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Abstract

This paper strives to measure apparent skin color in
computer vision, beyond a unidimensional scale on skin
tone. In their seminal paper Gender Shades, Buolamwini
and Gebru have shown how gender classification sys-
tems can be biased against women with darker skin tones.
Subsequently, fairness researchers and practitioners have
adopted the Fitzpatick skin type classification as a common
measure to assess skin color bias in computer vision sys-
tems. While effective, the Fitzpatick scale only focuses on
the skin tone ranging from light to dark. Towards a more
comprehensive measure of skin color, we introduce the hue
angle ranging from red to yellow. When applied to images,
the hue dimension reveals additional biases related to skin
color in both computer vision datasets and models. We then
recommend multidimensional skin color scales, relying on
both skin tone and hue, for fairness assessments.

1. Introduction
This paper focuses on measuring apparent skin color in

images for fairness benchmarking, and moves toward a mul-
tidimensional score beyond the skin tone depth. Adverse
decisions can arise in common computer vision models, as
strikingly identified by Buolamwini and Gebru [8]. This
has an impact on real-life applications, as models can pro-
duce wrong skin lesion diagnostics [15] or incorrect heart
rate measurements [5, 27, 62] for individuals with darker
skin tones. It is therefore critical to identify to what ex-
tent visual datasets and models are affected by changes in
skin color. To achieve this, it becomes necessary to develop
comprehensive skin color scores to characterize images of
individuals, otherwise a fairness evaluation based on skin
color would not be feasible.

Describing the apparent skin color remains an open chal-
lenge, as the final visual color perception results from a
complex physical and biological phenomenon [34]. The
skin is a multilayered structure, which varies among indi-
viduals: not every individual will have the same amount and
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Figure 1: Apparent skin color in images results from a
complex phenomenon, where it varies in tone from light to
dark (vertical axis) and hue from red to yellow (horizontal
axis). This figure depicts examples from CelebAMask-HQ.
In this paper, we introduce a measure of the skin hue, be-
sides the commonly used skin tone, to quantify apparent
skin color variations.

distribution of carotene, hemoglobin, or melanin throughout
the different layers [6, 10]. Hence, modeling the intrinsic
skin color through the amount of reflected, scattered, or ab-
sorbed light for every individual is a difficult and complex
task in images [67]. Additionally, color perception from the
human visual system adds more complexity to the problem,
as colors can be differently perceived depending on their
context or people’s cultures [26]. Instead, it is simpler and
more appropriate to develop representative color scales to
capture the variations in apparent skin color.

The commonly accepted standard for skin color scale is
the Fitzpatrick skin type classification [24], which catego-
rizes skin color into six different types based on skin tone,
ranging from light to dark. It has unsurprisingly become a
useful tool for fairness analysis [8,57] because skin tone an-
notations may serve as a proxy for race or ethnicity annota-
tions. Indeed, such sensitive attributes are subject to signifi-
cant data privacy protections [22], and are often unavailable
or inferred in visual datasets [2,36], making the measure of
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skin tone an alternative fairness tool. Yet, while practical
and effective, reducing the skin color to its tone is limit-
ing given the skin constitutive complexity. As illustrated in
Figure 1, apparent skin color also varies along other axis,
such as the skin hue. For example, when aging, Asian skin
becomes darker and more yellow while Caucasian skin be-
comes darker and redder [17]. Focusing on skin tone would
not capture such change in hue as it only assesses the skin
lightness or darkness. In this paper, we therefore promote
a multidimensional scale to better represent apparent skin
color variations among individuals in images.

Akin to previous works on fairness analysis in computer
vision (e.g., [8,57,75,78]), we are interested in characteriz-
ing apparent skin color rather than true skin color. The ap-
parent skin color is the one depicted in images, and the one
that a computer vision model would see, while the true skin
color characterizes the constitutive skin color without the
influence of external factors such as illumination or color
cast. Assessing the true skin color is more important for
dermatology [41,60] or cosmetics [6,46] applications as the
constitutive color leads to more specific diagnostics or treat-
ments and requires an active involvement with practitioners
to avoid any misusage or mistrust [28]. In this paper, we
rather focus on the assessment of computer vision models,
which are fed images in the wild, and thus only consider the
apparent skin color in images.

Our main contribution is to demonstrate the relevance
and benefits of a multidimensional skin color scale for fair-
ness assessments in computer vision. First, we introduce
a step towards more comprehensive apparent skin color
scores. Rather than classifying skin color in types, as done
with the Fitzpatrick scale, we measure automatically and
quantitatively skin color in a multidimensional manner in
images. We propose to focus on the perceptual light L∗, as
a measure of skin tone, and the hue angle h∗, as a measure
of skin hue; which results in a multidimensional measure
for every image. Second, we showcase the benefits of a
multidimensional measure of skin color by (i) quantifying
to what extent common image datasets are skewed towards
light-red skin color and under-represent dark-yellow skin
color, and how generative models trained on these datasets
reproduce a similar bias; (ii) revealing multidimensional
skin color biases in saliency-based image cropping and face
verification models; and (iii) measuring the causal effect of
skin color in attribute prediction in multiple commercial and
non-commercial models. Overall, our contributions to as-
sessing skin color in a multidimensional manner offer novel
insights, previously invisible, to better understand biases in
the fairness assessment of both datasets and models.

2. Background on Skin Color Scales
Scoring the skin color of individuals has wide implica-

tions in various fields. We focus in this section on the Fitz-

patrick skin type classification scale [24], which is widely
used in practice but starts to raise ethical concerns due to its
original design and its lack of representativeness [55]. We
describe below its categorization methodology, as well as
its current usage, limitations and impact for fairness assess-
ment in computer vision.

Fitzpatrick skin type classification scale categorizes the
skin response to ultraviolet A light [24]. This was origi-
nally used to assess the suntanning pathways of skin, i.e.,
how sensitive skin is to sun exposure, and how it evolves
over time. While the classification was first proposed to
categorize Caucasian skin into four different types, it has
later been extended to include brown and darker skins, re-
sulting in six different skin types [24]. The scale starts from
type I lighter skin, which “always burns and never tans”,
and continues to type VI darker skin, which “never burns”.

Since its original introduction, the Fitzpatrick skin type
has been, and still is, a central role in the literature. It
now goes beyond the characterization of suntanning path-
ways, and serves as a color classification scale for skin in
fields such as cosmetics to measure the efficacy of aes-
thetic cosmetology (e.g., [6, 46]) or clinical dermatology
(e.g., [41,60]) for skin analysis and treatment. In this paper,
akin to the seminal work of Buolamwini and Gebru [8], we
focus on leveraging apparent skin color scores to study po-
tential discrimination coming from data and model biases.

However, such widespread use of the Fitzpatrick skin
type raises ethical questions as it was originally developed
for Caucasian skin tones, implying a lack of representa-
tiveness and utility for other groups. As highlighted by
Pichon et al. [55], the Fitzpatrick skin type has limited
utility in dermatology for several ethnic groups such as
Asians [12], Arabs [68] or African-Americans [74], because
characterizing how skin “burns” or “tans” might be restric-
tive. Adding race labels does not provide better predictors
for skin characteristics either, as it is still not enough to rep-
resent its variation [32]. This representativeness limitation
accentuates the need for more comprehensive classification
types to characterize skin color. In this paper, we go be-
yond the assessment of skin tone and propose the skin hue
to achieve a multidimensional score for apparent skin color.

Another limitation of the Fitzpatrick skin type comes
from the annotation process. While the usage of a spec-
trophotometer to measure the skin reflectance remains the
standard to provide the ground truth score of the true or
constitutive skin color [46], it might not be available in prac-
tice. As such skin type annotation is usually self-reported
by the subject [24], labeled by domain experts [72], or la-
beled by non-domain experts [8]. Unfortunately, in all the
above cases, it appears that misclassification can occur in
the Fitzpatrick scale, as current skin type definitions are not
objective and descriptive enough, and do not capture the
skin color variability among different ethnicities [20]. An-
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other reason for such misclassification comes from the an-
notator bias, where the demographics and background of
an annotator influence the skin color score assignment [9].
These annotation limitations indicate the need for quanti-
tative and more objective measures for skin color. In this
paper, we extract skin color scores in facial images auto-
matically, without the need of external human annotators,
to obtain a representative scalar scores.

Social impact of skin color scales. In his seminal paper,
Fitzpatrick [24] considers race and ethnicity as cultural and
political constructs. Current scales have been developed to
describe skin color rather than providing a race or ethnic
label. Still, the Fitzpatrick skin type has deviated from its
original usage as up to fifty percent of dermatologists use
the Fitzpatrick types to describe race and ethnicity [72], and
doing so can be harmful as such simplification ignores their
complexity [30]. Furthermore, the lack of representative-
ness in the Fitzpatrick skin type can lead to mis-representing
some ethnical groups [29,54], as skin color can have a wide
spectrum within an ethnic group or between two groups.
For example, two groups can have a similar skin tone but
differ on other axes. In light of this, this paper focuses
on understanding performance discrepancy related to skin
color, with more comprehensive scores to better represent
human skin color variation.

Applications in fairness assessment. In recent years,
there has been growing awareness on the limitations of com-
puter vision models to be biased against under-represented
groups [8]. It is thus critical to develop fairness tools
that can help assess potential biases and document them in
datasheets [25] and model cards [50]. In the context of this
paper, we are interested in developing a fairness tool to bet-
ter assess and quantify biases related to skin color. Towards
this goal, collecting skin tone annotations has enabled bias
identification in facial recognition [8, 35, 57], image cap-
tioning [78], person detection [75], skin image analysis in
dermatology [15, 41], face reconstruction [23] and detect-
ing deepfakes [31] among other tasks. In this paper, we
build on this line of work and propose complementary and
novel tools for measuring and extracting multidimensional
skin color scores, and showcase their relevance and effec-
tiveness for revealing dataset and model biases.

While the paper focuses on bias identification and mea-
surement, our multidimensional skin color scale could also
enable how to address bias mitigation. Such related works
commonly rely on data augmentation [59], adversarial de-
biasing [69], contrastive learning [52], independent clas-
sifiers [71], or debiasing both feature and label embed-
dings [65]. Our skin color scores could inform which sam-
ples models are struggling with, and provide a solution by
augmenting images or mitigating model representations in
a multidimensional manner.

3. Multidimensional Skin Color Scores
Given the limitations of the Fitzpatrick scale in its def-

inition or annotation process, deriving quantitative metrics
enables more reliable skin color scores. Instead of asking a
subject for a self-identification of the skin color type or col-
lecting the skin color type from an annotator, it is preferable
to compute a skin color score from a point measurement. In-
deed, this mitigates the subjectivity of the (self-)annotator
as well as the inter-rater reliability [10, 46, 73]. In this sec-
tion, we introduce the importance of the color space for rep-
resenting images and define metrics for skin color scores.

Colorimetry aims to represent faithfully the human per-
ception of colors. Towards this goal, the Commission In-
ternationale de l’Eclairage (CIE) establishes standards re-
garding illuminants, tristimulus values, or color spaces [16].
While images are usually represented in the standard RGB
space, it might be more relevant to represent them in a color
space that better reflects the human perception when assess-
ing skin color variation.

In this paper, we are particularly interested in the CIE
L∗a∗b∗ (CIELAB) color space, originally introduced in
1976 [16], which correlates with the response of the hu-
man eye by covering its entire range of color perception: the
L∗ component corresponds to the perceptual lightness and
ranges from black at value 0 to white at value 100; the a∗

component describes the green-red opponent colors, with
negative values corresponding to green and positive values
to red; and the b∗ component refers to the blue-yellow op-
ponent colors, with negative values corresponding to blue
and positive values to yellow.

Individual typology angle (ITA) provides a quantitative
alternative to the Fitzpatrick scale [10]. The individual ty-
pology angle is commonly used to describe the skin color
on spectrophotometer measurements for aesthetic cosme-
tology [46] or clinical dermatology [74]. In fairness analy-
ses, it has notably been applied to natural images of faces
images [36,48], and skin analysis [41]. Concretely, the indi-
vidual typology angle is defined in the CIELAB color space
as follows:

ITA = arctan
(
L∗ − 50

b∗

)
× 180◦

π
(1)

where a perceptual lightness at value 50 corresponds to a
maximum chroma. Only the L∗ and b∗ components are se-
lected as they are the ones that explain best the variation of
the suntanning pathways of the skin.

Despite its advantages of providing a quantitative mea-
sure, the individual typology angle is not a comprehensive
skin color score. It was originally developed for the sun-
tanning pathways of Caucasian skin [10], similar to the
Fitzpatrick scale [24]. In their original paper, Chardon et
al. [10] even raise this limitation as they acknowledge the
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absence of the a∗ component, which should be taken into
account to better represent other types of population. Fur-
thermore, while there exists a mapping between angles and
Fitzpatrick skin color types (e.g., values above 28◦ corre-
spond to light skin tones, type I to III; and to dark skin
tones, type IV to VI, otherwise), the low correlation with
expert annotations makes it less reliable [28]. Given these
limitations, there is a need to provide a more comprehensive
assessment of skin color.

Hue angle provides a colorimetric measure to describe the
perceived gradation of color [16]. In the CIELAB color
space, the hue angle is defined as follows:

h∗ = arctan (b∗/a∗) (2)

where h∗ goes from 0 to 360◦ as a∗ and b∗ components are
unbounded. That said, we are mainly interested in angles
between 0 and 90◦ (i.e., positive values of a∗ and b∗), as the
skin color is expressed through red and yellow colors [10].
Initially proposed by Weatherall and Coombs [73] for skin
color measurements, the hue angle has proven to be suitable
as an additional dimension to design proprietary skin color
scales for aesthetics cosmetology [17].

While these other fields have been exploring a multidi-
mensional measure for skin color, fairness benchmarks in
computer vision have mainly focused on a unidimensional
measure of skin tone. In this paper, we propose to consider
both the skin tone and the skin hue as a multidimensional
measure for skin color analysis in images. To the best of
our knowledge, the hue angle has not been used for fair-
ness analysis in computer vision. We take inspiration from
de Rigal et al. [17], and focus on the measurement of L∗

for skin tone and h∗ for skin hue. Measuring L∗ instead of
ITA avoids having correlated measures as both ITA and h∗

contain the b∗ component.
To extract the apparent skin color scores from images,

we build on the algorithm initially proposed by Merler et
al. [48] for the Diversity in Faces dataset (see Section 4.6
in their paper), and generalize their method to handle any
scalar scoring value, any face pose and facial variation. We
provide the details of the methodology and a robustness
analysis to different illuminations in Figure S3. We focus
in the next section on understanding the effect of skin color
in image datasets on computer vision models.

4. Fairness Benchmarking with Multidimen-
sional Skin Color Scores

First, we quantify the skin color bias in face datasets,
and in generative models trained on such datasets. This
reveals a skewness towards light-red skins and an under-
representation of dark-yellow skins. Second, we break
down results by skin color of saliency-based image crop-
ping and face verification algorithms. This reveals that

(a) CelebAMask-HQ (b) FFHQ

Figure 2: Skin color distribution on common face
datasets. Every dot in the scatter plot corresponds to an im-
age sample in the dataset. The skin tone threshold is at value
60 (light vs. dark), and the hue threshold at value 55◦ (red
vs. yellow).

model bias not only exists for skin tone, but also for skin
hue. Third, we investigate the causal effect of skin color in
attribute prediction. This reveals performance differences
when skin color changes, as classifiers tend to predict peo-
ple with lighter skin tones as more feminine, and people
with redder skin hue as more smiley. Code can be found at
https://github.com/SonyResearch/apparent skincolor.

4.1. Skin color bias in datasets

Skin color scores enable the assessment of potential bi-
ases in a given image dataset. By extracting them for every
sample in the dataset, it is possible to estimate the distri-
bution of every subgroup and characterize how unbalanced
the distribution might be. We focus on the CelebAMask-
HQ [43], composed of 30,000 images available with a non-
commercial research agreement, and FFHQ-Ageing [51],
composed of 70,000 images available with a Creative Com-
mons BY-NC-SA 4.0 license. Both datasets provide ground
truth segmentation masks of the skin, which we use to ex-
tract skin color scores. Note that both datasets are derivative
datasets from CelebA [44] and FFHQ [38], respectively,
with images crawled from social media platforms.

Figure 2 depicts the distribution in terms of perceptual
lightness L∗ and hue angle h∗. When L∗ is over 60, it cor-
responds to a light skin tone (and conversely for a dark skin
tone). When h∗ is over 55◦, it corresponds to a skin turning
towards yellow (and conversely for a skin turning towards
red). Threshold values are taken from Ly et al. [46].

Table 1 provides a quantitative assessment of the skin
tone and the skin hue. As commonly hypothesized in the
literature [37, 38], both datasets are skewed towards light
skins. This paper enables to quantify such skin color bias.
Measuring the hue angle further shows that both datasets
are also skewed towards red skins. We also explore in Sec-
tion A.3 the skin color distribution per ethnicity along the
tone and hue dimensions. We show the relevance of skin
hue to better represent different ethnical groups, as some
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Skin tone
Light Dark Total

Hue Red 46.95 19.28 66.23
Yellow 27.48 06.29 33.77
Total 74.43 25.57 100

(a) CelebAMask-HQ

Skin tone
Light Dark Total

Hue Red 52.82 29.06 81.87
Yellow 13.44 04.68 18.12
Total 66.26 33.74 100

(b) FFHQ

Table 1: Skin color bias in common face datasets (in %).
Images are skewed towards a light skin tone and a red skin
hue while dark and yellow skin colors are underrepresented.

Skin tone
Light Dark Total

Hue Red 53.05 28.71 81.76
Yellow 13.46 04.78 18.24
Total 66.51 33.49 100

(a) GAN – StyleGAN3

Skin tone
Light Dark Total

Hue Red 53.29 30.08 83.37
Yellow 12.01 04.62 16.63
Total 65.30 34.70 100

(b) Diffusion – P2

Table 2: Skin color bias in the output of generative models
when trained on FFHQ (in %, for 10,000 images). Both
StyleGAN3 and P2 reproduce the skin color bias of FFHQ.

ethnicities can have a similar skin tone but different skin
hue profile. We also provide additional histogram plots in
Section A.4, where we go beyond a simple binary thresh-
olding for both L∗ and h∗. The different thresholds confirm
the over-representation of light skin tones and red skin hues.

Additionally, we measure the skin color bias on the out-
put of generative models trained on FFHQ. To achieve this,
we generate 10,000 images with a generative adversarial
network (StyleGAN3 [37]) and a diffusion model (P2 [13]).
Table 2 shows that both StyleGAN3 and P2 are reproduc-
ing the skin color bias present in the FFHQ dataset, with P2
slightly amplifying the bias over the original dataset distri-
bution. In future dataset collections, we recommend track-
ing both skin tone and skin hue for skin color scores, such
that all subgroups are well balanced, which in turn makes
the dataset more diverse.

4.2. Skin color bias in models

4.2.1 Saliency-based image cropping

Task. The saliency-based image cropping task produces a
thumbnail based on a saliency map. Such cropping algo-
rithms are notably useful to select which region of a large
image to display on a smaller screen [19,70,76]. In the con-
text of this paper, we are inspired by previous works [7, 77]
and focus on cropping images with two faces. This setting
can then be related to a pairwise comparison where the out-
put decides which face to keep to produce the thumbnail.

Discrimination can happen in case the cropping algo-
rithm favors a specific member of a protected attribute. For
example, a method could consistently prefer a facial image
of a light-skinned person over a dark-skinned one. In fact,

Yee et al. [77] have shown that the Twitter cropping algo-
rithm is prone to gender or skin tone biases, as well as male-
gaze-like artifacts. In this paper, we focus on assessing the
skin color bias on the saliency-based image cropping task.

Method. To build a benchmark for saliency-based im-
age cropping, we start from the one initially proposed by
Birhane et al. [7]. We extend it to multiple race labels and
propose a quantitative score to measure the probability of
a face to be selected by the cropping algorithm. We are
given a dataset {xi, ai}Ni=1 of N facial images x with their
associated race label a. We also extract skin color scales
corresponding to perceptual lightness yL

∗
and the hue an-

gle yh
∗

for every facial image. To evaluate the cropping
algorithm, we build images to include a unique pair of two
facial images xi and xj with i ̸= j (see Figure 3a).

We propose to compute the Elo rating [21] for every fa-
cial image. Every pairwise comparison is considered as a
game between two facial images xi and xj . The objective
is to get a rating for every facial image, i.e., Ri and Rj ,
which indicates the probability of the face to be selected by
the cropping algorithm. The probability for image xi to be
chosen is defined as pi=1/(1 + 10(Rj−Ri)/M ), where M
acts as a temperature for the sigmoid function. Intuitively,
if there is a difference of M points between i and j, this
means that i has 10 times more chance to be chosen. Con-
versely, for image xi we have pj=1 − pi. The outcome of
the cropping algorithm Si for xi is equal to 1 if i wins and 0
if j looses, and can be used to update the player score with
R′

i = Ri +K(Si − pi), and conversely for xj . Following
common practice in chess playing [21], we set M = 400
and K = 16 and we initialize scores at 1400.

For benchmarking, we rely on Chicago Face Dataset
(CFD) [47] and CFD-India [42], for a total of 739 unique
facial images acquired in a controlled setting available for
non-commercial research purposes. The dataset includes
a self-reported gender label: 359 females and 380 males;
as well as self-reported ethnic labels: 109 Asians, 197
Blacks, 142 Indians, 108 Latinos, 183 Whites. Individu-
als have given their informed consent for data collection.
We extract the skin masks with DeepLabV3 [11], trained on
CelebAMask-HQ [43] as done in FFHQ-Ageing [51]. From
CFD, we sample pairs of facial images that are equally dis-
tributed with respect to gender and ethnicity. The product
of both gender and ethnicity label sets results in 10 intersec-
tional groups, forming a total of 45 pairwise combinations.
We sample 500 pairwise comparisons for each combination,
for a total of 22,500. To form the final image, we concate-
nate both facial images vertically with a white space in be-
tween and preserve their aspect ratio. This setting is highly
inspired by Birhane et al. [7]; it differs by the inclusion of
many ethnic groups instead of only two and it preserves the
aspect ratio of images, as we noticed effects on the cropping
algorithm when resizing images.
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(a) Cropping task (b) Skin tone (c) Skin hue (d) Intersection between skin tone and hue

Figure 3: Saliency-based image cropping on CFD. (a) Illustration of cropping task where the model is fed an image with
two faces and predicts which one to keep (green box). (b) Performance differences between light and dark skin tones
are statistically significant (p < 0.0001). (c) Differences between red and yellow skin hues are also statistically significant
(p < 0.0001). (d) The intersectional analysis also reveals statistically significant differences (p < 0.01), except between light-
yellow and dark-red skin colors. Complementary to the skin tone, the skin hue reveals additional differences in performance.

Results. Figure 3 presents the results of the saliency-based
cropping algorithm of Twitter on CFD. We report the Elo
score of the 739 individuals after 22,500 pairwise compar-
isons for image cropping. A high Elo score indicates a pref-
erence of the algorithm to select the individual to be kept for
cropping. We find that light skin tones are preferred over
dark skin tones (Figure 3b) with an average Elo score indi-
cating a 60.73% preference, which is confirmed with a sta-
tistically significant independent t-test (p < 0.0001). The
algorithm also prefers red skin hues over yellow ones with
an average Elo score indicating a 58.25% preference, which
again is statistically significant (Figure 3c). We further con-
sider intersectional groups of skin tone and hue (Figure 3d).
When performing independent t-tests with a Bonferroni cor-
rection, we find that all pairwise groups are statistically dif-
ferent (p < 0.01), except for the light-yellow and dark-red
skin colors. Overall, this benchmark reveals a multidimen-
sional hierarchy on the skin color preference of the Twitter
cropping algorithm, with light-red skin colors being favored
and dark-yellow skin colors being disfavored.

4.2.2 Face verification

Task. The face verification task compares a pair of facial
images to verify whether they belong to the same individ-
ual or not. In the context of this paper, we evaluate non-
commercial and publicly available facial recognition mod-
els. Note that, similar to the previous experiment, we focus
on exposing potential skin color biases rather than improv-
ing the selected face verification models.

Method. We adopt a standard benchmark in face verifi-
cation, where models are evaluated on their accuracy to

Model Overall
Independent groups Intersectional groups

Skin tone Skin hue
L+R L+Y D+R D+Y

Light Dark Red Yellow
ArcFace 95.20 95.52 94.39 95.36 95.07 96.12 94.82 92.55 96.77
FaceNet 94.40 94.55 94.04 94.89 93.81 95.61 93.30 93.17 95.16
Dlib 94.20 94.41 93.68 94.71 93.58 94.83 93.90 94.41 92.74

Table 3: Face verification on LFW. Individuals with a light
skin tone or a red skin hue are better identified by all face
verification models. Intersectional results confirm this pat-
tern for lighter tones, but differ for darker tones.

predict whether a pair of facial images corresponds to the
same individual. Following previous works (e.g., [18, 61]),
we evaluate on the Labeled Faces in the Wild (LFW)
dataset [33], which contains 1,000 test pairs (500 positives
and 500 negatives). We rely on the pre-processed version
of LFW available in scikit-learn [53], and on the DeepFace
repository1 to run ArcFace [18], FaceNet [61] and Dlib [40]
face recognition models.

Results. Table 3 presents the face verification results of
several methods on LFW, broken down by skin tone (light
vs. dark) and by skin hue (red vs. yellow). All models tend
to prefer light skin tones and red skin hues. Specifically,
both ArcFace and Dlib models are affected by skin tone dif-
ferences, as they better verify the identify of light-skinned
individuals. FaceNet has a different behaviour, it is more
robust to skin tone differences but as prone to skin hue dif-
ferences as Dlib. When looking at intersectional groups,
ArcFace and FaceNet perform lower for light and yellow
skin colors, as well as dark and red skin colors; Dlib has

1https://github.com/serengil/deepface
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L∗=67.29

h∗=42.72

L∗=45.51

h∗=68.98

L∗=74.19

h∗=59.07

(a) Original

L∗=61.92

h∗=46.76

L∗=44.43

h∗=70.19

L∗=72.15

h∗=55.96

(b) Reconstructed

L∗=71.74

h∗=45.76

L∗=58.73

h∗=68.82

L∗=77.43

h∗=55.88

(c) +light

L∗=48.20

h∗=46.69

L∗=23.78

h∗=73.71

L∗=62.40

h∗=56.84

(d) +dark

L∗=64.09

h∗=36.76

L∗=52.05

h∗=57.32

L∗=71.34

h∗=42.16

(e) +red

L∗=61.50

h∗=55.27

L∗=46.70

h∗=77.13

L∗=75.92

h∗=66.32

(f) +yellow

L∗=69.56

h∗=47.87

L∗=60.48

h∗=77.55

L∗=80.60

h∗=59.47

(g) +pale

L∗=54.91

h∗=43.54

L∗=27.55

h∗=61.59

L∗=61.40

h∗=51.70

(h) -pale

Figure 4: Skin color manipulation on CelebAMask-HQ. By moving along specific directions in the latent space of Style-
GAN3 (b), we manipulate the skin tone (c-d) or skin hue (e-f). When modifying the skin tone, this affects the perceptual
lightness L∗ and preserves the hue angle h∗ (and conversely when modifying the skin hue). This differs from the attribute
“pale” in CelebA, where a manipulation leads to changes in both L∗ and h∗ (g-h). As such, our proposal (c-f) is better for
measuring the multidimensional causal effect of skin color as we have an independent control over L∗ and h∗.

a decreased performance of dark and yellow skin colors.
Overall, this benchmark confirms that in well-established
methods for face verification, there exist performance dif-
ferences in both skin tones and skin hues, which reiterates
the importance of a multidimensional measure of skin color.

4.3. Skin color causal effect in models

Task. Given a facial image x, the objective is to predict
the presence or absence of an attribute a. In the context of
this paper, and following previous works [25, 57, 58], we
focus on commercial systems, as well as publicly available
models, to predict the gender and the presence of a smile.

Empowered with the ability to measure skin color quan-
titatively, we propose to manipulate an existing dataset by
changing its skin tone and skin hue. We are inspired by
the idea of transects [4] to reveal causal effects by manip-
ulating one particular property in the image at a time. In
the context of this paper, we are interested in manipulating
skin color and observing its causal effect on attribute pre-
diction performance. For example, we modify all images
in a dataset to have a lighter skin tone and compare its per-
formance with respect to the original dataset version. Any
discrepancy would then corresponds to the effect of a bias
towards light skin tone in the model.

Method. To build a benchmark for attribute prediction,
we propose to manipulate images with an image genera-
tion method. Specifically, we consider an encoder-decoder
scheme, which encodes an image x into a latent vector w,
and then decodes w to provide a reconstructed image x̂.
Modifying x then consists of moving in the latent space to-
wards specific and meaningful directions D, i.e., w +D.

Following Alahuf et al. [1], we rely on e4e [66] to en-
code images and on StyleGAN3 [37] to generate images.
Finding directions in the latent space relies on the Inter-
faceGAN [63] method. Concretely, we first train a classi-
fier on CelebAMask-HQ [43] to predict the skin tone (light
vs. dark) and skin hue (red vs. yellow). We then sam-
ple 500,000 images from StyleGAN3 randomly and use
the trained classifier to infer skin color labels. Two linear
SVMs, one for skin tone and one for skin hue, are finally
trained on the most confident positive and negative predic-
tions to produce decision boundaries to be used to compute
the latent directions D.

For benchmarking, we consider face recognition models
of commercial systems such as AWS Rekognition [3], Mi-
crosoft Azure [49] and Clarifai [14]. Additionally, we con-
sider the publicly available model trained on the FairFace
dataset [36]. Note that all models have been released af-
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Model
Reconstructed

Skin tone Skin hue
+light +dark +red +yellow

F M All F M All F M All F M All F M All
AWS 99.67 94.82 97.88 99.84 90.66 96.45 98.84 97.73 98.27 99.69 94.88 97.92 99.63 94.56 97.76
Azure 99.78 95.80 98.31 99.91 92.59 97.22 99.11 97.72 98.60 99.75 96.01 98.37 99.78 95.45 98.18
Clarifai 95.31 85.94 91.85 96.04 80.14 90.18 93.04 92.20 92.73 94.72 86.52 91.70 96.02 84.53 91.79
FairFace 99.49 92.91 97.06 99.77 87.56 95.27 98.21 96.57 97.61 99.52 93.10 96.97 99.42 92.77 97.16

(a) Gender classification accuracy, where F denotes female samples, M denotes male samples and All denotes all samples.

Model
Reconstructed

Skin tone Skin hue
+light +dark +red +yellow

S NS All S NS All S NS All S NS All S NS All
AWS 92.80 93.66 93.26 94.22 91.58 92.82 88.80 96.02 92.63 96.88 86.38 91.32 87.97 96.70 92.60
Azure 97.29 80.84 88.57 98.13 76.36 86.60 95.59 86.11 90.57 99.00 69.76 83.51 95.18 87.22 90.97

(b) Smile classification accuracy, where S denotes smiling samples, NS denotes non-smiling samples and All denotes all samples.

Table 4: Attribute prediction on CelebAMask-HQ, with disaggregated results for positive and negative samples. (a) In
gender classification, models classify individuals as more feminine when their skin tone becomes lighter. (b) In smile classi-
fication, models classify individuals as smiling when their skin tone becomes lighter or when their skin hue becomes redder.

ter the seminal Gender Shades paper [8], which highlighted
bias issues in commercial systems, and we use their latest
available version for attribute prediction. As a result, biases
we observe in this paper might be reduced compared to the
Gender Shades paper.

We focus on gender and smile classifications, as both at-
tributes can be predicted with the above systems and come
with ground truth labels annotated by a professional com-
pany in the CelebA dataset [44]. We follow previous litera-
ture initiated by the Gender Shades paper [8] and follow-up
works [35, 57, 58], which perform gender and smile classi-
fication to highlight ethical concerns. Such fairness bench-
marking promotes model transparency, which in turn cre-
ates accountability that could lead to the discontinuation of
harmful models [58]. As such, we stress that we do not
condone the gender classification task, as it causes harm to
non-binary and transgendered individuals by reducing gen-
der to a binary value [39], but rather report it to examine
additional ethical issues around this commonly used task in
the fairness literature.

We consider CelebAMask-HQ [43] for benchmarking.
Modifications of the images involve making the skin tone
lighter or darker, as well as making the skin hue more red
or yellow. Figure 4 depicts qualitative samples of the re-
constructed image with e4e [66] and StyleGAN3 [37], as
well as manipulations in the latent space with Interface-
GAN [63]. We observe that when skin tone changes, the
hue angle stays the same (4c-4d); and conversely when ma-
nipulating the hue angle (4e-4f). Modifying the image in
one direction does not affect the skin color score in the other
direction, making them orthogonal. The same does not hold
when selecting the “pale” attribute available in CelebA [44]
as a comparison. While the pale direction is effective at ma-
nipulating the skin tone, it actually also alters the skin hue

(4g-4h). In other words, both L∗ and h∗ shift when mod-
ifying the pale attribute in the images, which makes such
metric impractical for measuring the causal effect of skin
color as we cannot control its effect. Thus for benchmark-
ing, we modify all images in the CelebAMask-HQ datasets
by increasing and decreasing directions of L∗ and h∗, for a
total of 4×30, 000 images, and report the binary accuracy
of evaluated models on gender and smile classifications.

A current limitation of this setup lies in the image recon-
struction and manipulation methods, which struggle with
spurious correlations. This results in attributes not being
preserved, which can be depicted by an altered background
or eye gaze (see original vs. reconstructed in Figure 4a–4b).
As such, causal experiments in this section are dependent
on the quality of synthetic data, akin to related previous
works (e.g., [4, 59]). To avoid capturing performance dis-
crepancies due to imperfect reconstruction, we compare the
performance of manipulated images with the reconstructed
version rather than the original one in Table 4.

Results. Table 4 presents the attribute prediction perfor-
mance of several methods on CelebAMask-HQ. When mea-
suring the performance on gender classification in Table 4a,
we observe that manipulating the skin color to have a lighter
skin tone decreases the gender classification accuracy while
the skin hue does not seem to have a large effect. The skin
tone bias occurs because models are prone to classify peo-
ple as feminine when the tone is lighter. For example, in
the gender predictions of AWS for male samples, the accu-
racy drops from 94.82% to 90.66% while it stays relatively
the same for female samples. Interestingly, manipulating
the skin to be redder or darker in male sample results in a
increase in accuracy for all models. When measuring the
performance on smile classification in Table 4b, we observe
that manipulating the skin color to have a lighter skin tone
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or a redder skin hue decreases the accuracy in non-smiling
individuals as they tend to be predicted as smiling. For ex-
ample, the accuracy for non-smiling individuals with Azure
drops from 80.84% to 69.76% when the skin hue becomes
redder while it stays the same for smiling individuals. Con-
versely, a darker skin tone or a yellower skin hue decreases
the accuracy in smiling individuals. Overall, this bench-
mark reveals a bias towards a light skin tone when predict-
ing if the individual belongs to the female gender, and a bias
towards light or red skin hue when predicting the presence
of a smile, which illustrates the importance of a multidi-
mensional measure of skin color.

5. Conclusion

Measuring apparent skin color requires a multidimen-
sional score to capture its variation and provide a compre-
hensive representation of its constitutive complexity. In this
paper, we first focus on the perceptual lightness L∗, as a
measure of skin tone ranging from light to dark, and the
hue angle h∗, as a measure of skin hue ranging from red
to yellow. Our proposal serves as a simple, yet effective,
first step towards a multidimensional skin color score. Sec-
ond, we reveal biases related to skin color in image datasets
and computer vision models, previously invisible. Our mul-
tidimensional skin color scale offers a more representative
assessment to surface socially relevant biases due to skin
color effects in computer vision. While the paper considers
face-related tasks, assessing skin color could also be applied
to other human-centric tasks (e.g., pose estimation, segmen-
tation, etc). This would help to (i) enhance the diversity in
the data collection process, by encouraging specifications
to better represent skin color variability; and (ii) improve
the identification of dataset and model biases in fairness
benchmarking, by highlighting their limitations and leading
to fairness-aware training methods. Therefore, we recom-
mend the usage of a multidimensional skin color measure as
a fairness tool to assess the computer vision pipeline, from
data collection to model deployment.
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