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Abstract

We propose ImGeoNet, a multi-view image-based 3D ob-
ject detection framework that models a 3D space by an
image-induced geometry-aware voxel representation. Un-
like previous methods which aggregate 2D features into 3D
voxels without considering geometry, ImGeoNet learns to
induce geometry from multi-view images to alleviate the
confusion arising from voxels of free space, and during
the inference phase, only images from multiple views are
required. Besides, a powerful pre-trained 2D feature ex-
tractor can be leveraged by our representation, leading to
a more robust performance. To evaluate the effectiveness
of ImGeoNet, we conduct quantitative and qualitative ex-
periments on three indoor datasets, namely ARKitScenes,
ScanNetV2, and ScanNet200. The results demonstrate that
ImGeoNet outperforms the current state-of-the-art multi-
view image-based method, ImVoxelNet, on all three datasets
in terms of detection accuracy. In addition, ImGeoNet
shows great data efficiency by achieving results compara-
ble to ImVoxelNet with 100 views while utilizing only 40
views. Furthermore, our studies indicate that our proposed
image-induced geometry-aware representation can enable
image-based methods to attain superior detection accuracy
than the seminal point cloud-based method, VoteNet, in two
practical scenarios: (1) scenarios where point clouds are
sparse and noisy, such as in ARKitScenes, and (2) scenar-
ios involve diverse object classes, particularly classes of
small objects, as in the case in ScanNet200. Project page:
https://ttaoretw.github.io/imgeonet.

*Work done in Amazon.
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Figure 1. Geometry-aware voxel representation. (Top part) In
contrast to prior works [56] (top left) that disregard the underly-
ing geometry, our proposed ImGeoNet (top center) successfully
preserves the geometric structure with respect to the ground truth
(top right) while effectively reducing the number of voxels in free
space. In the visualization of ImGeoNet, voxels with a surface
probability exceeding a predefined threshold are retained, other-
wise removed. The color of each voxel is determined by averaging
the colors of ground truth point clouds within the voxel. Missed
free-space voxels are marked as cyan. (Bottom part) We present
the detection results using bounding cubes that are color-coded
based on the predicted categories.

1. Introduction

Indoor 3D object detection has been an active area of
computer vision research for over a decade, owing to its
practical applications in robotics, augmented reality, and

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6996



mixed reality. In recent years, several studies [48, 16, 7,
85, 67, 34, 41, 14, 55] have demonstrated the effectiveness
of methods based on point clouds in conjunction with deep
learning techniques for indoor 3D object detection. How-
ever, the applicability of these methods is limited by their
reliance on data acquired from expensive 3D sensors such
as depth cameras, stereo cameras, or laser scanners. In con-
trast to point clouds, color images are more affordable and
can capture semantically rich information akin to human vi-
sion. Therefore, image-based indoor 3D object detection is
a promising research direction.

Image-based methods for indoor monocular 3D object
detection [18, 19, 45, 81] have demonstrated a satisfactory
level of accuracy. Nonetheless, monocular methods en-
counter challenges such as scale ambiguity, occlusion is-
sues, and limited field of view. These issues can be miti-
gated by providing multiple perspectives of the scene, lead-
ing to a more robust and accurate 3D object detection re-
sult. Previous works [44, 56] employ multi-view images to
construct a feature volume, which is subsequently utilized
for conducting 3D object detection [56]. Although these
methods have exhibited state-of-the-art performance, they
neglect the underlying geometric characteristics during the
feature volume construction.

In this work, we propose ImGeoNet, a multi-view 3D
object detection framework that models a 3D space by an
image-induced geometry-aware voxel representation. Im-
GeoNet learns to induce geometry from multi-view im-
ages to reduce the importance of voxels representing free
space, and during the inference phase, only images from
multiple views are required. Specifically, ImGeoNet pre-
dicts the likelihood of each voxel belonging to a surface,
and subsequently weighting the feature volume according
to this probability. The proposed approach exhibits a no-
table enhancement in detection performance owing to the
successful alleviation of confusion arising from voxels in
free space. Besides, a powerful pre-trained 2D feature ex-
tractor can be utilized by our representation, leading to more
robust performance.

We conduct quantitative and qualitative experiments
to evaluate the effectiveness of ImGeoNet on three in-
door datasets, namely ARKitScenes [2], ScanNetV2 [10],
and ScanNet200 [54]. The results demonstrate that Im-
GeoNet outperforms the state-of-the-art multi-view image-
based method, ImVoxelNet [56], by 3.8%, 12.5% and
17.4% in mAP@0.25 on ARKitScenes, ScanNetV2, and
ScanNet200, respectively. Additionally, ImGeoNet shows
great data efficiency by achieving results comparable to
ImVoxelNet with 100 views while utilizing only 40 input
views. Furthermore, the results of the experiments indi-
cate that our proposed image-induced geometry-aware rep-
resentation can enable image-based methods to attain supe-
rior detection accuracy than the seminal point cloud-based

method, VoteNet, in two practical scenarios: (1) scenarios
where point clouds are sparse and noisy, such as in ARK-
itScenes, and (2) scenarios involve diverse object classes,
particularly classes of small objects, as in the case in Scan-
Net200. Specifically, ImGeoNet outperforms VoteNet in
these scenarios by at least 12.6% in terms of mAP@0.25.

The contributions of our work can be summarized as fol-
lows:

• We introduce a multi-view object detection framework
that utilizes an image-induced geometry-aware voxel
representation to enhance image-based 3D object de-
tection substantially.

• Our method achieves state-of-the-art performance for
image-based 3D object detection on ARKitScenes,
ScanNetV2, and ScanNet200.

• Our studies demonstrate our proposed geometry-aware
representation enables image-based methods to attain
superior detection accuracy than the seminal point
cloud-based method, VoteNet, in practical scenarios
which consist of sparse and noisy point clouds or in-
volve diverse classes.

2. Related Work
2.1. Point Cloud Based Object Detection

Since point clouds provide reliable geometric structure
information, point cloud-based object detection has shown
great performance on both indoor and outdoor scenes.
There are two main branches, one is point-based methods
directly sampling based on the set abstract and the fea-
ture propagation [50, 49, 78, 58, 77, 60, 46, 48, 85] while
the other is grid-based methods based on grid representa-
tion [76, 91, 75, 25, 59, 12, 40, 14, 55].

As far as indoor object detection is concerned, the pre-
dominant methods [48, 7, 85, 67] are those relying on
deep Hough voting [48] to shift surface points to their
corresponding object centers. Transformer-based meth-
ods [41, 34] also deliver comparable results. Recently,
sparse fully-convolutional detection methods [14, 55] have
exhibited state-of-the-art performance with regard to both
accuracy and efficiency. Despite the fact that point cloud-
based methods perform well on object detection, they rely
on costly 3D sensors, which narrows down their use cases.

2.2. Image-based Object Detection

Monocular Object Detection. There has been consider-
able attention paid to the field of monocular object detec-
tion due to its practicality and cost-effectiveness. Two-
stage methods [62, 61, 51, 39, 35, 26] extend conventional
two-stage 2D detection frameworks to estimate 3D object
parameters. Single-stage anchor-based methods [3, 4, 24,
31, 36] and anchor-free methods [27, 33, 38, 42, 53, 70,
69, 83, 89, 90] predict object parameters in one stage.
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Figure 2. An illustration of ImGeoNet framework for 3D object detection. Given an arbitrary number of images, a 2D convolution
backbone (Conv2D) is applied to extract visual features from each image, and then a 3D voxel feature volume (V ) is constructed by back-
projecting (Eq. 2) and accumulating 2D features to the volume (Sec. 3.1). This feature volume is not ideal since the underlying geometry
of the scene is not considered. Hence, geometry shaping (Sec. 3.2) is applied to weight the original feature volume by the predicted surface
probabilities (S), which preserves the geometric structure and removes voxels of free space. Finally, the geometry-aware volume (Vg) is
passed to the multiscale 3D convolutional layers (M3DConv) and the detection head (Sec. 3.3).

To mitigate the depth information loss, some approaches
[52, 13, 47, 68, 74] use an additional backbone for depth
map feature extraction, and other approaches [37, 71, 72]
back-project depth images to 3D pseudo point clouds. The
improvements highlight the significance of depth informa-
tion in 3D object detection.

As for the indoor environment, some prior works [86,
87, 8, 29, 84] estimate the 3D bounding boxes based on ge-
ometry and 3D world priors. Other works [20, 22] utilize
the category-specific 3D shape for detecting objects. More
recently, several works [63, 19, 45, 81] view object detec-
tion as a component of scene understanding. However, they
face challenges associated with monocular images, includ-
ing scale ambiguity, occlusion problems and limited field of
view.

Multi-view Object Detection. To better capture scene in-
formation, methods that consider multiple views has gained
increasing attention in recent years. DETR-based meth-
ods [73, 32, 66] extend DETR [5] to 3D object detection.
Besides, prior research [17, 28] has demonstrated that the
bird-eye-view (BEV) representation is well-suited for ob-
ject detection in autonomous driving scenarios. Although
the aforementioned methods perform well in autonomous
driving scenarios, they may not be applicable to indoor
scenes, which often contain diverse object classes that are
not necessarily situated on the ground. ImVoxelNet [56], on
the other hand, has shown great performance in the domain
of indoor 3D object detection by performing on a 3D voxel-
based feature volume [44]. However, it does not properly
preserve the underlying geometry of input scenes during the
feature volume construction.

3. Approach

In this section, we first introduce the problem formu-
lation, provide an overview of our method ImGeoNet and

briefly explain the design concept. Next, we present the
main steps of ImGeoNet (Fig. 2) in detail, which include
feature volume construction (Sec. 3.1), geometry shaping
(Sec. 3.2) and object detection (Sec. 3.3).

Problem Formulation. Given an arbitrary number of input
images captured in the same scene {It} ⊆ RH×W×3 and
their corresponding intrinsic matrices {Kt} ⊆ R3×3 and
poses {Tt} ⊆ SE(3), the goal of 3D object detection is to
identify target objects by predicted categories and enclos-
ing bounding boxes {b} ⊆ R7. A bounding box is param-
eterized by (x, y, z, w, h, l, ϕ), where (x, y, z) is the center,
(w, h, l) is the size and ϕ is the yaw angle. We follow a
common assumption [48, 56] that bounding boxes are on
the ground plane, so only yaw angles are predicted.

Framework Overview. ImGeoNet aims to predict the 3D
bounding boxes and corresponding object categories for the
target objects present in the scene, using an arbitrary num-
ber of input images.

First of all, ImGeoNet constructs a 3D voxel feature vol-
ume by back-projecting and accumulating 2D features to
the volume as in [44, 56]. The 2D feature of a pixel is du-
plicated to voxels along the ray emitted from the camera
center through the pixel. The 3D voxel volume obtained in
this process is suboptimal, as it can lead to contamination of
voxels in free space and hinder the precision of detection.

To turn the constructed voxel volume into a geometry-
aware representation, ImGeoNet performs geometry shap-
ing. In this step, ImGeoNet weights each voxel feature ac-
cording to the probability of that voxel being located on an
object’s surface. Consequently, voxels situated in free space
will be assigned a lower weight, whereas those located on
object surfaces will retain a higher weight and incorporate
information from various viewpoints. This significantly im-
proves the accuracy of the predicted bounding box. During
training, we convert the ground-truth point clouds to surface
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voxels to supervise geometry shaping network. Finally, we
follow previous works [56, 65] to predict the bounding box
for each voxel and perform non-maximal suppression to re-
duce redundant predictions.

3.1. Feature Volume

Attaining precise 3D object detection requires a thor-
ough comprehension of the geometric structure inherent to
a given scene. The feature volume approaches have been
demonstrated to be highly effective in tasks that necessi-
tate an extensive understanding of scene geometry, such as
stereo matching [21, 79], surface reconstruction [11, 43,
80], and novel view synthesis [6, 64]. Consequently, we
adopt the feature volume representation to describe a scene,
and leverage a pre-trained 2D feature extractor for more ro-
bust performance.

We compute the feature volume V ∈ RHv×Wv×Dv×C

from a sequence of images It with known camera intrinsics
Kt and poses Tt. Here Hv , Wv and Dv denote the side
lengths of the volume in terms of the voxel size unit, while
C represents the feature dimension. We first extract 2D fea-
tures by 2D convolutional backbone from input images

Ft = Backbone2D(It), (1)

where Ft ∈ RH×W×C and strides in convolution layers
are ignored for simplicity. Next, the 2D features are back-
projected to the volume by

Vt[x, y, z, :] = Ft[u, v, :], (2)

where [:] is the slice operator and the pixel coordinates
(u, v) are computed from the voxel centers (x, y, z) by the
pinhole camera model as follows:

uv
1

 =
1

λ
KtΠ0Tt


x
y
z
1

 , where Π0 =

1 0 0 0
0 1 0 0
0 0 1 0

 ,

(3)
and λ is the distance along optical axis between the voxel
center and the camera center. In practice, we scan over the
voxel centers and retrieve the corresponding back-projected
2D features. If any voxels happen to be situated outside the
view frustum, their features are assigned a value of zero.
Finally, the back-projected volumes Vt computed from dif-
ferent views in Eq. 2 are averaged to construct the feature
volume V by

V = (
1∑
t Mt

)⊙ (
∑
t

Vt ⊙Mt), (4)

where ⊙ is the Hadamard product, and Mt is a binary mask
indicating whether the voxels are in the view frustum of It.

It is worth noting that the feature volume obtained
through the mentioned construction process lacks informa-
tion on the geometric structure of the scene. Specifically,
each voxel along a camera ray is assigned the same fea-
ture value as its corresponding pixel, regardless of whether
the voxel is located on the closest surface along that ray.
Therefore, to properly incorporate the scene geometry, we
introduce Geometry Shaping.

3.2. Geometry Shaping

One significant shortcoming of the derived feature vol-
ume from Sec. 3.1 is its geometry-unaware nature. In other
words, even the voxels that are not on any object surface
are still assigned values. The situation worsens when the
voxels are in free space, where the detection module can be
perturbed and generate false predictions. To address this,
we propose geometry shaping, which leverages the multi-
view image input to induce geometry structure and remove
noisy voxels in free space by down-weighting unoccupied
voxels while preserving voxels on surfaces.

Since appearance variance reveals certain geometric in-
formation [79, 6], we also take the feature variance into con-
sideration. To be specific, we concatenate feature variance
(refer to Eq. 8 in Sec. 4) with the feature volume to obtain
V

′
. Subsequently, a geometry shaping volume S is gener-

ated via the geometry shaping network g(·) by

S = g(V
′
), (5)

where S shares the same grid size as the combined feature
volume V

′
, and each element of S is the likelihood of the

voxel being on an object surface. Note that g(·) employs the
same feature volume (prior to geometry shaping) as the fi-
nal 3D object detector, resulting in less overhead compared
to computing Multi-View Stereo (MVS) from raw images.
Afterward, the geometry-aware feature volume is derived
by weighting the feature volume as follows:

Vg = S ⊙ V . (6)

Since the weights will be low in free space, the resulting
geometry-aware feature volume mainly remains values on
object surfaces, which could better describe the underlying
geometry. As a result, the geometry shaping reduces the
burden of the final detection to a great extent and improves
precision.

In our implementation, we convert the RGB-D frames to
point clouds and consider the voxels that contain at least one
point as surface voxels. Besides, for each camera ray, we
also consider locations neighboring surface voxels within a
margin of ϵ as positive. Subsequently, we proceed to super-
vise the geometry shaping network through surface voxel
prediction using focal loss [30] in an end-to-end way. It is
worth noting that depth sensory data is solely employed to
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supervise the geometry shaping network during the training
phase, while only images from multiple views are utilized
during the inference phase.

3.3. Object Detection

Even though the obtained feature volume in Eq. 6 is
geometry-aware, it may still have limitations in capturing
objects of varying scales. Therefore, we transform the
geometry-aware volume by multiscale dense 3D convolu-
tion layers:

V
(i)
h = M3DConv(i)(Vg), (7)

where i ∈ {0, 1, ..., L−1} is the scale index, and the volume
of different scales will have different grid sizes.

As regards the detection head, we follow ImVoxel-
Net [56] to extend the single-stage anchor-free 2D detec-
tors [65, 82] to 3D volume. All locations from L scales
are considered, and for each location, a class probability,
center-ness, and a 3D bounding box are predicted. How-
ever, only a few locations are selected as positive samples
for supervision during training: 1) Locations not in any tar-
get bounding box are removed. 2) For each target object,
only locations from the most fitting scale are kept. Specifi-
cally, we choose the smallest scale that contains more than
M points. 3) For each target object, we only keep the top-k
locations close to the bounding box center. 4) If a point
corresponds to multiple targets, we choose the one with
minimal volume. Finally, we use focal loss [30] for cate-
gory classification, cross-entropy loss for center-ness esti-
mation [65], and rotated 3D IoU loss [88] for bounding box
prediction.

4. Implementation

Geometry Shaping Network. As illustrated in Fig. 3, our
geometry shaping network has an encoder-decoder architec-
ture with residual connections. Specifically, each encoder
comprises of three 3D convolutional layers, while each de-
coder comprises of one transposed 3D convolutional layer
and one 3D convolutional layer. We set the kernel sizes
of all the 3D convolutional layers to 3, and set the kernel
size of the transposed 3D convolutional layer to 2. Follow-
ing each convolutional and transposed convolutional layer,
we apply a batch normalization and ReLU activation. Dur-
ing encoding, the spatial sizes are reduced by a factor of 2,
while the channel size is increased by a factor of 2. In con-
trast, during decoding, the spatial sizes are increased, and
the channel size is reduced. Finally, we adopt a linear pro-
jection layer to reduce the channel size to 1, and we obtain
the final output by passing the reduced tensor to a sigmoid
function.
Framework Architecture. A ResNet50 [15] pre-trained
on ImageNet [57] is used as the 2D feature extractor. The
surface voxel margin ϵ is set to 4 voxels. The M3DConv

Linear & Sigmoid

!,:voxel-based 
feature volume

": geometry 
shaping weight

E

E D

D

Encoder (Conv3D)

Residual connection

Decoder (Conv3DT )

E

D

Figure 3. The network architecture of geometry shaping net-
work. It is based on an encoder-decoder architecture with residual
connections, followed by a linear projection layer and a sigmoid
function.

network is the same as the 3D convolutional network before
the detection head in ImVoxelNet [56]. As for the detection
head, we follow the same previous work [56] and set the
number of scales L to 3, the minimum fitting points M to
27 and k in the top-k selection to 18. It is worth mentioning
that ImGeoNet is trained in an end-to-end way. Specifi-
cally, the geometry shaping network and all the remaining
networks are jointly optimized for both surface voxel pre-
diction and 3D object detection.
Feature Variance. We compute the feature variance across
different views for each voxel as follows:

Vvar =

(
1∑
t Mt

⊙

(∑
t

(Vt)
2 ⊙Mt

))
− (Vmean)

2, (8)

where Vmean is computed via Eq. 4 in the paper and we uti-
lize the fact that Var(X) = E[X2]−E[X]2. Subsequently,
our geometry shaping network utilizes the concatenated val-
ues of Vmean and Vvar as input for predicting surface voxels.
Loss Configuration. Both the surface voxel prediction
loss and category classification loss are focal losses with
a gamma value of 2 and an alpha value of 0.25. The center-
ness estimation loss is a cross-entropy loss, and the bound-
ing box prediction loss is a rotated 3D IoU loss. All the loss
weights are set to 1, except for the surface voxel prediction
loss, which is assigned a weight of 10. It is worth mention-
ing that we employed identical loss hyperparameters across
all experiments.

5. Experiment
We describe the datasets, evaluation metric, and imple-

mentation details in Sec. 5.1. Then, we present and analyze
the results of our experiments in Sec. 5.2.

5.1. Setup

Dataset. Our approach is evaluated on three indoor multi-
view datasets, each serving a distinct purpose. Firstly, to
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examine the feasibility of the proposed method in a realis-
tic scenario, we use ARKitScenes [2] which contains sensor
data captured by popular mobile devices and is the most re-
alistic of the three datasets. Secondly, ScanNetV2 [10] is
used as it is the most widely adopted benchmark for com-
paring against other state-of-the-art methods. Lastly, to in-
vestigate the model performance in a setting with diverse
classes of varying sizes and properties, ScanNet200 [54] is
adopted since it comprises the largest number of object cat-
egories.

ARKitScenes [2] is a large real-world RGB-D video
dataset captured with handheld 2020 Apple iPad Pros. It
comprises 5,047 captures of 1,661 distinct scenes, and we
follow the official split to separate it into 4,498 and 549 cap-
tures for training and testing, respectively. The image res-
olution is 192×256. We uniformly sample the views for
each scene based on the frame indices. The number of sam-
pled views for training is 50 and 200 for the image-based
methods and point cloud-based methods, respectively. To
acquire the point clouds, we back-project the sampled views
to 3D space based on the supplied low-resolution depth
maps. We filter the points through voxel downsampling
where the voxel size is set to 0.02 meters. Finally, it is
noteworthy that the quality of point clouds in ARKitScenes
is inferior to that of ScanNetV2 since the depth maps in
ARKitScenes are low-resolution while the point clouds in
ScanNetV2 are high-resolution and derived from the 3D re-
constructed meshes.

ScanNetV2 [10] is a richly annotated RGB-D video
dataset of 3D reconstructed meshes of indoor scenes. It
contains 2.5 million views in 1,513 room-level scenes and
there are 18 classes available for classification. The resolu-
tion of the images is 968×1296. We follow the public train-
test split originally proposed by ScanNet, which allocates
1,201 scenes for training and 312 scenes for testing. Since
the standard release does not provide oriented bounding box
annotation, we follow [16, 48] to create axis-aligned bound-
ing boxes according to the semantic labels of mesh vertices.
To train and evaluate the image-based methods, we evenly
sample 50 views for each scene based on the frame indices
and resize the images to 480 × 640.

ScanNet200 [54] extends ScanNetV2 to address a
larger-vocabulary setting and provides 200 object categories
for classification. The categories are divided into head,
common, and tail groups, consisting of 66, 68, and 66
classes, respectively, based on the number of labeled sur-
face points. Since smaller objects tend to have fewer surface
points than larger ones, the average object size decreases
from the head to the tail group (refer to Appendix. A.1).
We adopt the same train-test split as the one employed in
ScanNet, and only objects of categories existing in both the
training and the test sets are considered as in the official
benchmark script.

Evaluation Metric. We adopt the mean average precision
(mAP) to evaluate the detection accuracy. Specifically, we
use mAP@0.25 and mAP@0.5 where the numbers indicate
the 3D intersection over union (IoU) thresholds. To explain,
the threshold is the minimum IoU to determine a positive
match, which means mAP@0.5 is stricter on the evaluation
of object location than mAP@0.25.

Baselines. We compare ImGeoNet with ImVoxelNet [56],
current state-of-the-art multi-view image-based 3D detec-
tor, and VoteNet [48], a seminal point cloud-based method.
To reproduce ImVoxelNet, we use the code provided by the
original authors [48]. As for VoteNet, we reproduce it with
a common codebase [9] and implement the same hyperpa-
rameters and model architecture as the original work [48].

Optimization. The Adam optimizer [23] with a learning
rate 0.0001 is used for training. The weight decay factor is
0.0001. Gradient clipping is also used and the max norm
is set to 35. For ScanNetV2 [10] and ARKitScenes [2], the
learning rate is reduced by ten times before the 9th and 12th

epoch. For ScanNet200 [54], the learning rate is reduced by
ten times before the 9th and 30th epoch. The total numbers
of epochs are 12, 12 and 30 for ScanNetV2, ARKitScenes,
and ScanNet200, respectively.

Voxel Volume. The feature volume is 6.4 × 6.4 × 2.56
meters. The voxel size is 0.16 meters for ScanNetV2 and
ARKitScenes, but 0.08 meters for ScanNet200 for detecting
small objects. For ScanNetV2 and ScanNet200, we shift the
volume origin to the coordinate origin, whereas for ARK-
itScenes, we relocate it to the center of the sampled poses.

Table 1. 3D object detection results on ARKitScenes are pre-
sented to demonstrate the practicability of ImGeoNet in real-world
scenarios. We also include the result (a-4) reported by [2] for ref-
erence. The notations RGB and PC signify the use of color images
and point clouds, respectively, during the inference phase.

Input Performance (mAP)

Method RGB PC @0.25 @0.5

(a-1) ImGeoNet (ours) ✓ - 60.2 43.4
(a-2) ImVoxelNet [56] ✓ - 58.0 38.8

(a-3) VoteNet [48] - ✓ 53.3 38.5
(a-4) VoteNet (from [2]) - ✓ 35.8 -

5.2. Results

Realistic Mobile Capture. First of all, we conduct an ex-
periment on ARKitScenes which is captured by popular
mobile devices. The results are presented in Table. 1 and
Fig. 4. In the present scenario, wherein a test set compris-
ing 50 evenly sampled views, ImGeoNet (a-1) attains the
best performance in mAP@0.25 and mAP@0.5. Through
a comparison of ImGeoNet (a-1) with the current state-of-
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Table 2. 3D object detection results on ScanNetV2. In this
benchmark, ImGeoNet outperforms the SOTA multi-view image-
based method, ImVoxelNet, by 12.5% and 19.3% in mAP@0.25
and mAP@0.5, respectively. In addition, the performance of Im-
GeoNet with 50 views is not far from that of VoteNet, even though
VoteNet leverages reconstructed meshes derived from typically
more than 1000 viewpoints to obtain high-quality point clouds for
its operations.

Input Performance (mAP)

Method RGB PC @0.25 @0.5

(s-1) ImGeoNet (ours) ✓ - 54.8 28.4
(s-2) ImVoxelNet [56] ✓ - 48.7 23.8

(s-3) 3D-SIS [16] - ✓ 25.4 14.6
(s-4) 3D-SIS [16] ✓ ✓ 40.2 22.5
(s-5) VoteNet [48] - ✓ 58.6 33.5

Table 3. 3D object detection results on ScanNet200 are pre-
sented to examine the robustness of ImGeoNet for diverse classes.
As in [54], categories are divided into head, common and tail
groups where the average object sizes decrease from the head to
the tail group.

Performance (mAP@0.25)

Method Input Total Head Comm Tail

(d-1) ImGeoNet (ours) RGB 22.3 38.1 17.3 9.7
(d-2) ImVoxelNet [56] RGB 19.0 34.1 14.0 7.7

(d-3) VoteNet [48] PC 19.8 38.5 16.0 2.9

the-art multi-view image-based method, ImVoxelnet (a-2),
we demonstrate that the geometry-aware representation uti-
lized in ImGeoNet is effective in a practical mobile envi-
ronment, where the depth maps used for training the ge-
ometry shaping network are not entirely accurate. Addi-
tionally, both image-based approaches (a-1 and a-2) exhibit
superior performance compared to the seminal point cloud-
based method, VoteNet (a-3). This highlights the practical
preference for the use of images in real-world scenarios.

Comparison on ScanNetV2. Secondly, we compare our
method with state-of-the-art methods on ScanNetV2, a
well-known object detection benchmark for indoor scenes.
The results are presented in Table. 2 and Fig. 4. It can
be observed from the results that ImGeoNet (s-1) exhibits
superior performance in comparison to ImVoxelNet (s-2),
the current state-of-the-art multi-view image-based method.
Specifically, ImGeoNet outperforms ImVoxelNet by 12.5%
and 19.3% in mAP@0.25 and mAP@0.5, respectively. The
efficacy of our proposed geometry-aware representation
is empirically validated through the significant improve-
ment in mAP achieved by ImGeoNet. On the other hand,
ImGeoNet (s-1) outperforms the point cloud-based base-
line 3D-SIS (s-3) and its variant incorporating image data

(s-4). Furthermore, ImGeoNet successfully reduces the
performance gap between the seminal point cloud-based
method (s-5) and image-based methods to a significant ex-
tent. These are notable considering that point cloud-based
methods rely on 3D reconstructed meshes that are obtained
from a multitude of viewpoints (typically 1000+) to acquire
high-quality point clouds for their operations, while Im-
GeoNet only utilizes 50 views.

Diverse Classes. To inspect the capability of the proposed
method for a diverse range of object classes, we conduct an
analysis on ScanNet200, and the results are presented in Ta-
ble. 3 and Fig. 4. In this scenario, ImGeoNet (d-1) attains
superior performance over ImVoxelNet (d-2) across all cate-
gory groups, reaffirming the effectiveness of our geometry-
aware volume representation in scenes containing objects
of diverse classes. Furthermore, ImGeoNet (d-1) exhibits
superior performance over VoteNet (d-3), particularly for
the common and tail category groups, which are charac-
terized by smaller average object sizes in contrast to the
head category group (refer to Appendix. A.1). This achieve-
ment is remarkable, given that VoteNet utilizes vertices
from high-quality 3D reconstructed meshes obtained from a
great number of views (typically 1000+), while ImGeoNet
directly takes images from 50 viewpoints as input. We con-
jecture there are two main reasons for it: (1) The downsam-
pling technique employed in the point cloud-based baseline
has a tendency to exclude small instances [77], thereby im-
peding the detection performance. (2) ImGeoNet primar-
ily relies on the geometry-aware representation induced by
images, which effectively leverages the visual features ex-
tracted from a 2D backbone pre-trained on examples con-
taining objects of various sizes. As a result, ImGeoNet ex-
hibits greater robustness for small objects.

Number of Views. In order to investigate the impact of
varying numbers of views, we utilize different numbers of
views in the construction of feature volume for image-based
methods, as well as in the generation of point clouds for
point cloud-based methods. We choose ARKitScenes as
the dataset as its captured scenes are more representative
of real-world scenarios. The results are presented in Ta-
ble. 4. First of all, we can observe that ImGeoNet (v-1) with
only 30 views outperforms VoteNet (v-3) with 100 views.
Secondly, with only 40 views, the proposed geometry shap-
ing enables ImGeoNet (v-1) to achieve comparable perfor-
mance to ImVoxelNet (v-2) with 100 views. The effective-
ness of ImGeoNet in utilizing data is particularly valuable
in scenarios where only a limited number of views can be
obtained.

Model Speed. Regarding inference time, we present a
comparison between ImGeoNet and ImVoxelNet on ARK-
itScenes in Table. 5. The experiment is run by a single
Nvidia 3090 GPU and the data loading time is ignored. It
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Table 4. 3D object detection results for varying numbers of views on ARKitScenes. ImGeoNet shows great data efficiency by achieving
results comparable to ImVoxelNet with 100 views while utilizing only 40 input views.

Input Performance (mAP@0.25 / mAP@0.5)

Method RGB PC 10 views 20 views 30 views 40 views 50 views 75 views 100 views

(v-1) ImGeoNet (ours) ✓ - 39.0 / 21.9 53.1 / 34.3 57.1 / 39.2 59.5 / 42.7 60.2 / 43.4 61.8 / 45.0 62.4 / 45.7
(v-2) ImVoxelNet [56] ✓ - 36.2 / 19.6 50.5 / 30.6 54.6 / 35.2 57.4 / 37.9 58.0 / 38.8 58.8 / 40.5 59.7 / 42.0

(v-3) VoteNet [48] - ✓ 30.2 / 20.8 45.9 / 31.5 50.2 / 34.0 51.1 / 36.8 53.3 / 38.5 53.6 / 38.3 53.9 / 39.0

Table 5. Inference time for different numbers of views. The ex-
periment is run on ARKitScenes with a single Nvidia 3090 GPU.
The data loading time is ignored and the inference times are aver-
aged over all test scenes.

Inference Time (ms)

20 40 50 100
Method views views views views

(t-1) ImGeoNet (ours) 139.0 166.1 181.8 245.8
(t-2) ImVoxelNet [56] 113.1 140.0 155.9 219.7

Table 6. Effectiveness of the geometry shaping. We conduct this
study on ScanNetV2. Despite that (g-3) ImVoxelNet with MaG-
Net, a SOTA multi-view depth estimator, takes 5 times more input
views, has 42% larger model size and 15.7 times longer runtime,
ImGeoNet has better detection results. The model size and the in-
ference time of ImGeoNet on ScanNetV2 are 485.6 MB and 489.9
ms, respectively.

Relative mAP

Method Size Runtime @0.25 @0.5

(g-1) ImGeoNet (ours) 1.0 1.0 54.8 28.4

(g-2) ImVoxelNet [56] 0.82 0.85 48.7 23.8
(g-3) w/ MaGNet [1] 1.42 15.72 53.8 28.2
(g-4) w/ GT depth 0.82 0.89 58.8 33.4

can be observed that ImGeoNet (t-1) is slightly slower than
ImVoxelNet (t-2) when using the same number of views.
However, as previously mentioned, the performance of Im-
GeoNet (v-1) with only 40 views is comparable to that of
ImVoxelNet (v-2) with 100 views. Notably, our method (t-
1) achieves this level of performance with a significantly
shorter inference time than ImVoxelNet (t-2) by 53.6 ms (a
24% relative speed-up). This finding highlights the effec-
tiveness of the proposed geometry-aware representation, as
it demonstrates that ImGeoNet can achieve a large perfor-
mance improvement while only incurring a slight increase
in running time.

Effectiveness of Geometry Shaping Network. To high-
light the light overhead of the proposed Geometry Shaping
Network (g(·) in Eq. 5), we extend ImVoxelNet with esti-
mated depth (g-3) generated by MaGNet [1] (referred to as

cascade baseline), the state-of-the-art multi-view depth esti-
mator, and present the results on ScanNetV2 in Table. 6. Al-
though both ImGeoNet (g-1) and the cascade baseline (g-3)
achieved similar levels of performance, the cascade baseline
requires more resources. Specifically, MaGNet [1] requires
four close vicinity views to produce a reliable depth map,
resulting in five times more input views than ImGeoNet.
Additionally, the cascade baseline has a total model size that
is 42% larger than ImGeoNet. Furthermore, since MaGNet
does not share features with ImVoxelNet, the inference time
of the cascade baseline is 15.7 times longer than ImGeoNet.

On the other hand, ImVoxelNet with ground-truth depth
(g-4) can be regarded as the upper limit. A sizable gap
between ImGeoNet (g-1) and the upper bound (g-4) can
be observed, which indicates that there is room for im-
proving Geometry Shaping Network in the future. Fi-
nally, we conduct a similar experiment on ARKitScenes,
which shows the performance of the upper limit is 62.2 and
46.4 in mAP@0.25 and mAP@0.5, respectively. The per-
formance gaps between the upper limit and ImGeoNet in
ARKitScenes (2.0/3.0 for mAP@0.25/@0.5) is smaller than
those (4.0/5.0 for mAP@0.25/@0.5) in ScanNetV2. This
observation serves to corroborate the effectiveness of the
Geometry Shaping Network in real-world scenarios where
the point clouds exhibit sparsity and noise.

6. Conclusion
In this work, we have introduced ImGeoNet, a 3D object

detection framework that utilizes a geometry-aware voxel
representation induced by multi-view images to model a
3D space. Since ImGeoNet learns to predict geometry from
multi-view images, a pre-trained 2D feature extractor can be
leveraged and only images from multiple views are required
during the inference phase. Through in-depth quantitative
and qualitative experiments, we have demonstrated the ef-
fectiveness of our proposed geometry-aware representation
by (1) achieving state-of-the-art results in image-based in-
door 3D object detection, (2) showing great data efficiency
by achieving great accuracy with fewer views, and (3) en-
abling image-based methods to attain superior detection ac-
curacy than a seminal point cloud-based approach in practi-
cal scenarios with sparse and noisy point clouds or diverse
object classes.
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Figure 4. Qualitative results of 3D object detection on ScanNetV2, ScanNet200 and ARKitScenes. For ScanNet200, only objects
in common or tail groups are presented. ImGeoNet outperforms the multi-view image-based SOTA method, ImVoxelNet, on all three
datasets. Compared to the seminal point cloud-based method, VoteNet, ImGeoNet has superior results on small objects such as laptops and
shoes (see the red circles in ScanNet200). Besides, in a more realistic mobile scenario (ARKitScenes), ImGeoNet yields the most precise
outcome.
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Manuel López-Antequera, and Peter Kontschieder. Disen-
tangling monocular 3d object detection. In ICCV, 2019. 2

[63] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
CVPR, 2015. 3

[64] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In CVPR, 2022. 4

[65] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: A
simple and strong anchor-free object detector. IEEE TPAMI,
2020. 4, 5

[66] Ching-Yu Tseng, Yi-Rong Chen, Hsin-Ying Lee, Tsung-Han
Wu, Wen-Chin Chen, and Winston Hsu. Crossdtr: Cross-
view and depth-guided transformers for 3d object detection.
arXiv preprint arXiv:2209.13507, 2022. 3

[67] Haiyang Wang, Shaoshuai Shi, Ze Yang, Rongyao Fang,
Qi Qian, Hongsheng Li, Bernt Schiele, and Liwei Wang.
Rbgnet: Ray-based grouping for 3d object detection. In
CVPR, 2022. 2

[68] Li Wang, Liang Du, Xiaoqing Ye, Yanwei Fu, Guodong
Guo, Xiangyang Xue, Jianfeng Feng, and Li Zhang. Depth-
conditioned dynamic message propagation for monocular 3d
object detection. In CVPR, 2021. 3

[69] Tai Wang, ZHU Xinge, Jiangmiao Pang, and Dahua Lin.
Probabilistic and geometric depth: Detecting objects in per-
spective. In Conference on Robot Learning, 2022. 2

[70] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.
Fcos3d: Fully convolutional one-stage monocular 3d object
detection. In ICCV, 2021. 2

7006



[71] Xinlong Wang, Wei Yin, Tao Kong, Yuning Jiang, Lei Li,
and Chunhua Shen. Task-aware monocular depth estimation
for 3d object detection. In AAAI, 2020. 3

[72] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariha-
ran, Mark Campbell, and Kilian Q Weinberger. Pseudo-lidar
from visual depth estimation: Bridging the gap in 3d object
detection for autonomous driving. In CVPR, 2019. 3

[73] Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang,
Yilun Wang, Hang Zhao, and Justin Solomon. Detr3d:
3d object detection from multi-view images via 3d-to-2d
queries. In Conference on Robot Learning, 2022. 3

[74] Bin Xu and Zhenzhong Chen. Multi-level fusion based 3d
object detection from monocular images. In CVPR, 2018. 3

[75] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 2018. 2

[76] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-
time 3d object detection from point clouds. In CVPR, 2018.
2

[77] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd:
Point-based 3d single stage object detector. In CVPR, 2020.
2, 7

[78] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya
Jia. Std: Sparse-to-dense 3d object detector for point cloud.
In ICCV, 2019. 2

[79] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.
Mvsnet: Depth inference for unstructured multi-view stereo.
In ECCV, 2018. 4

[80] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sat-
tler, and Andreas Geiger. Monosdf: Exploring monocu-
lar geometric cues for neural implicit surface reconstruction.
arXiv preprint arXiv:2206.00665, 2022. 4

[81] Cheng Zhang, Zhaopeng Cui, Yinda Zhang, Bing Zeng,
Marc Pollefeys, and Shuaicheng Liu. Holistic 3d scene un-
derstanding from a single image with implicit representation.
In CVPR, 2021. 2, 3

[82] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and
Stan Z Li. Bridging the gap between anchor-based and
anchor-free detection via adaptive training sample selection.
In CVPR, 2020. 5

[83] Yunpeng Zhang, Jiwen Lu, and Jie Zhou. Objects are differ-
ent: Flexible monocular 3d object detection. In CVPR, 2021.
2

[84] Yinda Zhang, Shuran Song, Ping Tan, and Jianxiong Xiao.
Panocontext: A whole-room 3d context model for panoramic
scene understanding. In ECCV, 2014. 3

[85] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.
H3dnet: 3d object detection using hybrid geometric primi-
tives. In ECCV, 2020. 2

[86] Yibiao Zhao and Song-Chun Zhu. Image parsing with
stochastic scene grammar. In NeurIPS, 2011. 3

[87] Yibiao Zhao and Song-Chun Zhu. Scene parsing by integrat-
ing function, geometry and appearance models. In CVPR,
2013. 3

[88] Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo
Yin, Yuchao Dai, and Ruigang Yang. Iou loss for 2d/3d ob-
ject detection. In 2019 International Conference on 3D Vi-
sion (3DV), 2019. 5

[89] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
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