) we get

X

MJ = 2Ld)? (29)
(0%

which is a symmetric matrix.
O

The expression (26) can be used to efficiently compute
the Jacobian J of the constraint function C' from (23),
and finally to arrive at the Sampson approximation of the
reprojection error in any differentiable camera model:

%5 _ C(Z)2 _ (d;Edl)z (30)
I Tell® | ET|? + ||d] ETJL)?

where d; = 7~ !(p,) and the two Jacobians are evaluated
at dy and d, respectively. In the rest of the paper we refer
to this as the Tangent Sampson error. The name reflects the
fact that after we linearize the unprojection 7=, we are es-
sentially optimizing in the tangent plane to S? at the bearing
vectors of the undistorted points. Note that the formula is
analogous to the original Sampson error (18) (replacing d;
and ds with the image points, and replacing J I and J ; with
[10;0 1;00]). Further, since J; and J5 are evaluated at the
original points of the correspondence, they are independent
of E and can be precomputed. Thus, during RANSAC and
refinement the computational cost stays approximately the
same as for the classical Sampson error.

3.1. Backward Camera Models

While most camera models used in practice are forward-
models, i.e. mapping from the world to the image, there
also exist backward-models which instead take the image
points as input. The division model (8) is perhaps the most
popular example here. The derivations above can easily be
adapted to allow for backward-models. The pseudoinverses
J ;2 are simply replaced with the 3 x 2 Jacobians from the
undistortion map,

d}Ed,)?
Eig = (d3 Ed, . 31
Y ELE e e Y
In particular, for the division model (8) we would have
Oh od  Oh
J = —— = — [Isx9; 2X&T| € R3*2, 32
9d 0w — oa 12> PaT] € (32)

where we need to explicitly include the Jacobian % of the
normalization function h, since the unprojected d from (8)
is not a unit vector.

3.2. Measurement Uncertainty

Following the approach from [3], we can incorporate
measurement uncertainty in the keypoint positions into the
Tangent Sampson error. We will assume that the keypoint
positions are affected by independent Gaussian noise

pl NN(i)lv Z:1)7 p2 ~ N(p27 22) (33)

with known covariances. For observations p; and p,, the
maximume-likelihood error for an essential matrix E is

&2, (z, E) = min %(z —2)x Y z-2) (34
st. C(2) =0,

where C' is the constraint function (23) and 3 is the joint
covariance of z = [py; p,], i.e. ¥ = diag(3q, Xo).
The procedure from Section 2.1 yields in this case
C(2)? (d}Ed,)?

s = = S
Je=IL  |dlBJL|3, + [dETTL[2,

where |[v||% = vTXv. See the supplementary material for
details on the derivation. This is a generalization of the last
expression in [3, Section 3.4] to the arbitrary camera model
case. We evaluate how it compares to the original Tangent
Sampson error (30) in a synthetic setting in Section 4.4.1.

4. Experimental Evaluation

In the rest of the paper we experimentally evaluate the
Tangent Sampson error. We compare against a selection of
popular error metrics, summarized in Table 1.

4.1. Implementation Details

We implemented all error formulations in C++ using
Eigen [9] as a linear algebra library and Ceres [1] for op-
timization. Since evaluation is run on Intel hardware, we
additionally speed up the errors that do not require itera-
tive methods or explicit camera projection (£7s, £s, EsED,
Ecs, and E41,¢) by vectorizing their implementations with
AVX and FMA instruction sets. In Table 1 we also list the
approximate computational cost of evaluating the residual.
Tangent Sampson error is significantly faster compared to
other metrics which also measure the error in the original
image, and has comparable, but slightly higher, runtime to
the purely geometric and pinhole-based metrics. For the
computational cost we include parts which cannot be pre-
computed (i.e. parts that depend on the essential matrix).
For a comparison with the non-optimized errors (using pure
Eigen-implementations), we refer the reader to the supple-
mentary material, where we list the runtime for all formula-
tions without explicit vectorization and some setup details.
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Runtime

Name Rel. Abs.
Earc (7)  Algebraic error L 1.0 1.3 ns
Ecs (6) Cosine error i 18 2.4 ns
Evr (3) (Pinhole) Reproj. error X({ 28.0 36.7ns
EsED (4) (Pinhole) Sym. Epi. Dist.  X( 1.7 2.3 ns
Es (5) (Pinhole) Sampson error ¢ 1.4 1.9 ns
ExML (22)  Reproj. error [1 886 1160 ns
Ersgp (10)  Proj. Sym. Epi. Dist. 92 121 ns
Ers (30) Tangent Sampson J 22 2.8 ns

Table 1. Error metrics compared in the experimental evaluation.
The errors are grouped by the domain where the error is computed:
geometric errors (£~), the undistorted image (}={) and the original
image ([_]),. Computational cost is shown relative to the algebraic
error which is the cheapest.

4.2. Datasets

For the evaluation we consider two datasets. First the
meta-calibration dataset from BabelCalib [21]. The dataset
is a collection of checkerboard images from a wide variety
of cameras, including some with extremely wide field-of-
view (> 270°). For the evaluation we the split the dataset
into three groups depending on their field-of-view; < 90°,
90 — 150°, and > 150°. As the original dataset is bi-
ased towards higher field-of-view cameras, we also include
some additional checkerboard images taken with a standard
DSLR (circa 50 - 70°) to even out the distribution. These
checkerboard datasets allow us to evaluate on a large num-
ber of different camera and lens setups. In Section 4.3 we
show that the Tangent Sampson error consistently approx-
imates the true reprojection error, regardless of the camera
used, and in Section 4.4 we show that when used for local
refinement it yields the most accurate epipolar geometries.

To evaluate the performance of the error metrics in the
context of RANSAC we consider image pairs extracted
from Structure-from-Motion datasets, where the poses from
the reconstruction are taken as a psuedo-ground truth. As
the experiments in Section 4.3-4.4 show that most error
metrics behave similarly for low to medium field-of-view
cameras (< 90°), we focus our evaluation on cameras with
larger field-of-view. For this we use two datasets (Gross-
munster and Kirchenge) from Larsson et al. [17], which
contain 373 and 369 images taken with a fisheye-lens.

4.3. Comparison with True Reprojection Error

We first evaluate how different error metrics compare
with the true maximum-likelihood estimate, &£,;;, (3) for
pinhole cameras and &7, (22) for non-pinhole cameras.
To compute the ML-estimate we perform two-view triangu-
lation followed by non-linear optimization of the 3D point,
minimizing the squared reprojection error (using the known
camera intrinsics). Note that this approach is orders of mag-
nitude slower compared to the metrics we evaluate (see Ta-

ble 1) and cannot reasonably be used in practical scenarios.

For the experiment we consider the collection of
checkerboard images from [21]. We use the calibration
toolbox from BabelCalib [21] to estimate the extrinsic and
intrinsic parameters for each image. For each pair we col-
lect the 2D-2D correspondences from corresponding cor-
ners. As the corner detector [10] is extremely accurate on
these images (some having around 0.2 px error during cal-
ibration), we add Gaussian noise with 1 px standard devia-
tion, to better differentiate the methods (as all methods give
zero error for exact data).

Since it is not meaningful to directly compare the resid-
ual values, we instead compare their ordering. For this we
make use of Kendall’s T rank correlation coefficient [15]. It
is defined for two rankings (p1,...,p,) and (q1, ..., qn) as

_ |{concordant pairs}| — |{discordant pairs} |
(3) '

A pair of indices (i, j) € {1,...,n}> where i > j is called
concordant if and only if

7(p, q) (36)

(Pi >piNgi >q;)V (pi <pjNai <gj). (37

Otherwise, the pair is discordant. Note that due to the nor-
malization we have 7(p, ¢) € [—1, 1], where identical rank-
ings yield 7 = 1, and reversed 7 = —1.

The results are shown in Fig. 3, split into three groups
based on the camera field-of-view. For low to medium field-
of-view cameras (< 90°) we can see that all metrics except
the algebraic residual behave similar to the true reprojection
error. As the field-of-view increases, there is a more clear
difference between the methods, with the pinhole-based er-
rors performing the worst. Note however, that for all cam-
eras the proposed Tangent Sampson error offers the best ap-
proximation of the true reprojection error.

In addition to Kendall-Tau distance, we compare the er-
rors qualitatively. For this, we show the values of an er-
ror for a fixed correspondence on a pair of images from a
panoramic and fisheye camera in Fig. 4. There, we keep the
point on the fisheye image fixed, and vary the point on the
panoramic image to show different error values coded by
different colors. One can see that Erg error models E; /1,
closely in the region where the latter is well-defined. &g is
also one of the two errors that do not degenerate around the
epipole, and, at the same time, it correctly models the spread
of values of &, ;1 around the epipolar curve. Note that the
shape of true reprojection error varies significantly depend-
ing on how close the correspondence is to the epipole. In
the supplementary material we show more qualitative re-
sults. In the supplementary material we also show a com-
parison with [16], which proposed an optimal method for
computing the 7ML error (22) for the division model (8).
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< 90 degrees

Algebraic - 1.00 0.90 0.92

0.68 0.68 0.64

90 - 150 degrees

> 150 degrees

0.73 071 0.73 0.74

Pinhole Sampson - 0.91 1.00 1.00 099 095 096 0.7 0.7 100 1.00 093 089 090 091 100 099
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Tangent Sampson - 0.92 097 097 096 097 099 100 1.00 091 091 086 092 096 099 1.0
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Figure 3. The figure shows the Kendall 7 coefficient comparing

different error metrics for the checkerboard data. For all cameras the

proposed Tangent Sampson error correlates well with the true reprojection error M L.

Algebraic

Figure 4. Qualitative comparison of different error functions.

A < oG &

A <0

angent Sampson Reprojection error

The thresholds for colormaps were selected to be the error at the point

marked by the blue plus. The shape of the true reprojection error varies heavily depending on how close the correspondence is to the

epipoles. In the supplementary material we show more examples.

We also show &5k p and errors computed on the undistorted image in

the supplementary. The geometric error is only shown in the region where the 3D point after midpoint triangulation does not correspond to

negative depths of bearing vectors (areas where this does not hold
4.4. Accuracy in Pose Refinement

Next we evaluate the error metrics on how they perform
when used for pose-refinement. For the experiment we
again consider the image pairs extracted from the checker-
board images. For each image pair we perform local op-
timization minimizing the proposed error metrics over all
correspondences. To initialize the optimization we take the
ground truth relative pose and randomly perturb both the ro-
tation and translation by 1 degree. Additionally, point posi-
tions were perturbed with Gaussian noise with unit standard
deviation along each dimension. For the two ML metrics
we triangulate 3D points which are optimized jointly with
the camera pose. We experience that this sometimes has
problems with worse convergence. The results are shown in
Table 2. Again we see that for low to medium field-of-view
cameras, the difference between the error metrics is small.
The Tangent Sampson error consistently provides the most
accurate camera poses after refinement.

Convergence Properties. The previous experiment evalu-
ated the accuracy of the camera poses obtained when ini-
tialized close to the correct pose. We also experimented
with varying the initial pose and measuring how often the
optimization converged to the correct pose. Figure 5 shows
the percentage of poses (across all pairs) that are within 5
degrees average rotation/translation error for varying errors
in the initial pose. For large initial errors (> 25°), the pro-
posed Tangent-Sampson error performs slightly better com-

for one or both depths are highlighted).
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Figure 5. Convergence properties. Successful trials (average rot.
and trans. error < 5°) for varying initial pose errors (in degrees).

pared to the other metrics.

44.1 Effect of Measurement Uncertainty

Experiments in [3] already show that taking point covari-
ances into account in the cost function provides benefits
for fundamental matrix estimation. Here, we conduct an-
other synthetic test to show that this effect persists when es-
timating the essential matrix with highly nonlinear cameras.
We generate 2000 instances with pairs of spherical cameras
(1000 x 2000px) with a random relative pose. For each pair
we project 100 random 3D-points uniformly drawn from the
cube [—10, 10]3, and add Gaussian noise with covariance A.

Covariances are generated as A = aQdiag(58,1-5)QT7,
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< 90° (5332 pairs)

90 — 150° (21927 pairs)

> 150° (11860 pairs)

Rotation Translation Rotation Translation Rotation Translation
EarLc 0.379/0.314 1.137/0.328 1.528/0.378 3.938/0.588 1.582/0.506 3.489/0.655
Es 0.376/0.312 1.056 /0.327 1.464/0.347 3.520/0.575 1.634/0.567 3.812/0.778
EsED 0.376/0.312 1.065/0.327 1.475/0.352 3.554/0.578 2.596/0.986 5.667/1.342
Ecos 0.376/0.313 1.066/0.326 1.45470.341 3.459/0.558 1.447/0.454 3.235/0.612
Enrr 0.376/0.312 1.103/0.327 1.472/0.358 3.733/0.575 1.630/0.563 3.771/0.766
ExML 0.375/0.312 1.075/0.327 1.451/0.350 3.778 /0.557 1.418/0.446 3.143/0.597
ErSED 0.376/0.313 1.074/0.327 1.458 /0.343  3.490/0.559 1.47370.450 3.249/0.607
Ers 0.376/0.312 1.057/0.327 1.443/0.340 3.432/0.557 1.465/0.445 3.226/0.598

Table 2. Evaluation of camera pose refinement. Table shows the mean and median errors (in degrees) of the rotation and translation
after refinement. The data is split into three groups based on the camera field-of-view. Best error is highlighted in bold. Second-best is

underlined. For low-distortion cameras the choice of error makes almost no difference on the quality of pose.

Cov.-aware
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Figure 6. Measurement Uncertainty. The distribution of pose
errors (maximum of rotation and translation error) when using
covariance-aware Tangent Sampson error for pose refinement ver-
sus non-covariance-aware in synthetic experiments. Boxes show
quartiles of the respective distribution of errors and whiskers ex-
tend to the minimal and maximal value.

where @ ~ U(SO(2)) is a random rotation on the plane,
B ~ U([0,0.5]) is a random eccentricity parameter, and «
is the overall scale of the noise. To emulate keypoint detec-
tion on a multi-scale image pyramid, all generated points
were split into 4 equal sets, with « within each set assigned
to 1, 2, 4, and 8, respectively. Points and covariances are
then passed to a Levenberg-Marquardt optimization of the
relative pose using (35) as the residual function, with true
pose serving as the initial estimate. Figure 6 demonstrates
how the covariance-aware formulation (35) compares to the
baseline (30). Covariance information is useful in the case
when points are affected by noise of unequal scales.

4.5. Evaluation in Robust Estimators

Finally we evaluate the methods in the context of
RANSAC [7]. We implement a standard LO-RANSAC [ 18]
estimator which uses the various error metrics both for
model scoring (using MSAC scoring [24]) and refinement
(using non-linear optimization on the inlier-set). For the
experiment we consider image pairs from two Structure-
from-Motion reconstructions (see Section 4.2). From each
dataset we extract all image pairs which contain between 50
and 200 correct matches (according to the Structure-from-
Motion ground-truth). For each pair we estimate the rela-

Grossmunster Kirchenge

€Rt < 5° RT €ERt <5° RT
ara 0.761 75.0 39.6 0.318 84.8 21.6
Ecos 0.561 81.5 504 0.254 91.6 255
EsED 1.161 68.9 82.0 0.355 86.4 44.0
Es 0924 745 51.0 0300 89.2 253
ErSED 0.561 81.3 211.2 0255 91.6 874
Ers 0.550 82.2 464 0248 919 242

Table 3. Evaluation in robust estimators. Table shows the median
pose error (maximum of rotation and translation error), percentage
of pairs for which the estimation was successful (pose error less
than 5 degrees), and runtime (in ms). Best value in the column is
highlighted in bold. Second-best is underlined.

tive pose using RANSAC and compute the error in the pose,
as well as percentage of successful runs. For each method
we tuned the inlier threshold on a separately extracted val-
idation set. For more details on the experiment setup see
the supplementary material. The results are presented in
Table 3. Using Tangent Sampson error consistently gives
slightly better performance compared to other error metrics.

5. Conclusions

In this paper we have presented a simple generalization
to the classical Sampson error which allows for using arbi-
trary camera models. In experiments on a wide variety of
camera and lens configurations, we have shown that the pro-
posed error metric outperforms the alternative metrics that
are used in practice. While the improvements are some-
times minor (e.g. for low-distortion pinhole cameras), they
are consistent and come at essentially no additional cost.
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