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Abstract

An oft-cited open problem of federated learning is the

existence of data heterogeneity among clients. One path-

way to understanding the drastic accuracy drop in feder-

ated learning is by scrutinizing the behavior of the clients’

deep models on data with different levels of "difficulty",

which has been left unaddressed. In this paper, we investi-

gate a different and rarely studied dimension of FL: ordered

learning. Specifically, we aim to investigate how ordered

learning principles can contribute to alleviating the hetero-

geneity effects in FL. We present theoretical analysis and

conduct extensive empirical studies on the efficacy of or-

derings spanning three kinds of learning: curriculum, anti-

curriculum, and random curriculum. We find that curricu-

lum learning largely alleviates non-IIDness. Interestingly,

the more disparate the data distributions across clients the

more they benefit from ordered learning. We provide analy-

sis explaining this phenomenon, specifically indicating how

curriculum training appears to make the objective land-

scape progressively less convex, suggesting fast converging

iterations at the beginning of the training procedure. We

derive quantitative results of convergence for both convex

and nonconvex objectives by modeling the curriculum train-

ing on federated devices as local SGD with locally biased

stochastic gradients. Also, inspired by ordered learning, we

propose a novel client selection technique that benefits from

the real-world disparity in the clients. Our proposed ap-

proach to client selection has a synergic effect when applied

together with ordered learning in FL.

1. Introduction

Inspired by the learning principle underlying the cog-
nitive process of humans, curriculum learning (CL) deals
with a training paradigm for machine learning models in
which the difficulty of the training task is progressively
scaled, going from "easy" to "hard". Prior empirical studies
have demonstrated that CL is effective in avoiding bad local

minima and in improving the generalization results [1, 2].
Also interestingly, another line of work proposes the exact
opposite strategy of prioritizing the harder examples first,
such as [3, 4, 5]–these techniques are referred to as “anti-
curriculum". It is shown that certain tasks can benefit from
anti-curriculum techniques. However, in tasks such as ob-
ject detection [6, 7], and large-scale text models [8] CL is
standard practice.

Although the empirical observations on CL appear to be
in conflict, this has not impeded the study of CL in ma-
chine learning tasks. Certain scenarios [9] have witnessed
the potential benefits of CL. The efficacy of CL has been ex-
plored in a considerable breadth of applications, including,
but not limited to, supervised learning tasks within com-
puter vision [10], healthcare [11], reinforcement learning
tasks [12], natural language processing (NLP) [13] as well
as other applications such as graph learning [14], and neural
architecture search [15].

Curriculum learning has been studied in considerable
depth for the standard centralized training settings. How-
ever, to the best of our knowledge, our paper is the first
attempt at studying the methodologies, applications, and ef-
ficacy of CL in a decentralized training setting and in par-
ticular for federated learning (FL). In FL, the training time
budget and the communication bandwidth are the key lim-
iting constraints, and as demonstrated in [9] CL is particu-
larly effective in settings with a limited training budget. It
is an interesting proposition to apply the CL idea to an FL
setting, and that is exactly what we explore in our paper (in
Section 2).

The idea of CL is agnostic to the underlying algorithms
used for federation and hence can be very easily applied to
any of the state-of-the-art solutions in FL. Our technique
does not require a pre-trained expert model and does not
impose any additional synchronization overhead on the sys-
tem. Also, as the CL is applied to the client, it does not add
any additional computational overhead to the server.

Further, we propose a novel framework for efficient
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client selection in an FL setting that builds upon our idea
of CL in FL. We show in Section 4, CL on clients is able
to leverage the real-world discrepancy in the clients to its
advantage. Furthermore, when combined with the primary
idea of CL in FL, it provides compounding benefits.

Contributions: In this paper, we comprehensively as-
sess the efficacy of CL in FL and provide novel insights into
the efficacy of CL under the various conditions and method-
ologies in the FL environment.

We provide a rigorous convergence theory and analysis
of FL in non-IID settings, under strongly convex and non-
convex assumptions, by considering local training steps as
biased SGD, where CL naturally grows the bias over the
iterations, as discussed in Section 5 of the main paper and
Section 1 of the Supplementary Material (SM).

We hope to provide comprehensible answers to the
following six important questions:

Q1: Which of the curriculum learning paradigm is effective

in FL? And under what conditions?

Q2: Can CL alleviate the statistical data heterogeneity in

FL?

Q3: Does the efficacy of CL in FL depend on the underlying

client data distributions?

Q4: Whether the effectiveness of CL is correlated with the

size of datasets owned by each client?

Q5: Are there any benefits of smart client selection? And

can CL be applied to the problem of client selection?

Q6: Can we apply the ideas of CL to both the client data

and client selection?

We test our ideas on two widely adopted network archi-
tectures on popular datasets in the FL community (CIFAR-
10, CIFAR-100) under a wide range of choices of curricula
and compare them with several global state-of-the-art base-
lines. We have the following findings:

• CL in FL boosts the classification accuracy under
both IID and Non-IID data distributions (Sections 3.1,
and 3.2).

• The efficacy of CL is more pronounced when the client
data is heterogeneous (Section 3.3).

• CL on client selection has a synergic effect that com-
pounds the benefits of CL in FL (Section 4).

• CL can alleviate data heterogeneity across clients and CL
is particularly effective in the initial stages of training as
the larger initial steps of the optimization are done on the
“easier” examples which are closer together in distribu-
tion (Section 5 of main paper, and Section 1 of the SM).

• The efficacy of our technique is observed in both lower
and higher data regimes (Section 2 of the SM).

2. Curriculum Components

Federated Learning (FL) techniques provide a mecha-
nism to address the growing privacy and security concerns
associated with data collection, all-the-while satiating the
need for large datasets for training powerful machine learn-
ing models [16, 17]. A major appeal of FL is its ability
to train a model over a distributed dataset without need-
ing the data to be collated into a central location for train-
ing. In the FL framework, we have a server and multiple
clients with a distributed dataset. The process of the feder-
ation is an iterative process that involves multiple rounds of
back-and-forth communication between the server and the
clients that participate in the process [18, 19]. This back-
and-forth communication incurs a significant communica-
tion overhead, thereby limiting the number of rounds that
are pragmatically possible in real-world applications. Cur-
riculum learning is an idea that particularly shines in these
scenarios where the training time is limited [9]. Motivated
by this idea, we define a curriculum for training in the FL
setting. A curriculum consists of three key components:
The scoring function: It is a mapping from an input sam-
ple, xi 2 D = {(x1, y1), (x2, y2), ..., (xn, yn)}, to a nu-
merical value, si(xi) 2 R

+. We define a range of scor-
ing functions when we discuss a CL for the FL setting in
the subsequent sections. When defining the scoring func-
tion of a curriculum in FL, we look for loss-based dynamic
measures for the score that update every iteration, unlike
the methods proposed in [20] which produce a fixed score
for each sample. This is because the instantaneous score of
samples changes significantly between iterations, and using
a fixed score leads to an inconsistency in the optimization
objectives, making training less stable [21]. Also, we avoid
techniques like [22] which requires human annotators, as it
is not practical in a privacy-preserving framework.
The pacing function: The pacing function g�(t) deter-
mines scaling of the difficulty of the training data intro-
duced to the model at each of the training steps t and it
selects the highest scoring samples for training at each step.
The pacing function is parameterized by � = (a, b) where
a is the fraction of the training budget needed for the pacing
function to begin sampling from the full training set, and b

represents the fraction of the training set the pacing function
exposes to the model at the start of training. In this paper,
the full training set size and the total number of training
steps (budget) are denoted by N and T , respectively. Fur-
ther, we consider five pacing function families, including
exponential, step, linear, quadratic, and root (sqrt). The ex-
pressions we used for the pacing functions are shown in Ta-
ble 1. we follow [23] in defining the notion of pacing func-
tion and use it to schedule how examples are introduced to
the training procedure.
The order: Curriculum learning orders sample from the
highest score (easy ones) to lowest score, anti-curriculum
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learning orders from lowest score to highest, and finally,
random curriculum randomly samples data in each step re-
gardless of their scores.

2.1. Preliminary

The five function families incorporated, including expo-
nential, step, linear, quadratic, and root, and their expres-
sions can be seen in Table 1 and Fig. 1.

Table 1: The five families of pacing functions we employed in this paper.
The parameter a determines the fraction of training time until all data is
used. Parameter b sets the initial fraction of the data used.

Pacing Function Expression

Exponential Nb+ N(1�b)
e10�1 (e

10t
aT � 1)

Step Nb+Nb t
aT c

Root (Sqrt) Nb+ N�bp
aT

p
t

Linear Nb+ N�b
aT t

Quadratic Nb+ N�b
(aT )2

t
2

Figure 1: Pacing function curves of different families are used through-
out the paper. As shown, the hyperparameter ↵ specifies the fraction of
the training step until all data is used in training. The hyperparameter b
determines the initial fraction of the data used in training.

3. Experiment

Experimental setting. To ensure that our observations are
robust to the choice of architectures, and datasets, we report
empirical results for LeNet-5 [24] architecture on CIFAR-
10 [25], and ResNet-9 [26] architecture for CIFAR-100 [25]
datasets. All models were trained using SGD with momen-
tum. Details of the implementations, architectures, and hy-
perparameters can be found in Section 7 of the SM.
Baselines and Implementation. To provide a comprehen-
sive study on the efficacy of CL on FL setups, we consider
the predominant approaches to FL that train a global model,
including FedAvg [16], FedProx [27], SCAFFOLD [28],
and FedNova [29]. In all experiments, we assume 100
clients are available, and 10% of them are sampled ran-
domly at each round. Unless stated otherwise, through-
out the experiments, the number of communication rounds
is 100, each client performs 10 local epochs with a batch
size of 10, and the local optimizer is SGD. To better under-
stand the mutual impact of different data partitioning meth-
ods in FL and CL, we consider both federated heteroge-
neous (Non-IID) and homogeneous (IID) settings. In each
dataset other than IID data partitioning settings, we consider

Algorithm 1: The Curriculum FL Framework

Input: M clients indexed by m, sampling rate R 2
(0, 1], number of participating-client K, communication
rounds RC , server model f with ✓g , pacing function g� :
[T ] ! [N ], scoring function s : [N ] ! R, order o 2
{“curriculum”, “anti”, “random”},

Server executes:

initialize f with ✓
for each round t = 0, 1, 2, ... do

St  (random set of K clients)
for each client m 2 St in parallel do

broadcast ✓tg to clients
✓(t)m  ClientUpdate(m, ✓(t)g )

✓(t+1)
g =

PK
m=1

|Dm|PK
i=1 |Di|

✓(t)m ; Dm is the set of
the local data on the client with index m.

return ✓t+1
g

ClientUpdate (m, ✓tg):

Obtain the score of each data sample using ✓tg and/or ✓tm
as described in section 3.1

(x1,x2, ...,xn) sort({x2, ...,xn}, s, o)
for t = 1, 2, ..., T do

✓tm  train(✓tg, {x1,x2, ...,xg(t)})

two different federated heterogeneity settings as in [30, 31]:
Non-IID label skew (2), and Non-IID Dir(�).

3.1. Effect of scoring function in IID and Non-IID

FL

In this section, we investigate five scoring functions. As
discussed earlier, in standard centralized training, samples
are scored using the loss value of an expert pre-trained
model. Given a pre-trained model f✓ : X ! Y , the score is
defined as si(xi) =

riP
i ri

, where ri =
1

L(yi,f✓(xi))
, with L

being the inference loss. In this setup, a higher score corre-
sponds to an easier sample.

In FL [32], a trusted server broadcasts a single initial
global model, ✓g , to a random subset of selected clients in
each round. The model is optimized in a decentralized fash-
ion by multiple clients who perform some steps of SGD up-
dates (✓k = ✓g � ⌘rLk). The resulting model is then sent
back to the server, ultimately converging to a joint represen-
tative model. With that in mind, in our setting, the scores
can be obtained by clients either via the global model that
they receive from the server, which we name as sG or by
their own updated local model, named sL or based on the
average of the local and global model loss, named as sLG

1.
We further consider another family of scoring that is

based on ground truth class prediction. In particular, in each
round, clients receive the global model from the server and
get the prediction using the received global model and the

1Since it produces very similar results to sG, we skipped it.

5086



Figure 2: Scoring client samples based on the global model (sG) pro-

vides the most accurate scores for all levels of Non-IIDness. Scoring

based on the local model (spredL ) provides the least accurate scores,

especially when data are Non-IID, as it provides the worst accuracy.

Evaluating the effect of using different scoring methods on accuracy when
the clients employ curriculum, anti-curriculum, or random ordering dur-
ing their local training on CIFAR-10 with IID data (left) and Non-IID
(2) (right). All curricula use the linear pacing function with a = 0.8
and b = 0.2. We run each experiment three times for 100 communica-
tion rounds with 10 local epochs and report the mean and standard devia-
tion (std) for global test accuracy. Note that the results for vanilla FedAvg
for the left figure, and the right one are 52.30± 0.86, and 41.96± 1.77,
respectively.

current local model as ŷG and ŷL, respectively. For those
samples whose ŷL and ŷG do not match, the client tags them
as hard samples and otherwise as easy ones. This scoring
method is called s

pred
LG . Further, ground truth class predic-

tion and scoring can be solely done by the global model or
the client’s local model, which end up with two other differ-
ent scoring methods, namely s

pred
G , and s

pred
L respectively.

This procedure is described in Algorithm 1.

Fig. 2 demonstrates what the impact of using these var-
ious scoring methods is on the global accuracy when cur-
riculum, anti-curriculum, or random ordering is exploited
by the clients in the order in which their CIFAR-10 exam-
ples are learned with FedAvg under IID and Non-IID (2)
data partitions. The results are obtained by averaging over
three randomly initialized trials and calculating the standard
deviation (std).

The results reveal that first, the scoring functions are

producing broadly consistent results except for s
pred
L for

both IID and Non-IID and sL for Non-IID settings. sG pro-

vides the most accurate scores, thereby improving the ac-

curacy by a noticeable margin compared to its peers. This
is quite expected, as the global model is more mature com-
pared to the client model. Second, the curriculum learning

improves the accuracy results consistently across different

scoring functions. Third, curriculum learning is more ef-

fective when the clients underlying data distributions are

Non-IID. To ensure that the latter does not occur by chance,
we will delve into this point in detail in subsection 3.3. Due
to the superiority of sG relative to others, we set the scor-
ing function to be sG henceforth. We will further elaborate
on the precision of sG compared to an expert model in Sec-
tion 4.4.

Figure 3: Bigger a values provide better accuracy performance for

all pacing function families on IID settings for curriculum learning.

But a notable contrast can be seen with random-/anti ordering. The
effect of using different pacing function families and their hyperparame-
ter a on accuracy when the clients employ curriculum, anti-curriculum or
random ordering during their local training on CIFAR-10 with IID data.
We run each experiment three times for 100 communication rounds with
10 local epochs and report the mean and std for global test accuracy. The
figures from left to right are for curriculum, random, and anti ones.

3.2. Effect of pacing function and its parameters in

IID and Non-IID FL

In order to study the effect of different families of pac-
ing functions along with the hyperparameters � = (a, b),
we test the exponential, step, linear, quadratic, and root
function families. We further first fix b to 0.2 and let
a 2 {0.1, 0.5, 0.8}2. The accuracy results are presented
in Fig. 3. The complement of this figure for Non-IID is
presented in Fig. 11 in the SM. As is evident, for all pac-
ing function families, the trends between the curriculum
and the other orderings, i.e., (anti, random)-curriculum are
markedly opposite in how they improve/degrade by sweep-
ing a from small values to large ones. The pattern for Non-
IID which is presented in the SM is almost similar to that
of IID. Values of a 2 [0.5, 0.8] produce the best results.
As can be seen from Fig. 3, the best accuracy achieved by
curriculum learning outperforms the best accuracy obtained
by other orderings by a large margin. For example, in the
“linear" pacing function, the best accuracy achieved for cur-
riculum learning when a = 0.8 is 56.60 ± 0.91 which im-
proved the vanilla results by 4% while that of random when
a = 0.1 is 52.73 ± 0.81 and improved vanilla by 0.5%.
Henceforth, we set a = 0.8 and the pacing function to lin-
ear. After selecting the pacing function and a the final step
is to fix these two and see the impact of b. Now we let all
curricula use the linear pacing functions with a = 0.8 and
only sweep b 2 {0.0025, 0.1, 0.2, 0.5, 0.8} and report the
results in Fig. 4. Perhaps most striking is that curriculum
learning tends to have smaller values of b to improve ac-
curacy, which is in contrast with (random-/anti) orderings.
The performance of anti-curriculum shows a significant de-
pendence on the value of b. Further, curriculum learning
provides a robust benefit for different values of b and it beats
the vanilla FedAvg by 4� 7% depending upon the distribu-
tion of the data. Henceforth, we fix b to 0.2.

2Note that b 2 [0, 1]. Also, a = 0 or b = 1 is equivalent to no ordered
training, i.e., standard training.
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Figure 4: Smaller b values provide better accuracy performance for

both IID and Non-IID settings as further corroborate the benefit of

employing curriculum learning. Evaluating the effect of hyperparam-
eter b on accuracy when the clients employ curriculum, anti-curriculum,
or random ordering during their local training on CIFAR-10 with IID for
FedAVg (left), and with Dir(0.05) for FedAvg (right). All curricula use the
linear pacing functions with a = 0.8. We run each experiment three times
for 100 communication rounds with 10 local epochs and report the mean
and std for global test accuracy.

3.3. Effect of level of data heterogeneity

Equipped with the ingredients explained in the preceding
section, we are now in a position to investigate the signifi-
cant benefits of employing curriculum learning in FL when
the data distribution environment is more heterogeneous. To
ensure a reliable finding, we investigate the impact of het-
erogeneity in four baselines through extensive experiments
on benchmark datasets, i.e., CIFAR-10 and CIFAR-100. In
particular, we distribute the data between clients according
to Non-IID Dir(�) defined in [33]. In Dir(�), heterogeneity
can be controlled by the parameter � of the Dirichlet distri-
bution. Specifically, when � ! 1 the clients’ data parti-
tions become IID, and when � ! 0 they become extremely
Non-IID.

To understand the relationship between ordered learning
and data heterogeneity, we compare the effect of ordered
learning on various non-IID scenarios at the clients. In
Table 2, we apply our method to the various state-of-the-
art (SOTA) baselines (FedAvg [16], FedProx [27], SCAF-
FOLD [28], FedNova [29]) on CIFAR-10 dataset. The
"Vanilla" column in the tables refers to the original imple-
mentation of the baseline. We use the Dirichlet distribution
with � 2 {0.05, 0.2, 0.9} for the non-IID data distribution,
and we use a linear pacing function (0.8, 0.2) and the sG

scoring function. The important highlight of the tables is
the differential gain in accuracy of our technique (ordering
learning) over the standard "Vanilla" SOTA baselines. To
put the absolute accuracy numbers into perspective, an "ex-
pert" model with the same network architecture trained in a
standard IID centralized non-federated setting on the dataset
is about 62%. Using our technique we are able to achieve
an accuracy of about 55% in a federated setting. This cor-
responds to 90% of the expert model’s performance. For
brevity, we will present results for CIFAR-100 in Section 5
of the SM.

The results are surprising: The benefits of ordered

learning increase with data heterogeneity. The greater

Table 2: Curriculum-learning helps more when training with more

severe data heterogeneity across clients. Understanding the benefit of or-
dered learning with increasing data heterogeneity (� = 0.9 ! 0.05) when
clients are trained on CIFAR-10 with FedAvg, Fedprox, FedNova, and
SCAFFOLD methods respectively.

Non-IIDness Curriculum Anti Random Vanilla

Dir(� = 0.05) 46.34± 1.55 31.16± 3.16 41.91± 2.23 39.56± 4.91
Dir(� = 0.2) 51.09± 0.39 42.34± 1.48 46.35± 1.44 46.75± 0.72
Dir(� = 0.9) 55.36± 0.69 46.86± 0.35 52.42± 0.90 52.19± 0.73

Dir(� = 0.05) 47.94± 0.96 36.08± 1.52 42.62± 0.35 41.48± 0.29
Dir(� = 0.2) 50.02± 0.15 40.92± 0.90 46.41± 1.12 46.18± 0.90
Dir(� = 0.9) 56.48± 0.18 48.37± 0.91 51.69± 0.40 53.07± 1.25

Dir(� = 0.05) 43.73± 0.09 28.31± 1.93 37.81± 3.06 31.97± 0.90
Dir(� = 0.2) 47.01± 1.89 36.55± 1.42 44.21± 1.00 41.28± 0.30
Dir(� = 0.9) 50.74± 0.19 41.76± 0.90 48.87± 0.88 47.230± 1.80

Dir(� = 0.05) 45.91± 1.17 21.29± 1.82 38.27± 2.19 41.33± 1.30
Dir(� = 0.2) 49.69± 1.81 28.69± 0.60 45.29± 1.93 46.62± 0.58
Dir(� = 0.9) 52.05± 1.14 30.75± 0.79 49.25± 0.76 50.24± 0.57

the distribution discrepancy between clients, the greater the
benefit to curriculum learning.

The client heterogeneity can be thought of as a distribu-
tional skew [34]. The "easier" data samples have a lower
variance and thus the set of "easy" data samples is less
skewed from the mean and thereby more IID. In the cru-
cial early phase of the training, the use of the "easy" data
samples effectively behaves as training on an IID distribu-
tion. This idea is formalized with convergence analysis and
quantifying the convergence rates in the Section 5 of the
main paper and in Section 1 of the SM.

Therefore, CL can alleviate the accuracy drop associ-

ated with the non-IID client data. The improvement in ac-

curacy is a result of the stable training on near-IID data in

the crucial early phases.

4. Curriculum on Clients

The technique of ordered learning presented in previ-
ous sections is designed to exploit the heterogeneity of data
at the clients but is not geared to effectively leverage the
heterogeneity between the clients that, as we discuss fur-
ther, naturally emerges in the real world.

In the literature, some recent works have dabbled with
the idea of smarter client selection, and many selection cri-
teria have been suggested, such as importance sampling,
where the probabilities for clients to be selected are pro-
portional to their importance measured by the norm of up-
date [35], test accuracy [36]. The [37] paper proposes client
selection based on local loss where clients with higher loss
are preferentially selected to participate in more rounds of
federation, which is in stark contrast to [38] in which the
clients with a lower loss are preferentially selected. It’s
clear from the literature that the heterogeneous environ-
ment in FL can hamper the overall training and convergence
speed [39, 40], but the empirical observations on client se-
lection criteria are either in conflict or their efficacy is min-
imal. In this section, inspired by curriculum learning, we
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(a) IID (b) Dir(0.2) (c) Dir(0.05)
Figure 5: Consistency in data difficulty at the client hurts the effi-

cacy of curricula. The effect of consistency in the difficulty distribution
at the client nullifies the effect of curricula. The values plotted are for Fe-
dAvg on CIFAR-10. The standard deviation values of (Low, High) consis-
tency for the IID are (0.52, 0.01), Dir(0.2) are (0.51, 0.14), and Dir(0.05)
are (0.50, 0.13). Note that we use Algorithm 2 to construct partitions
with varying difficulty, and as detailed in Section 4.3 it is not possible
to control the partition difficulty value with arbitrary precision, hence the
above minor variations. The Low consistency scenario is generated using
ford = 0.0 and the high consistency scenario uses ford = 1.0.

propose a more sophisticated mechanism of client selection
that generalizes the above strategies to the FL setting.

4.1. Motivation

In the real world, the distributed dataset used in FL is
often generated in-situ by clients, and the data is mea-
sured/generated using a particular sensor belonging to the
client. For example, consider the case of a distributed image
dataset generated by smartphone users using the onboard
camera or a distributed medical imaging dataset generated
by hospitals with their in-house imaging systems. In such
scenarios, as there is a huge variety in the make and qual-
ity of the imaging sensors, the data generated by the clients
is uniquely biased by the idiosyncrasies of the sensor, such
as the noise, distortions, quality, etc. This introduces vari-
ability in the quality of the data at clients, in addition to the
Non-IID nature of the data. However, it is interesting to
note that these effects apply consistently across all the data
at the specific client.

From a curriculum point of view, as the data points are
scored and ordered by difficulty, which is just a function of
the loss value of that data point, these idiosyncratic distor-
tions uniformly affect the loss/difficulty value of all the data
at that particular client. Also, it is possible that the difficulty
among the data points at the particular client is fairly con-
sistent as the level of noise, quality of the sensor, etc. are
the same across the data points. This bias in difficulty varies
between clients but is often constant within the same client.
Naturally, this introduces a heterogeneity in the clients par-
ticipating in the federation. In general, this can be thought
of as some clients being "easy" and some being "difficult".
We can quantify this notion of consistency in difficulty by

the standard deviation in the score of the data points at the

client.

When the standard deviation of the intra-client data is
low, i.e., when the difficulty of the data within a client
is consistent, we find that the curriculum on FL behaves

very differently in these kinds of scenarios. We observe
the advantage of curriculum diminishes significantly and
has similar efficacy as that of random curricula as shown
in Fig 5. The advantage of curriculum can be defined
as Ao = accuracy(o) � accuracy(vanilla), where o 2
{curr, anti, rand}.

4.2. Client Curriculum

We propose to extend the ideas of curriculum onto the
set of clients, in an attempt to leverage the heterogeneity
in the clients. To the best of our knowledge, our paper is
the first attempt to introduce the idea of curriculum on

clients in an FL setting. Many curricula ideas can be
neatly extended to apply to the set of clients. In order to
define a curriculum over the clients, we need to define a
scoring function, a pacing function, and an ordering over
the scores. We define the client loss as the mean loss of the
local data points at the client (Eq. 1), and the client score
can be thought of as inversely proportional to the loss. The
ordering is defined over the client scores.

Lk =
1

kDmk

kDmkX

j

lj (1)

where m is the index for client, Dm represents the dataset
at client m, lj is the loss of jth data point in Dm.

The pacing function, as in the case of data curricula, is
used to pace the number of clients participating in the fed-
eration. Starting from a small value, the pacing function
gradually increases the number of clients participating in
the federation. The action of the pacing function amounts
to scaling the participation rate of the clients.

The clients are scored and rank-ordered based on the
choice of ordering, then a subset of size K

(t) of the K

clients is chosen in a rank-ordered fashion. The value K
(t)

is prescribed by the pacing function. The K
(t) clients are

randomly batched into mini-batches of clients. These mini-
batches of clients subsequently participate in the federation
process. Thereby, we have two sets of curricula, one that
acts locally on the client data and the other that acts on the
set of clients. Henceforth, we will refer to these as the data
curriculum and the client curriculum, respec-
tively. We study the interplay of these curricula in Sec-
tion 4.5.

Fig. 6 confirms that the benefits of the algorithm severely
depend on the data of the client having a diverse set of dif-
ficulties. As is evident from Fig. 6, we are able to realize
an Acurr of 5.67 � 7.19% for the different values of Non-
IIDness using our proposed client curriculum algorithm in
the scenario with high consistency in the client data where
the data curriculum has reduced/no benefits. This illustrates

that the client curriculum is able to effectively overcome the

limiting constraint of local variability in data and is able to

leverage the heterogeneity in the set of clients to its benefit.
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(a) IID (b) Dir(0.2) (c) Dir(0.05)
Figure 6: Client curriculum does not suffer from low heterogeneity

in the data difficulty and is effective when data curriculum is not. The
scenario shown here is the same as the scenario with high local consistency
from Fig 5. As we observe the client curriculum is able to overcome the
limitations of the data curriculum.

4.3. Difficulty based partitioning

For the experiments in this section, we require client
datasets (Dm) of varying difficulty at the desired level of
Non-IIDness. In order to construct partitions of varying
difficulty, we need to address two key challenges: one, we
need a way to accurately assess the difficulty of each of the
data points, and two, we need to be able to work with differ-
ent levels of Non-IIDness. To address the first challenge, we
rank the data points in order of difficulty using an a priori
trained expert model ✓E that is trained on the entire baseline
dataset and has the same network topology as the global
model. As the expert model has the same topology as the
model that we intend to train and as it is trained on the en-
tire dataset, it is an accurate judge of the difficulty of the
data points. Interestingly, this idea can be extended to be
used as a scoring method for curriculum as well. We call
this scoring method the expert scoring sE . We look at this
in greater detail in Section 4.4.

To address the second challenge, a possible solution is to
first partition the standard dataset into the desired Non-IID
partitions using well-known techniques such as the Dirich-
let distribution, followed by adding different levels of noise
to the samples of the different data partitions. This would
partition with varying difficulty; however, doing so would
alter the standard baseline dataset, and we would lose the
ability to compare the results to known baseline values and
between different settings. We would like to be able to com-
pare our performance results with standard baselines, so we
require a method that does not alter the data or resort to
data augmentation techniques, and we devise a technique
that does just that.

Starting with the baseline dataset, we first divide it into
the desired Non-IID partitions the same as before, but then
instead of adding noise to the dataset, we attempt to reshuf-
fle the data among partitions in such a way that we create
"easy" partitions and "hard" partitions. This can be achieved
by ordering the data in increasing order of difficulty and
distributing the data among the partitions starting from the
"easy" data points, all the while honoring the Non-IID class
counts of each of the partitions as determined by the Non-
IID distribution. The outline is detailed in Algorithm 2. It is
noteworthy that, although we are able to generate partitions

Algorithm 2: Partition Difficulty Distribution

Input: partitions {P0,P1, ...,PN} of the input dataset D of
C classes indexed by c, fraction of each partition to replace
ford 2 (0, 1], expert model ✓E

Class prior of partitions and dataset:

for each partition i = 0, 1, 2, ..., N do

Pi  count(data points of class c in partition i)

Compute loss (L) for each data point in D using ✓E
Dc  argsort(Lc)

Reconstitute partition:

idc = cumsumi(Ni,c)

Distribute ford
for each partition i = 0, 1, 2, ..., N do

Pi  Pi[ partition(ford ⇤Ni,c elements of Dc begin-
ning at idi,c)

D0
c  remaining elements of Dc

Distribute remaining (1� ford)
for each partition i = 0, 1, 2, ..., N do

Pi  Pi[ random((1�ford)⇤Ni,c elements of D0
c)

(a) Client curriculum (b) Data curriculum
Figure 7: Effect of expert scoring sE and sG on "curr" curriculum.

Plotted here is the evolution of the global model’s accuracy over the course
of the federation for � 2 {0.05, 0.2} and IID with an ordering of ’curr’,
using FedAvg. sG and sE scoring functions have similar behavior on the
Client Curricula (Left) and Data Curricula (Right).

of varying difficulty, we do not have direct control over the
"difficulty" of each of the partitions and hence cannot gen-
erate partitions with an arbitrary distribution of difficulty as
can be done by adding noise.

4.4. Expert guided and self-guided curricula

The scoring method sE , as discussed above, can also be
used to guide the learning process in a curriculum learning
setting. As the expert model used for scoring shares the
same network topology as the global model that we intend
to train, and as the expert was trained on the entire dataset,
the expert-guided curricula can be thought of as a pedagog-
ical mode of learning.

The global model accuracy at different rounds of the fed-
eration is depicted in Fig. 7. We see a clear trend in Fig 7
that sE outperforms sG in the initial rounds, but sG con-
verges to sE over the rounds. Also, sG accuracy in the ini-
tial rounds very closely approximates the random scoring
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Figure 8: Synergic Effect of Client and Data curricula. CC here refers
to Client Curriculum and DC refers to Data Curriculum. The figure shows
the synergic effects of the curricula.

Figure 9: Illustration of skew-based heterogeneous data distri-
bution across clients and curriculum learning mitigation thereof.
Note that the easy curricula for the two clients are closer to each
other distributionally.

accuracy. The sG scoring method is a self-guided curricu-
lum, that uses the global model. The global model is just
random (noisy) in the initial rounds of the federation, and
hence the curricula it produces are also random, thereby
closely approximating the performance of the random cur-
riculum. As the global model is refined over time, it be-
comes better at determining the "true" curricula, eventually
converging on the sE curve. The model trained with sE

benefits from curriculum effects from the first round and
thus starts strong.

4.5. Ablation study

In this section, we show the interplay between the
data curriculum and the client curriculum

and measure their contributions towards the global model’s
accuracy. As reported in Fig 8, we observe that
the client curriculum and the data curriculum indepen-
dently outperform the baseline by about 2 � 3%, and
we observe a synergic effect of the combination that out-
performs both the curricula and the baseline by about 5%.

5. Theoretical Analysis

One can observe, see e.g. [34], that data discrepancy
across clients is often manifested as skew. As an example,
image data is distributed across clients by giving the left di-
vision of an image—e.g., the left face of a cat—to one client
and the right to another. See Fig. 9 for an illustration.

A simple and transparent way to model this is to use the
biased SGD framework. Specifically, there is an underly-

ing objective function of interest f(x), however, each client
only has access to a biased stochastic gradient of this func-
tion. Uniquely in the case of federated data heterogene-
ity, the bias adds up to zero across clients (the “right-ness”
of one set of images balances the “left-ness” of another).
We shall use the notation of [41] although for completeness
we acknowledge the predecessor [42]. To the best of our
knowledge, we present the first analysis of FedAvg with het-
erogeneous data using the biased SGD framework, despite
how naturally it models the training procedure.

Algorithm 3: Local SGD Model of Algorithm 1

Input: M clients indexed by m, participating-client num-
ber Q, communication rounds T , local optimization steps
J , server model f with parameters ✓g

Server executes:

initialize f with ✓g
for each round t = 0, 1, 2, ..., T do

St  (random set of Q clients)
for each client q 2 St in parallel do

broadcast ✓tg to clients as ✓(t,0)k

for j = 0, 1, 2, ..., J
Sample g(t,j)k ⇠ rf(✓(t,j)k ,Dk)

✓(t,j+1)
k  ✓(t,j)k � ↵(t,j)g(t,j)k

✓(t+1)
g =

PK
k=1

|Dk|PK
i=1 |Di|

✓(t,J)
k

return ✓t+1
g

5.1. Formal Convergence Theory Statements

We formalize the notion of distributional skew by mak-
ing the following assumption on the bias structure associ-
ated with each stochastic gradient computation:

Assumption 1 It holds that g
(t,j)
k satisfies,

g
(t,j)
k = rf(✓(t,j)k ) + b

(t,j)
k (✓(t,j)k ) + n

(t,j)
k (✓(t,j)k , ⇠

(t,j)
k )

(2)
where kb(t,j)k (✓(t,j)k )k2  B

(t,j)
for all k, and, for all ✓,

X

k2St

b
(t,j)
k (✓) = 0 (3)

and ⇠
(t,j)
k is a random variable satisfying,

E⇠[n
(t,j)
k (✓(t,j)k , ⇠

(t,j)
k )] = 0 (4)

We note that,

B
(0,0) = B

(0,1) = ... = B
(0,J)

< B
(1,0) = B

(1,1) = ...

= B
(1,J)

< ... < B
(t,0) = B

(t,1) = ... = B
(t,J)

< B
(t+1,0)

= B
(t+1,1) = ... = B

(t+1,J)
< ... < B

(T,0) = B
(T,1)

= ... = B
(T,J)

5091



for client based curriculum training, and

B
(0,0)

< B
(0,1)

< ... = B
(0,J) = B

(1,0)
< B

(1,1)
< ...

< B
(1,J) = B

(2,0)
< ...B

(t,0)
< B

(t,1)
< ...

< B
(t,J) = B

(t+1,0)
< B

(t+1,1)
< ...

< B
(t+1,J)

...B
(T,K�1)

< B
(T,J)

for data based curriculum training.
Now we present two results as depending on the condi-

tions applying to the functions characterizing the optimiza-
tion. In the first case, we shall consider strongly convex ob-
jectives, as characterizing least squares empirical risk mini-
mization of, e.g., linear models. In this scenario, we permit
the variance to grow with the parameter size, i.e., we do not
assume bounded gradients.

Theorem 1 Assume that

• f is strongly convex with convexity parameter µ > 0
• rf is Lipschitz continuous with Lipschitz constant L

• the noise variance satisfies,

E⇠

���n(t,j)
k (✓(t,j)k , ⇠

(t,j)
k )

���
2
�

 M

���rf(✓(t,j)k ) + b
(t,j)
k (✓(t,j)k )

���
2
+ �

2

• For all t, j we have ,

↵
(t,j)  1

4(3 + 2M)L

Then it holds that the distance to the solution satisfies, after

each averaging step,

E
���✓̂(T,0) � ✓

⇤
���
2


TQ
t=1

JQ
j=0

(1� ↵
(t,j)

µ/2)k✓̂(0,0) � ✓
⇤k2

+
TP

t=1

JP
j=0

2(↵(t,j))2[L((3+2M)B(t,j)+3�3]
Q

+
TP

t=1

JP
j=0

2↵(t,j)L(B(t,j))2/µ)
Q

In studying the form of this result, we note that the overall
convergence rate and error resembles the original with an
important caveat in regards to the error on account of the
bias term. First, the bias term adds an error proportional
to the stepsize, thus yielding an asymptotic error bounded
from below with the bias. Second, the stepsize can be
used to mitigate the error from the bias terms. Indeed,
with, e.g., data-based curriculum, if B(t,j) = O(j1/4) then
↵
(t,j) = O(t�1

j
�1/4) would mitigate the growing error. It

is clear that the standard practice of diminishing stepsizes
will result in a lower total error at each iteration for cur-
riculum compared to anti-curriculum. Standard Local SGD
guarantees are not preserved regardless, however, with the
asymptotic bias depending on the total degree of data het-
erogeneity, summed in this weighted manner throughout the
optimization procedure.

Nonconvex Objectives Now we consider the general
case of nonconvex objectives without any additional condi-
tions regarding the growth properties of the objective func-
tion to permit generality encompassing the functional prop-
erties of neural networks. Using the biased SGD frame-
work and inspired by the structure of the convergence the-
ory of [43], we study the effect of the associated gradient
estimate errors.

Theorem 2 Assume that

• krfk is uniformly bounded by G

• rf is Lipschitz continuous with Lipschitz constant L

• the noise variance satisfies,

E⇠

���n(t,j)
k (✓(t,j)k , ⇠

(t,j)
k )

���
2
�
 �

2

• f is lower bounded by f⇤
Then we obtain the ergodic rate,

TP
t=0

JP
j=0

krf(✓(t,0)k2  Q(f(✓0)� f
⇤)

+2
TP

t=0

JP
j=0

↵
(t,j)

 
↵
(t,j) +

JP
l=j

↵
(t,l)

!
LG

2

Compared to standard results, we can see that curricula
contribute an error that corresponds to the cross terms of
the stepsizes, indicating a benefit to annealing the stepsize
along local iterations as well as along averaging steps.

The proofs that build up the argument for the main new
convergence results we present in the Supplementary Mate-
rial Section 1, specifically Theorem 1 and 2.

6. Conclusion

In this work, we provided a comprehensive study on the
benefit of employing CL in FL under both homogeneous
and heterogeneous settings. We further ran extensive
experiments on a broad range of curricula and pacing
functions over three datasets, CIFAR10 and CIFAR100,
and demonstrated that ordered learning can have noticeable
benefits in federated training. Surprisingly, we found
empirically that CL can be more beneficial when the
clients’ underlying data distributions are significantly
Non-IID. By studying the convergence behavior of FL
using a novel biased SGD model based on the observation
of data heterogeneity as distributional skew, we were able
to theoretically explain this phenomenon. Moreover, we
proposed a curriculum on clients for the first time. Our
results show that the order in which clients participate
in the federation plays an important role in the accuracy
performance of the global model. In particular, training
the global model in a meaningful order, from the easy
clients to the hard ones, using CL can provide performance
improvements over the random sampling approach.
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