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Abstract

Continual Learning (CL) is the constant development of
complex behaviors by building upon previously acquired
skills. Yet, current CL algorithms tend to incur class-level
forgetting as the label information is often quickly overwrit-
ten by new knowledge. This motivates attempts to mine
instance-level discrimination by resorting to recent self-
supervised learning (SSL) techniques. However, previous
works have pointed out that the self-supervised learning ob-
jective is essentially a trade-off between invariance to dis-
tortion and preserving sample information, which seriously
hinders the unleashing of instance-level discrimination.

In this work, we reformulate SSL from the information-
theoretic perspective by disentangling the goal of instance-
level discrimination, and tackle the trade-off to promote
compact representations with maximally preserved invari-
ance to distortion. On this basis, we develop a novel alter-
nate learning paradigm to enjoy the complementary mer-
its of instance-level and category-level supervision, which
yields improved robustness against forgetting and better
adaptation to each task. To verify the proposed method, we
conduct extensive experiments on four different benchmarks
using both class-incremental and task-incremental settings,
where the leap in performance and thorough ablation stud-
ies demonstrate the efficacy and efficiency of our modeling
strategy.

1. Introduction

Humans learn from visual inputs with everchanging sce-
narios, both rapidly and flexibly absorbing new knowledge
with constantly emerging concepts, and robustly accumulat-
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Figure 1: Illustration of the trade-off that is widely embod-
ied in recent self-supervised learning techniques. X denotes
the given sample, V A and ZA stand for the augmented view
and the corresponding embedding obtained from distortion
TA ∼ T and network fψ , respectively.

ing previously acquired experiences. Modeling such pow-
erful capability is the central target of continual learning
(CL), and would be of substantial utility in real-world com-
puter vision settings [44].

To this end, a variety of CL algorithms [7, 8, 19, 28, 40]
have been developed to get rid of the requirement of i.i.d
samples, and attempt to alleviate catastrophic forgetting
[23] when learning a continuum of training data. Broadly
speaking, studies on this topic can be categorized into three
schools: (i) rehearsal-based methods [4, 14, 33], which
store samples in raw or generative format, and replay them
to alleviate forgetting; (ii) regularization-based methods
[32, 36] that impose extra constraints to prediction, gradi-
ent, etc. to consolidate previously learned contents; (iii)
parameter isolation strategies [13, 22] that dedicate or mask
a part of the model parameters for the training of each task.

Albeit the differences, the typical solution is to utilize the
label, i.e., category-level supervision to acquire new knowl-
edge while accumulating previously learned contents. Al-
though this usually leads to fast adaptation, such strategy,
i.e., supervised learning (SL), is prone to incur class-level
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forgetting and quickly fades out with the label information
overwritten by new concepts [23, 34]. Moreover, they also
tend to produce overfitted and biased models when only a
small amount of datum (e.g., incremental tasks, or samples
stored in exemplar memory) is accessible for training.

The deficiencies mentioned above motivate a trend in CL
community to resort to instance-level discrimination to al-
leviate forgetting. For example, [21] directly applies SSL
constraints to a pre-trained model, [25] deploys a parallel
self-supervised branch in addition to a supervised partner.
Unfortunately, as indicated in BarlowTwins [41], the ob-
jective of SSL is essentially a trade-off between preserv-
ing sample information and being invariant to distortions,
but both of which are necessary and beneficial for continual
learning. As a consequence, continual learners equipped
with such strategy can barely achieve instance-level dis-
crimination, and are heavily dependent on an extra super-
vised partner. The above factors seriously limit the effec-
tiveness of the self-supervised continual learner and have
a detrimental effect on the performance of the entire CL
framework, especially in task-agnostic CL settings [38].

In this work, we tackle the trade-off by reformulating
the SSL objective from the information-theoretic perspec-
tive. More specifically, we first disentangle the principal tar-
get of instance-level discrimination into two terms, i.e., (i)
maximizing sample information without intensifying varia-
tion caused by distortion; (ii) promoting invariance to yield
compact representations. On this basis, our SSL strategy
exhibits superiority in preserving instance-level discrimina-
tion, and yields improved robustness against forgetting.

To enjoy both complementary merits of category-
level and instance-level supervision, we develop a novel
paradigm for continua learning. Concretely, it includes two
updates to the continual learner, i.e., an “inner-loop” which
alternately conducts SSL and SL, and an “outer-loop”
which uses a momentum update to accumulate knowledge
from previous tasks. In such cases, SSL serves as a pre-
training procedure and maintains stability, while SL is uti-
lized to generate task-specific parameters for plasticity.

To validate the proposed method, we conduct extensive
experiments on four benchmarks, including CIFAR-100
[16], Tiny-ImageNet [17], ImageNet-100 and ImageNet-1K
[5], and provide a comprehensive ablation on each compo-
nent to show the qualitative characteristics. Our contribu-
tions can be summarized as follows:

(i) We reformulate the SSL objective by disentangling it
into two terms, which promote invariance against distortion
while simultaneously producing compact representations.

(ii) We design a novel alternate paradigm for continual
learning, which fully exploits the complementary advan-
tages of both category-level and instance-level supervision,
demonstrating significant superiority in achieving both sta-
bility and plasticity.

(iii) The leap in performance compared with all competi-
tors on various benchmarks demonstrates its efficacy, while
substantial qualitative evidence verifies each of our designs.

2. Preliminary and Related Work
As analyzed in [21, 44], instance-level discriminative

learning is helpful to alleviate forgetting, which motivated
a series of continual learning works [20, 25, 39] to embody
self-supervised training techniques. In this section, we will
give analyses on instance-level supervision, and show the
major bottleneck of current self-supervised continual learn-
ers from an information-theoretic perspective.

2.1. Connections between SSL and CL

Given x and y as an input sample and its ground-truth
label, respectively. As analyzed in [25], supervised learner
aims to purify I(x; y)1 for fast adaptation to new knowl-
edge, where I(x; y) denotes the label information contained
in x, and is identical among the corresponding category. But
as a by-product, it would also incur class-level forgetting
when I(x; y) is overwritten by new concepts ŷ [34].

On the other hand, the consensus in SSL posits that good
representations should be associated with instance-level dis-
crimination, which encourages to produce representation z
to (i) be maximally informative with regard to the sample x
itself (i.e., maximizing I(x; z)); (ii) simultaneously main-
taining invariant to disturbance like image distortions (i.e.,
minimizing I(vA; z) with vA defined as the distorted view-
point). Notably, since the learning objective of instance-
level discrimination would not change with continual learn-
ing, SSL demonstrates better robustness against forgetting
[1, 21].

2.2. Trade-off in Current SSL Strategy

Given sample xi ∈ X , common practice [3, 41] in SSL
first generates two augmented viewpoints xAi and xBi , then
forwards both of them to a backbone network and obtains
embedding zAi and zBi . Afterward, constraints are imposed
to preserve instance-level discrimination for sample xi. For
example, the most widely adopted contrastive learning [3,
11] is formed to minimize d(zAi ,z

B
i )∑N

j=1 d(z
A
i ,zj)

with d(·, ·) and zj
defined as a similarity metric and embedding obtained from
xj(∀j 6= i), respectively.

However, as analyzed in [41], the commonly adopted
SSL strategy for continual learning is essentially a trade-
off between the desiderata of preserving information and
being invariant to distortions. More specifically, it can be
instantiated as (please see Fig. 1 for graphical illustration):

LSSL , I
(
V A;ZA

)︸ ︷︷ ︸
variation

−βI
(
ZA;X

)︸ ︷︷ ︸
sample info

. (1)

1Mutual information between x and y.

5597



In particular, larger β promotes invariance against the dis-
tortion but at the cost of losing more sample information,
while smaller β encourages the representation to be infor-
mative with respect to the sample X itself but may result in
being vulnerable to the distortion.

As a consequence, the continual learner with Eq. (1)
meets the trade-off challenge and cannot fully realize the
power of SSL when dealing with sequentially arrived tasks
[38]. Next, we introduce an improved SSL strategy that ef-
fectively maintains stability by tackling the trade-off in Eq.
(1). Moreover, a new alternate learning paradigm is devel-
oped to enjoy the complementary merits of both instance-
level and category-level supervision.

3. Method
3.1. Problem Setup

Continual learning is defined as training machine learn-
ing models on a sequence of tasks. Formally, consider the
sequence of tasks as D = {D0,D1, ...,DT }, where the t-th
task Dt = {(xti, yti)

nt
i=1} includes the input sample xti ∈ X

in total of nt and its ground-truth label yti ∈ Y . Note ∀i, j,
0 ≤ i, j ≤ T and i 6= j, Di ∩ Dj = ∅, i.e., there are
no overlaps between different tasks. In contrast to classical
training taxonomy where all training samples are accessi-
ble, a certain budget (e.g., 1,000 exemplars) is determined
for the memoryM such that a subset of observed data from
previous tasks can be stored by M = {(xti, yti)Ni=1}. For
the first task, the training data merely consists of D0. Af-
terward, the training set is formed as a merged sub-dataset
and includes data from the current task and the memory, i.e.,
Dt ∪M.

Our model Ω = {θ, φ, ψ} is composed of an encoder
parameterized by θ to produce observation v = f(x; θ)
from the input sample x, a classifier parameterized by φ
to make prediction ŷ = f(v;φ) based on the observation,
and a projector parameterized by ψ to generate projection
z = f(v;ψ) used for self-supervised learning. At time t,
our goal is to update Ωt from Ωt−1 based on Dt ∪M.

3.2. An Improved Self-Supervised Learning Strat-
egy for Continual Learning

To improve the robustness against forgetting, we next
present an improved SSL strategy to tackle the trade-off
in Eq. (1), which effectively preserves sample information
while being invariant to distortion.

Given an augmented view xA = TA(x) of x, our model
outputs the observation vA = f(xA; θ) and embedding
zA = f(vA;ψ) from the encoder and projector, respec-
tively. On this basis, we first show the following factor-
ization based on the chain rule [9]:

I(vA; zA) = I(zA; zB) + I(vA; zA|zB), (2)

X
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Figure 2: Graphical illustration of the self-supervised learn-
ing procedure, where T is a distribution of data augmenta-
tion, and X denotes the given sample.

where I(zA; zB) denotes the invariance when applying data
augmentation, i.e., sample information, and I(vA; zA|zB)
represents information irrelevant to the sample itself, i.e.,
variation caused by the distortion TA.

Recall Eq. (1), which intends to minimize I(vA; zA).
Eq. (2) suggests that reduction to I(vA; zA) jointly de-
creases I(zA; zB), which is necessary to unleash instance-
level discrimination. As a result, the min-max game makes
both targets entangled and incurs the trade-off. On the con-
trary, Eq. (2) formulates a disentangled factorization by di-
viding I(vA; zA) into two terms. Minimizing I(vA; zA|zB)
eliminates variation with the invariance unharmed, and
maximizing I(zA; zB) promotes the preservation of the
sample information without intensifying the variation.

To maximize the invariant information in zA, we first
utilize the information processing inequality to show:

I(zA; zB) < I(zA; vB). (3)

Here, zB is obtained by our projector head, and therefore
the inequality holds. Note Eq. (3) suggests an improved
solution for zA by reformulating the preservation of sample
information as maximizing I(zA; vB), which is consistent
with I(zA; zB) but promises more potential with the help
of our Theorem 2. However, optimization to mutual infor-
mation is notoriously difficult, especially when dealing with
high-dimensional variables like zA. To address this, we in-
troduce the following theory for promoting invariance.

Theorem 1. Given vA, vB as the observation of x from
different augmentations, I(zA; vB) is maximally preserved
when (vice versa for zB):

DKL

[
p(vB |vA)||p(vB |zA)

]
= 0

where DKL denotes the KL-divergence, and p(·|·) repre-
sents conditional distribution.

Please refer to the supplementary material for de-
tailed proof and implementation. Specifically, Theorem 1
promises the self-supervised learner to be capable of main-
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Figure 3: Training paradigm of our alternate learner, where self-supervised and supervised learning procedures are alternately
conducted, and the new parameters are optimized in a momentum manner.

taining stability by optimizing the following objective:

LsSSL = Ev∼fθ(x)Ez∼fψ(v)DKL

[
p(vB |vA)||p(vB |zA)

]
.

(4)

Next, to minimize the variation I(vA; zA|zB), we present
the following theory.

Theorem 2. Given vA, vB as the observation of x from
different augmentations, and zA, zB are the corresponding
representations, we have:

DJS

[
p(zA|vA)||p(zB |vB)

]
= 0⇒

{
I(vA; zA|zB) = 0,

I(vB ; zB |zA) = 0.

where DJS is the Jensen–Shannon divergence.

Please refer to the supplementary material for proof and
implementation details. Formally, Theorem 2 formulates
the following objective to eliminate the variation:

LcSSL = Ev∼fθ(x)Ez∼fψ(v)DJS

[
p(zA|vA)||p(zB |vB)

]
.

(5)

Notably, Eq. (5) is disentangled from the sample informa-
tion, which explicitly removes detriments to the invariance.
On this basis, zA is facilitated to mine more invariant clues
from vB without intensifying the variation, promising more
potential to optimize I(zA; vB) instead of I(zA; zB).

Combining with Eq. (4), the overall loss function of our
SSL strategy can be given as:

LSSL = αs · LsSSL + αc · LcSSL, (6)

which promotes instance discrimination while simultane-
ously encouraging compact embedding. Note αs and αc
define the weight and are fixed to 0.65 and 0.25 by default.

Discussion. The trade-off in common SSL approaches
inevitably compromises stability [44, 21, 25], resulting in
inferior performance [38]. By comparison, our strategy pro-
vides an analytical solution to keeping instance discrimina-
tion yet yields compact representations. On this basis, it
tackles the trade-off and demonstrates significant superior-
ity in alleviating forgetting.

Next, we present a novel alternate learning paradigm
to enjoy the complementary merits of instance-level and
category-level supervision.

3.3. Alternate Learner

As shown in Fig. 3, our strategy includes two updates to
the continual learner, i.e., an “inner-loop” which alternately
conducts SSL and SL to generate task-specific parameters,
and an “outer-loop” which uses a momentum update to ac-
cumulate knowledge from previous tasks.

Our motivations to design an alternate paradigm are two-
fold. First, as analyzed in Sec. 2.1, self-supervised learners
encourage instance-level discrimination and are more ro-
bust against forgetting, while supervised learners focus on
label information which can better and rapidly adapt to each
task. Thus the alternate training strategy can enjoy both
merits of SSL and SL. Second, the widely adopted empir-
ical evidence suggests SSL pre-training usually leads to a
better convergence for supervised learners, thus suggesting
an alternate training style would be favorable.

Inner Loop. For the first task (t = 0), the model se-
quentially conducts SSL and SL on D0 to obtain Ω0 and
Ω̂0, respectively. For the t-th task (t ≥ 1), where the train-
ing set is the union ofM0:t−1 (exemplars of previous tasks)
and Dt (accessible data from current task), samples are first
partitioned according to their task ID and generates a series
of subsets for training task-specific parameters (see M0,
M0:1, etc. in Fig. 3). Note the task identifier stored in
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the memory does not violate the class-incremental proto-
col, and for the t-th task by giving the parameters Ωold from
previous tasks the training procedure can be specified as:

• The learner Ωold starts from performing SSL onM0,
and obtains Ω0.

• Afterward, Ω0 is trained to minimize binary cross en-
tropy (i.e., LSL) with ground-truth label onM0 to generate
the task-specific parameters Ω̂0.

• Next, the learner starts from Ω0 and carries on SSL
withM0:1 to obtain Ω1.

• Similarly, we have Ω̂1 and Ω2 after performing SL and
SSL on Ω1 withM1 andM0:2, respectively.

• Such alternating training proceeds to the t-th task and
generates Ωt, Ω̂t usingM0:t−1 ∪ Dt and Dt respectively.

Please refer to Fig. 3 and Algorithm 1 (2nd-19th line) for
graphical and mathematical illustration of the inner loop.
Although each task requires the model to be trained from
Ω0, the training data corresponding to previous tasks only
comes from the memory, which stores a tiny part of sam-
ples, thus leads to acceptable complexity. Detailed analysis
are provided in Sec. 4.3.

Discussion. Compared with [21] which directly ap-
plies Eq. (1) to IL or [25] that rigidly combines SSL and
SL, our strategy fully exploits the advantages of both self-
supervised and supervised learners. Specifically, {Ωi}ti=0

accumulates knowledge throughout the incremental pro-
cedure to preserve instance discrimination and make the
model not biased towards any ofM0, ...,Mt−1,Dt. Mean-
while, by alternately training with the ground-truth label,
{Ω̂i}ti=0 generates a series of task-specific parameters with
better adaptation to each task.

Outer Loop. To incorporate knowledge from different
tasks, we next integrate the task-specific parameters gen-
erated during the inner loop to formulate a generic model.
Concretely, the gradient update of the outer loop is the com-
bination of

(
Ωbase − Ω̂i

)
for all {Ω̂i}ti=0, where Ωbase de-

note the clone of initial parameters Ωold. On this basis, the
meta-model is optimized towards the average direction of
all task-specific updates, and thus yields better generaliza-
tion [10, 24]. Formally, the outer loop update is formed as:

Ωnew ← Ωbase + ξ · 1

t+ 1

t∑
i=0

Ω̂i. (7)

ξ is a momentum-based controller [11, 24] defined as ξ =
exp( η

t+1 ), where η denotes a constant decay rate. Practi-
cally, the controller encourages fast adaption in the begin-
ning and gradually focuses on maintaining stability with the
increase of tasks. More illustrations for the outer loop could
be found in Fig. 3 and Algorithm 1.

Discussion. In essence, the outer loop serves as a
gradient-based regularization, and ensures the model to be
optimized towards the direction that is beneficial to all tasks.

Particularly, this coincides with the task-shared gradient
constraints in [32, 36]. Moreover, such a paradigm only
moves the feature space towards the optimal manifold of
each task, while encouraging the classifier to be as close as
possible to the corresponding task-specific optimal solution.

4. Experiments
In this section, we investigate our approach via compre-

hensive experiments and sensitivities on a variety of public
datasets and demonstrate its ability to facilitate both stabil-
ity and plasticity.

4.1. Experimental settings

Datasets. The CIFAR-100 [16] dataset is composed
of 100 categories and each of them includes 500 training
and 100 testing samples with the same size of 32 × 32.
ImageNet-1K [5] contains over 1.2 million images with
1000 different classes. ImageNet-100 [5, 28] is built by
selecting a subset of ImageNet-1K and contains 100 cate-
gories, each of which is associated with over 1000 samples
of 224× 224 size. TinyImageNet [17] is another variant of
ImageNet-1000 that consists of 200 classes with the image
size of 64 × 64. In the following experiments, we adopt
both class-incremental and task-incremental protocols, and
utilize 10/20-split (randomly and evenly splitting the bench-

Algorithm 1 Alternate Learner

Input: initial parameters Ωold, training dataM0:t−1 ∪Dt,
a distribution of data augmentations T

1: Ωbase ← Ωold
2: for i← 0 to t do . inner loop starts
3: Ωi ← Ωold if i = 0 else Ωi ← Ωi−1

4: D̂iSSL ←M0:i if i < t else D̂iSSL ←M0:i ∪ Dt
5: for e ∈ eSSL do . SSL procedure
6: sample X = {xj}Nj=1 ∼ D̂iSSL
7: obtain TA, TB ∼ T
8: XA ← TA(X), XB ← TB(X)

9: loss← 1
N

∑N
j=0 LSSL(fAθ (XA), fBθ (XB))

10: Ωi ← Optimizer(Ωi, loss)
11: end for
12: D̂iSL ←Mi if i < t else D̂iSL ← Dt

13: Ω̂i ← Ωi

14: while not convergent do . SL procedure
15: sample B = {(xij , yij)}Mj=1 ∼ D̂iSL
16: loss← 1

M

∑M
j=0 LSL(yij , Ω̂

i(xij))

17: Ω̂i ← Optimizer(Ω̂i, loss)
18: end while
19: end for
20: Ωnew ← Ωbase + ξ · 1t

∑t
i=1 Ω̂i . outer loop update

Output: Ωnew
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Table 1: Comparison on CIFAR-100, Image-100, and ImageNet-1K using class-incremental protocol, averaged across 3
trials. Average accuracy (avg. acc.) and last accuracy (last acc.) are adopted for evaluation, red and blue values denote the
best and secondary performance.

Method Venue CIFAR-100 ImageNet-100 10-split ImageNet-1000 10-split
acc. (10-split) acc. (20-split) avg. acc. last acc. avg. acc. last acc.

iCaRL [28] CVPR’17 65.27±1.02 61.20±0.83 - - - -
UCIR [12] CVPR’19 58.66±0.71 58.17±0.30 - - - -
BiC [12] CVPR’19 68.80±1.20 66.48±0.32 - - - -
PODNet [7] ECCV’20 63.19±1.16 74.33 - 64.12 -
AANet [19] CVPR’21 64.31±0.90 - 75.58±0.74 - 64.85±0.53 -
PASS [42] CVPR’21 61.84 58.09 61.80 - - -
ELI [15] CVPR’22 61.72 57.65 55.47 - - -
FOSTER [35] ECCV’22 72.90 70.65 77.75 - 68.34 -
DiversMem [33] CVPR’22 66.47 - 76.76 - - -
FCIL [6] CVPR’22 66.9 - 57.0 - - -
SSRE [43] CVPR’22 65.04 61.70 67.69 - - -
DER (w/o P) [40] CVPR’21 75.36±0.36 74.09±0.33 77.18 66.70 68.84 60.16
DyTox+ [8] CVPR’22 76.74±1.08 76.25±0.30 77.62 65.94 73.21 64.56
Ours - 79.16±0.31 77.58±0.29 80.11 69.63 73.25 65.07

marks with 10/20 disjoint task) for comparisons.
Evaluation Metrics. For all datasets, we follow [8, 21,

40] and adopt average accuracy and average forgetting for
comparison. Average accuracy (avg. acc.) is the average
test accuracy of all the tasks completed until the continual
learning of task t. Average forgetting (avg. fgt.) is the av-
erage performance decrease of each task between its max-
imum accuracy and accuracy at the completion of training:

1
T−1

∑T−1
i=1 maxt∈{1,...,T} (at,i − aT,i), where ai,t denotes

the test accuracy of task i after learning the t-th task.
Implementation Details. For all benchmarks, we fol-

low [40] and adopt ResNet-18 as our encoder, and imple-
ment the projector with multi-layer perceptrons of 2 hid-
den ReLU units of size 512 and 256 respectively with an
output of size 128 that produces embeddings zA and zB .
For training, all experiments are optimized by RAdam [18]
with an initial learning rate of 10−2 for 100 epochs, and
the self-supervised learning iteration eSSL is fixed to 15
for all tasks. The batch size of CIFAR-100 and ImageNet-
100 is set to 128, and it increases to 256 and 512 for Tiny-
ImageNet and ImageNet-1K, respectively. The learning rate
decays 5 times after training 30, 60, and 90 epochs. Follow-
ing [27, 28, 40], we keep a fixed memory size of 2, 000 ex-
emplars for all settings of CIFAR-100 and ImageNet-100,
4K for TinyImageNet, and 20K for ImageNet-1K. All the
models are trained on NVIDIA RTX A6000 GPUs.

4.2. Comparison with State-of-the-art Methods

Class-incremental Learning. Fig. 4 and Tab. 1 sum-
marize the results obtained by using class-incremental pro-
tocol. We can see that our method consistently outperforms
all competitors by a sizable margin at different incremen-
tal splits on all benchmarks. When continually learning 10
tasks, our method surpasses the transformer-based DyTox+
[8] by 2.42%, 2.49% on CIFAR-100 and ImageNet-100,
respectively. On the other hand, the margin evidently in-

Table 2: Comparison on CIFAR-100 and TinyImageNet (T-
IMN) utilizing the task-incremental setting, averaged across
3 trials. Red and blue indicate methods with the best and
secondary performance (average accuracy).

Methods Venue
CIFAR-100 T-IMN

10-split 20-split 20-split
AGEM [2] ICLR’19 40.38±0.30 42.39±0.42 28.38±0.15
ER [29] ICLR’19 63.39±1.37 - 45.50±0.61
ASER [30] AAAI’21 58.91±1.76 62.47±1.82 46.02±0.82
CTN [26] ICLR’21 - 67.65±0.43 -
CVT [37] ECCV’22 65.86±1.24 75.76±0.93 48.50±0.88
UCL [21] ICLR’22 68.42±1.17† 82.30±1.35 76.66±2.39
MetaSP [31] NeurIPS’22 78.27±0.89 - -
Ours - 80.04±1.69 86.45±1.41 82.81±1.95
† Results obtained by using the official implementation.

creases when compared with CNN-based state-of-the-arts,
e.g., outperforming FOSTER [35] and DER[40] by 4.41%,
4.91% on the large-scale ImageNet-1K. Similar conclu-
sions can be given with 20-split results, where our approach
achieves 3.49% gain compared with [40].

Task-incremental Learning. As shown in Tab. 2, the
results obtained in this task-incremental setting with our
approach constitute a leap in performance compared to all
other competitors. On the other hand, the results (compar-
ing our method and UCL [21] with all others) also sug-
gest that self-supervised training appears to be favorable for
learning sequential tasks compared with vanilla supervised
opponents, which compiles with our analysis in Sec. 2.1.

4.3. Ablation Study

In this section, we validate each specific design in our
approach via a thorough ablation study.

We first clarify various settings in Tab. 3. “SSL”
and “SL” denote the continual learner trained with self-
supervised and supervised strategies, respectively. “DN”,
i.e., DualNet strategy, denotes both SSL and SL are de-
ployed, and are incorporated as [25], where the self-
supervised learner only processes data from memory and
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(a) Accuracy (10-split) (b) Accuracy (20-split)

Figure 4: Classification accuracy on CIFAR-100, with 10
and 20 tasks for the left and right, respectively.

Table 3: Ablation study on CIFAR-100 (C100) and Tiny-
ImageNet (T-IMN) under task-incremental setting. “Acc”
and “Fgt” denote average accuracy and average forgetting,
respectively.

Method
Setting C100 10s C100 20s T-IMN 20s

Acc Fgt Acc Fgt Acc Fgt
SSL 68.4 5.08 82.30 4.71 76.66 3.54
SSL+ALout 68.9 4.71 82.41 4.49 76.91 3.40
SSL+SL 69.1 5.94 83.16 6.30 77.52 5.29
SSL+SL+DN 70.2 4.78 83.99 4.53 78.41 3.89
SSL+SL+ALin 75.8 4.57 84.67 4.48 80.93 3.84
SSL+SL+AL 77.5 4.09 85.21 4.39 81.43 3.68
SSL+SL+ÂL 80.0 3.56 86.45 4.21 82.81 3.31

the supervised learner handles data from both current and
previous tasks. “AL” and “ÂL” represent our alternate
learner trained with and without Eq. (4) and Eq. (5), re-
spectively. “ALout” and “ALin” denote only the outer or
inner loop is applied.

Ablation on SSL and SL. As shown in Tab. 3 (see the
first and third row), an extra supervised branch can bring
minor improvement to the original self-supervised learner
(e.g., 0.86% increment of avg. acc. on TinyImageNet), but
intensifies forgetting in the same time.

Ablation on the alternate learner. The 3rd and 4th row
in Tab. 3 indicate incorporating the self-supervised learner
with a supervised partner would be beneficial. Meanwhile,
it also suggests that a straightforward or rigid combination
results in a negligible promotion (e.g., 0.89% gain on Tiny-
ImageNet). By contrast, our alternate learner fully exploits
the advantage and complementarity of both SSL and SL,
hence significantly boosting the performance (compare the
3rd and 6th row) by 8.4% on CIFAR-100 (10-split).

To further provide qualitative evidences, we plot the
2D projection of the embedding space (obtained by using
CIFAR-100 with 20-split setting) on Fig. 5. As is illus-
trated, we have the following observations:

(1) From Ω1 to Ω2, the embedding space remains rela-
tively stable, and all clusters are compact after SSL. Though
there exists shifted classes, we notice that such phenomenon

Figure 5: 2D Projection of the embedding space by using t-
SNE. The results are obtained from our alternate learner by
learning 5 classes per task on CIFAR-100. Different colors
are used to represent different classes.

is quite common when encountering the first incremental
task (see 0→ 1 in Fig. 4).

(2) From Ω2 to Ω̂2, SL demonstrates better adaptation
to the new classes, and forms a clear boundary between
embeddings from current and previous tasks. More impor-
tantly, there are no apparent drifts to the old classes except
being separated from new ones. Such phenomenon sug-
gests incorporating SL sequentially with SSL can better fit
new task without compromising previously learned classes.

(3) From Ω2 to Ω3, classes from the same task gather
in a specific space, while embeddings from different tasks
are distributed to different areas. Meanwhile, all clusters are
distinct and concentrate, revealing the capability to preserve
instance discrimination and maintain stability.

(4) From Ω3 to Ω̂3, similar as (2), the embeddings from
current and previous tasks are clearly separated without
causing drastic shifts to the old classes.

Based on the above analysis, we conclude that, by al-
ternately conducting SSL and SL, our alternate learner can
effectively maintain both stability and plasticity.

Ablation on the inner and outer loop. Since “ALout”
applies only the outer loop and removes the entire inner
loop, it is essentially equivalent to updating the SSL branch
by incorporating parameters obtained from previous steps
(see blue markers {Ωi}ti=1 in Fig. 3) in a momentum fash-
ion. On the other hand, “ALin” represents only the inner
loop is adopted, i.e., Ωnew is obtained from Ω̂t.

By comparing the first two rows in Tab. 3, we observe
the direct application of the outer loop can alleviate for-
getting to some extent, and slightly improve the accuracy.
However, the improvement is negligible due to the limited
ability of a self-supervised learner to fit each task. On the
other hand, “ALin” demonstrates remarkable efficacy by
providing a dramatic gain of 7.4%@Acc on CIFAR-100 10-
split, while evidently reducing forgetting at the same time
(see the 5th and 1st row in Tab. 3). Moreover, compared
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Figure 6: (a): Evaluation of different dimensions of the embedding. (b): Analysis on the extra computation brought by our
alternate learner. (c): Performance of our method when adopting different self-supervised iteration eSSL. All experiments
are conducted on CIFAR-100 using 10-split protocol.

with the rigid combinations with an SL partner, “ALin”
fully exploits the advantages of both SSL and SL, which
constitutes a leap in performance, e.g., 6.7%, 5.6%@Acc
on CIFAR-100 10-split over the 3rd and 4th row in Tab. 3.

Ablation on our SSL strategies. In addition to the
above qualitative evidence, we can spot a considerable gain
provided by our SSL strategy to the performance (see the
last two rows in Tab. 3). More importantly, as illustrated in
Fig. 6a, we give the following analysis:

(1) Contrast to [21, 41], our strategy does not require
high-dimensional outputs to comply with the trade-off, and
evidently surpasses the opponents with much fewer output
channels (i.e., 128 vs. 2048), demonstrating superiority in
both efficacy and efficiency.

(2) By removing Eq. (4) and Eq. (5), the accuracy (see
blue markers in Fig. 6a) slowly grows with the rapidly in-
creased dimension. Such phenomenon is consistent with
previous analysis of the trade-off Eq. (1), i.e., conserving
invariant information at the cost of introducing overwhelm-
ing variation resulted from distortion.

(3) By comparison, our strategy performs optimally with
a rather compact embedding. We conjecture that extreme
reduction to the output dimension might result in insuffi-
ciency to preserve discriminative cues. On the other hand,
redundant channels appear to be more prone to introduce
task-irrelevant nuisances, and thus cause degradation.

Complexity Analysis. The computational cost brought
by our alternate learner is visualized in Fig. 6b. Sup-
pose the complexity of performing supervised and self-
supervised training on the exemplar memory is OSL(|M|)
and OSSL(|M|), respectively (vice versa for current data
Dt). The first task (t = 0) leads to OSL(|Dt|) more compu-
tation. The successive tasks (t ≥ 1) brought OSL(|M|) +
OSL(|M| ·

∑t
i=1

i
t ) more computations compared with the

first task. Apparently, it slowly grows with the total of tasks
at a decreasing and negligible rate, resulting in an average
growth of 1.04x and an average cost of 1.42x.

Self-supervised Iteration Analysis. Fig. 6c illustrates
the performance of our method when adopting different

self-supervised iterations (i.e., eSSL in Sec. 3.3). On this
basis, we have the following observation:

(1) A too-small eSSL (e.g., 5) can cause degradation to
the model, and results in even inferior performance com-
pared with the baseline. We conjecture this is because too
few SSL iterations may produce a poorly trained model.

(2) Appropriately increasing eSSL leads to improved
performance, and our method achieves the optimum with
an acceptable cost, i.e., eSSL = 15.

(3) A too-large eSSL also diminishes the performance,
but still evidently surpasses the baseline. We deduce a
plethora of SSL iterations may better maintain stability, but
at the cost of compromising plasticity.

Additional Experiments. In supplementary material,
we evaluate our approach with different memory sizes and
demonstrate the generalization to other vision tasks.

5. Conclusion

In this work, we reformulate SSL, and provide an ana-
lytical solution to achieving instance-level discrimination,
which addresses the trade-off widely embodied in current
SSL strategies, hence yielding improved robustness against
forgetting. On this basis, we design a novel alternate learn-
ing paradigm to enjoy the complementarity merits from
both instance-level and category-level supervision, exhibit-
ing significant superiority in maintaining stability and plas-
ticity. Extensive experiments and sensitivities provide sub-
stantial evidence for the efficacy of our method.
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