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Abstract

Text-to-image diffusion models are nothing but a revo-
lution, allowing anyone, even without design skills, to cre-
ate realistic images from simple text inputs. With power-
ful personalization tools like DreamBooth, they can gen-
erate images of a specific person just by learning from
his/her few reference images. However, when misused,
such a powerful and convenient tool can produce fake
news or disturbing content targeting any individual vic-
tim, posing a severe negative social impact. In this pa-
per, we explore a defense system called Anti-DreamBooth
against such malicious use of DreamBooth. The system
aims to add subtle noise perturbation to each user’s im-
age before publishing in order to disrupt the generation
quality of any DreamBooth model trained on these per-
turbed images. We investigate a wide range of algorithms
for perturbation optimization and extensively evaluate them
on two facial datasets over various text-to-image model
versions. Despite the complicated formulation of Dream-
Booth and Diffusion-based text-to-image models, our meth-
ods effectively defend users from the malicious use of those
models. Their effectiveness withstands even adverse con-
ditions, such as model or prompt/term mismatching be-
tween training and testing. Our code will be available at
https://github.com/VinAIResearch/Anti-DreamBooth.git.

1. Introduction

Within a few years, denoising diffusion models [23, 54,
43] have revolutionized image generation studies, allowing
producing images with realistic quality and diverse content
[19]. They especially succeed when being combined with
language [40] or vision-language models [39] for text-to-
image generation. Large models [41, 3, 43, 47, 9] can pro-
duce photo-realistic or artistic images just from simple text
description inputs. A user can now generate art within a few
seconds, and a generated drawing even beat professional
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Figure 1: A malicious attacker can collect a user’s images
to train a personalized text-to-image generator for malicious
purposes. Our system, called Anti-DreamBooth, applies
imperceptible perturbations to the user’s images before re-
leasing, making any personalized generator trained on these
images fail to produce usable images, protecting the user
from that threat.

artists in an art competition [44]. Photo-realistic synthetic
images can be hard to distinguish from real photos [27].
Besides, ControlNet [62] offers extra options to control the
generation outputs, further boosting the power of the text-
to-image models and bringing them closer to mass users.

One extremely useful feature for image generation mod-
els is personalization, which allows the models to generate
images of a specific subject, given a few reference exam-
ples. For instance, one can create images of himself/herself
in a fantasy world for fun, or create images of his/her family
members as a gift. Textual Inversion [20] and DreamBooth
[46] are two prominent techniques that offer that impressive
ability. While Textual Inversion only optimizes the text em-
bedding inputs representing the target subject, DreamBooth
finetunes the text-to-image model itself for better personal-
ization quality. Hence, DreamBooth is particularly popular
and has become the core technique in many applications.

While the mentioned techniques provide a powerful and
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convenient tool for producing desirable images at will, they
also pose a severe risk of being misused. A malicious user
can propagate fake news with photo-realistic images of a
celebrity generated by DreamBooth. This can be classified
as DeepFakes [28], one of the most serious AI crime threats
that has drawn an enormous attention from the media and
community in recent years. Besides creating fake news,
DreamBooth can be used to issue harmful images target-
ing specific persons, disrupting their lives and reputations.
While the threat of GAN-based DeepFakes techniques is
well-known and has drawn much research interest, the dan-
ger from DreamBooth has yet to be aware by the commu-
nity, making its damage, when happening, more dreadful.

This paper discusses how to protect users from malicious
personalized text-to-image synthesis. Inspired by Deep-
Fakes’s prevention studies [60, 45, 59, 26, 58], we pro-
pose to pro-actively defend each user from the DreamBooth
threat by injecting subtle adversarial noise into their im-
ages before publishing. The noise is designed so that any
DreamBooth model trained on these perturbed images fails
to produce reasonable-quality images of the target subject.
While the proposed mechanism, called Anti-DreamBooth,
shares the same goal and objective as the techniques to dis-
rupt GAN-based DeepFakes, it has a different nature due to
the complex formulation of diffusion-based text-to-image
models and DreamBooth:

• In GAN-based disruption techniques, the defender op-
timizes the adversarial noise of a single image, target-
ing a fixed DeepFakes generator. In Anti-DreamBooth,
we have to optimize the perturbation noise to disrupt a
dynamic, unknown generator that is finetuned from the
perturbed images themselves.

• GAN-based DeepFakes generator produces each fake
image via a single forward step; hence, adversarial
noise can be easily learned based on the model’s gradi-
ent. In contrast, a diffusion-based generator produces
each output image via a series of non-deterministic
denoising steps, making it impossible to compute the
end-to-end gradient for optimization.

• Anti-DreamBooth has a more complex setting by con-
sidering many distinctive factors, such as the prompt
used in training and inference, the text-to-image model
structure and pre-trained weights, and more.

Despite the complexity mentioned above, we show that
the DreamBooth threat can be effectively prevented. In-
stead of targeting the end-to-end image generation pro-
cess, we can adapt the adversarial learning process to break
each diffusion sampling step. We design different algo-
rithms for adversarial noise generation, and verify their ef-
fectiveness in defending DreamBooth attack on two facial
benchmarks. Our proposed algorithms successfully break

all DreamBooth attempts in the controlled settings, caus-
ing the generated images to have prominent visual artifacts.
Our proposed defense shows consistent effect when using
different text-to-image models and different training text
prompts. More impressively, Anti-DreamBooth maintains
its efficiency even under adverse conditions, such as model
or prompt/term mismatching between training and testing.

In summary, our contributions include: (1) We discuss
the potential negative impact of personalized text-to-image
synthesis, particularly with DreamBooth, and define a new
task of defending users from this critical risk, (2) We pro-
pose proactively protecting users from the threat by adding
adversarial noise to their images before publishing, (3) We
design different algorithms for adversarial noise generation,
adapting to the step-based diffusion process and finetuning-
based DreamBooth procedure, (4) We extensively evaluate
our proposed methods on two facial benchmarks and under
different configurations. Our best defense works effectively
in both convenient and adverse settings.

2. Related work
2.1. Text-to-image generation models

Due to the advent of new large-scale training datasets
such as LAION5B [49], text-to-image generative models
are advancing rapidly, opening new doors in many visual-
based applications and attracting attention from the public.
These models can be grouped into four main categories:
auto-regressive [61], mask-prediction [13], GAN-based
[48] and diffusion-based approaches, all of which show
astounding qualitative and quantitative results. Among
these methods, diffusion-based models [43, 47, 9, 38, 42]
have exhibited an exceptional capacity for generating high-
quality and easily modifiable images, leading to their
widespread adoption in text-to-image synthesis. GLIDE
[38] is arguably the first to combine a diffusion model with
classifier guidance for text-to-image generation. DALL-E 2
[42] then improves the quality further using the CLIP text
encoder and diffusion-based prior. For better trade-off be-
tween efficiency and fidelity, following-up works either in-
troduce coarse-to-fine generation process like Imagen [47]
and eDiff-I [9] or work on latent space like LDM [43].
StableDiffusion [4], primarily based on LDM, is the first
open-source large model of this type, further boosting the
widespread applications of text-to-image synthesis.

2.2. Personalization

Customizing the model’s outputs for a particular person
or object has been a significant aim in the machine-learning
community for a long time. Generally, personalized models
are commonly observed in recommendation systems [5] or
federated learning [50, 22]. Within the context of diffusion
models, previous research has focused on adapting a pre-
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trained model to create fresh images based on a particular
target idea using natural language cues. Existing methods
for personalizing the model either involve adjusting a col-
lection of text embeddings to describe the idea [20] or fine-
tuning the denoising network to connect a less commonly
used word-embedding to the novel concept [46]. For better
customization, [30] propose a novel approach to not only
model a new concept of an individual subject by optimiz-
ing a small set of parameters of cross-attention layers but
also to combine multiple concepts of objects via joint train-
ing. Among these tools, DreamBooth [46] is particularly
popular due to its exceptional quality and has become the
core technique in many applications. Hence, we focus on
defending the malign use of this technique.

2.3. Adversarial attacks

With the introduction of the Fast Gradient Sign Method
(FGSM) attack [21], adversarial vulnerability has become
an active field of research in machine learning. The goal
of adversarial attacks is to generate a model input that can
induce a misclassification while remaining visually indis-
tinguishable from a clean one. Following this foundational
work, different attacks with different approaches started to
emerge, with more notable ones including: [31, 35] be-
ing FGSM’s iterative versions, [12] limiting the adversarial
perturbation’s magnitude implicitly using regularization in-
stead of projection, [37] searching for a close-by decision
boundary to cross, etc. For black-box attacks, where the ad-
versary does not have full access to the model weights and
gradients, [56] estimates the gradient using sampling meth-
ods, while [10, 14, 6] aim to synthesize a close-by example
by searching for the classification boundary, then finding
the direction to traverse towards a good adversarial exam-
ple. Combining them, [16] is an ensemble of various at-
tacks that are commonly used as a benchmark metric, be-
ing able to break through gradient obfuscation [7] with the
expectation-over-transformation technique [8].

2.4. User protection with image cloaking

With the rapid development of AI models, their misuse
risk has emerged and become critical. Particularly, many
models exploit the public images of each individual for ma-
licious purposes. Instead of passively detecting and mitigat-
ing these malign actions, many studies propose proactively
preventing them from succeeding. The idea is to add sub-
tle noise into users’ images before publishing to disrupt any
attempt to exploit those images. This approach is called
“image cloaking”, which our proposed methods belong to.

One application of image cloaking is to prevent privacy
violations caused by unauthorized face recognition systems.
Fawkes [52] applies targeted attacks to shift the user’s iden-
tity towards a different reference person in the embedding
space. Although it learns the adversarial noise using a surro-

gate face recognition model, the noise successfully transfers
to break other black-box recognizers. Lowkey [15] further
improves the transferability by using an ensemble of surro-
gate models. It also considers a Gaussian smoothed version
of the perturbed image in optimization, improving robust-
ness against different image transformations. AMT-GAN
[25] crafts a natural-looking cloak as makeup, while OPOM
[63] optimizes person-specific universal privacy masks.

Another important application of image cloaking is to
disrupt GAN-based image manipulation for DeepFakes.
Yang et al. [59] exploits differentiable image transforma-
tions for robust image cloaking. Yeh et al. [60] defines
new effective objective functions to nullify or distort the
image manipulation. Huang et al. [26] addresses personal-
ized DeepFakes techniques by alternating the training of the
surrogate model and a perturbation generator. Anti-Forgery
[58] crafts the perturbation for channels a and b in the Lab
color space, aiming for natural-looking and robust cloaking.
Lately, UnGANable [32] prevents StyleGAN-based image
manipulation by breaking its inversion process.

Similar to our goals, two concurrent works, GLAZE [51]
and AdvDM [33], aim to protect against personalized text-
to-image diffusion models exploited without consent using
image cloaking. However, our work differs from theirs in
several key aspects. First, GLAZE and AdvDM focus on
disrupting artistic mimicry, while Anti-DreamBooth con-
centrates on preventing the negative impacts of generating
fake or harmful personalized images. Second, GLAZE uti-
lizes complex style-transferred guidance during noise opti-
mization, which is difficult to adapt to the user protection
setting. AdvDM only focuses on a simpler technique Tex-
tual Inversion [20] where the generator is fixed, unlike the
challenging finetuning of DreamBooth in our setting.

3. Problem
3.1. Background

Adversarial attacks. The goal of adversarial attacks is to
find an imperceptible perturbation of an input image to mis-
lead the behavior of given models. Typical works have been
developed for classification problems where for a model f ,
an adversarial example x′ of an input image x is generated
to stay visually undetectable while inducing a misclassifica-
tion ytrue ̸= f(x′) (untargeted attack), or making the model
predict a predefined target label ytarget = f(xadv) ̸= ytrue
(targeted attack). The minimal visual difference is usually
enforced by bounding the perturbation to be within an η-
ball w.r.t. an ℓp metrics, that is ∥x′ − x∥p < η. To achieve
this objective, denoting ∆ = {δ : ∥δ∥p ≤ η}, we find the
optimal perturbation δ to maximize the classification loss in
the untargeted version:

δadv = argmax
δ∈∆

L(f(x+ δ), ytrue), (1)
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or to minimize the loss for the targeted variant:

δadv = argmin
δ∈∆

L(f(x+ δ), ytarget). (2)

Projected Gradient Descent (PGD) [35] is a commonly
used attack based on an iterative optimization process. The
updating pipeline to predict x′ for untargeted attack is:

x′
0 = x

x′
k = Π(x,η)(x

′
k−1 + α · sgn(∇xL(f(x′

k−1), ytrue)))
(3)

where Πx,η(z) restrains pixel values of z within an η-ball
around the original values in x. We acquire the adversarial
example x′ after a pre-defined number of iterations.
Diffusion models are a type of generative models [53, 23]
that decouple the role of generation into two opposing pro-
cedures: a forward process and a backward process. While
the forward process gradually adds noise to an input image
until data distribution becomes pure Gaussian noise, the lat-
ter learns to reverse that process to obtain the desired data
from random noise. Given input image x0 ∼ q(x), the dif-
fusion process perturbs the data distribution with a noise
scheduler {βt : βt ∈ (0, 1)}Tt=1 producing increasing lev-
els of noise addition through T steps to obtain a sequence
of noisy variables: {x1, x2, . . . , xT }. Each variable xt is
constructed via injecting noise at corresponding timestep t:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (4)

where αt = 1− βt, ᾱt =
∏t

s=1 αs and ϵ ∼ N (0, I).
The backward process learns to denoise from noisy vari-

able xt+1 to less-noisy variable xt via simply estimat-
ing the injected noise ϵ with a parametric neural network
ϵθ(xt+1, t). The denoising process is trained to minimize
ℓ2 distance between estimated noise and true noise:

Lunc(θ, x0) = Ex0,t,ϵ∈N (0,1)∥ϵ− ϵθ(xt+1, t)∥22 (5)

where t is uniformly samples within {1, . . . , T}.
Prompt-based Diffusion Models. Unlike unconditional
diffusion models, prompt-based diffusion models control
the sampling process with an additional prompt c to gener-
ate photo-realistic outputs which are well-aligned with the
text description. The objective is formulated as follows:

Lcond(θ, x0) = Ex0,t,c,ϵ∈N (0,1)∥ϵ− ϵθ(xt+1, t, c)∥22 (6)

Thanks to prompt condition, the model can produce more
excellent performance in terms of visual quality than its un-
conditional counterparts. However, the implementation of
most prominent methods [47, 9] are not publicly available.
Alternatively, Stable Diffusion has released the pre-trained
weights based on Hugging Face implementation [57] to fa-
cilitate research in the community. Hence, we mainly per-
form experiments on different versions of Stable Diffusion.

DreamBooth is a finetuning technique to personalize text-
to-image diffusion models for instance of interest. This
technique has two aims. First, it enforces the model to learn
to reconstruct the user’s images, with a generic prompt c
such as “a photo of sks [class noun]”, with sks is a special
term denoting the target user, and “[class noun]” is the ob-
ject type, which can be “person” for human subject. To train
this, DreamBooth employs the base loss of diffusion models
in Eq. (6), with x0 is each user’s reference image. Second, it
further introduces a prior preservation loss to prevent over-
fitting and text-shifting problems when only a small set of
instance examples is used. More precisely, it uses a generic
prior prompt cpr, e.g.,“a photo of [class noun]”, and en-
forces the model to reproduce instance examples randomly
generated from that prior prompt using the original weights
θori. The training loss combines two objectives:

Ldb(θ, x0) = Ex0,t,t′∥ϵ− ϵθ(xt+1, t, c)∥22
+ λ∥ϵ′ − ϵθ(x

′
t′+1, t

′, cpr)∥22 (7)

where ϵ, ϵ′ are both sampled from N (0, I), x′
t′+1 is noisy

variable of class example x′ which is generated from orig-
inal stable diffusion θori with prior prompt cpr, and λ em-
phasizes the importance of the prior term. While Dream-
Booth was originally designed for Imagen [47], it was
quickly adopted for any text-to-image generator.

3.2. Problem definition

As a powerful tool to generate photo-realistic outputs
of a target instance, DreamBooth can be a double-edged
sword. When misused, it can generate harmful images to-
ward the target individual. To mitigate this phenomenon,
we propose to craft an imperceptible perturbation added
to each user’s image that can disrupt the finetuned Dream-
Booth models to generate distorted images with noticeable
artifacts. We define the problem formally below.

Denote X as the set of images of the person to protect.
For each image x ∈ X , we add an adversarial perturba-
tion δ and publish the modified image x′ = x + δ, while
keeping the original one private. The published image set
is called X ′. An adversary can collect a small image set of
that person X ′

db = {x(i) + δ(i)}Ndb
i=1 ⊂ X ′. He then uses

that set as a reference to finetune a text-to-image generator
ϵθ, following the DreamBooth algorithm, to get the optimal
hyper-parameters θ∗. The general objective is to optimize
the adversarial noise ∆db = {δ(i)}Ndb

i=1 that minimizes the
personalized generation ability of that DreamBooth model:

∆∗
db = argmin

∆db

A(ϵθ∗ ,X ),

s.t. θ∗ = argmin
θ

Ndb∑
i=1

Ldb(θ, x
(i) + δ(i)),

and ∥δ(i)∥p ≤ η ∀i ∈ {1, 2, .., Ndb},

(8)
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Figure 2: We present here two variants of Anti-DreamBooth, namely Fully-trained Surrogate Model Guidance (FSMG) and
Alternating Surrogate and Perturbation Learning (ASPL). Both methods craft the adversarial noise δ using Projected Gradient
Descent (PGD) to maximize the reconstruction loss Lcond of the surrogate model. Left: FSMG uses a fixed surrogate model
θclean fully finetuned on a small clean image set XA to guide the PGD optimization. Right: ASPL alternates between (i)
finetuning a clone surrogate model θ′ on clean images XA, and (ii) using this clone model to craft δ for the current image set
X i

B via PGD. The actual surrogate model θ is then finetuned on the perturbed images X i+1
B before the next iteration.

where Ldb is defined in Eq. 7 and A(ϵθ∗ ,X ) is some per-
sonalization evaluation function that assesses the quality of
images generated by the DreamBooth model ϵθ∗ and the
identity correctness based on the reference image set X .

However, it is hard to define a unified evaluation function
A. A defense succeeds when the DreamBooth-generated
images satisfy one of the criteria: (1) awful quality due to
extreme noise, blur, distortion, or noticeable artifacts, (2)
none or unrecognizable human subjects, (3) mismatched
subject identity. Even with the first criteria, there is no all-
in-one image quality assessment metric. Instead, we can
use simpler objective functions disrupting the DreamBooth
training to achieve the same goal.

We further divide the defense settings into categories,
from easy to hard: convenient, adverse, and uncontrolled.
Convenient setting. In this setting, we have prior knowl-
edge about the pretrained text-to-image generator, training
term (e.g., “sks”), and training prompt c the attacker will
use. While sounding restricted, it is practical. First, the pre-
trained generator has to be high-quality and open-source.
So far, only Stable Diffusion has been made publicly avail-
able with several versions released. Second, people often
use the default training term and prompt provided in Dream-
Booth’s code. This setting is considered as “white-box”.
Adverse settings. In these settings, the pretrained text-to-
image generator, training term, or training prompt used by
the adversary is unknown. The defense method, if needed,

can use a surrogate component that potentially mismatches
the actual one to craft the adversarial noises. These settings
can be considered as “gray-box”.
Uncontrolled setting. This is an extra, advanced setting in
which some of the user’s clean images are leaked to the pub-
lic without our control. The adversary, therefore, can collect
a mix of perturbed and clean imagesX ′

db = X ′
adv∪Xcl, with

X ′
adv ⊂ X ′ and Xcl ⊂ X . This setting is pretty challenging

since the DreamBooth model can learn from unperturbed
photos to generate reasonable personalized images.

4. Proposed defense methods
4.1. Overall direction

As discussed, we can aim to attack the learning process
of DreamBooth. As the DreamBooth model overfits the ad-
versarial images, we can trick it into performing worse in
reconstructing clean images:

δ∗(i) =argmax
δ(i)

Lcond(θ
∗, x(i)),∀i ∈ {1, .., Ndb},

s.t. θ∗ = argmin
θ

Ndb∑
i=1

Ldb(θ, x
(i) + δ(i)),

and ∥δ(i)∥p ≤ η ∀i ∈ {1, .., Ndb},

(9)

where Lcond and Ldb are defined in Eq. 6 and 7. Note that,
unlike traditional adversarial attacks, our loss functions are
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computed only at a randomly-chosen timestep in the denois-
ing sequence during training. Still, this scheme is effective
in breaking the generation output (Sec. 5).

4.2. Algorithms

The problem in Eq. 9 is still a challenging bi-level op-
timization. We define different methods to approximate its
solution based on prominent techniques used in literature.
Fully-trained Surrogate Model Guidance (FSMG).
Most previous image cloaking approaches [52, 52, 60] em-
ploy a model trained on clean data as a surrogate to guide
the adversarial attack. We can naively follow that direc-
tion by using a surrogate DreamBooth model with hyper-
parameters θclean fully finetuned from a small subset of sam-
ples XA ⊂ X . This set does not need to cover the tar-
get images Xdb = {x(i)}Ndb

i=1 ; it can be fixed, allowing the
surrogate model to be learned once regardless of the con-
stant change of X and Xdb. After getting θclean, we can
use it as guidance to find optimal noise for each target im-
age δ∗(i) = argmaxδ(i) Lcond(θclean, x

(i) + δ(i)). By doing
so, we expect any DreamBooth model finetuned from the
perturbed samples to stay away from θclean.
Alternating Surrogate and Perturbation Learning
(ASPL). Using a surrogate model full-trained on clean data
may not be a good approximation to solve the problem in
Eq. 9. Inspired by [26], we propose to incorporate the train-
ing of the surrogate DreamBooth model with the perturba-
tion learning in an alternating manner. The surrogate model
ϵθ is first initiated with the pretrained weights. In each iter-
ation, a clone version ϵ′θ′ is finetuned on the reference clean
data XA, following Eq. (7). This model is then utilized to
expedite the learning of adversarial noises δ(i) in the current
loop. Finally, we update the actual surrogate model ϵθ on
the updated adversarial samples, and move to the next train-
ing iteration. We provide a snippet for one training iteration
in Eq. 10. With such a procedure, the surrogate model bet-
ter mimics the true models trained by the malicious Dream-
Booth users since it is only trained on perturbed data.

θ′ ← θ.clone()

θ′ ← argmin
θ′

∑
x∈XA

Ldb(θ
′, x)

δ(i) ← argmax
δ(i)

Lcond(θ
′, x(i) + δ(i))

θ ← argmin
θ

Ndb∑
i=1

Ldb(θ, x
(i) + δ(i)).

(10)

Targeted approaches. The proposed algorithms above are
untargeted; each perturbation noise is learned to maximize
the reconstruction lossLcond. Therefore, the adversarial ex-
amples x(i) + δ(i) may guide the target DreamBooth model
to learn different adversarial directions, potentially cancel-
ing out their effects. Inspired by the success of targeted at-

tacks in [52], we can select a single target xtar to learn op-
timal δ such that the output of model is pulled closer to xtar

t

when trained with (x+δ)t. This targeted attack scheme can
be plugged into all previous methods, and we denote new
algorithms with the prefix “T-”, e.g., T-FSMG and T-ASPL.
Ensemble approaches. In adverse settings, the pretrained
text-to-image generator used by the attacker is unknown.
While we can pick one to train the perturbation and hope it
transfers well to the target generator, one better approach is
to use an ensemble [15, 59] of surrogate models finetuned
from different pretrained generators. This approach can be
an easy plug-in for the previous approaches. Due to mem-
ory constraints, instead of using these surrogate models all
at once, we only used a single model at a time, in an inter-
leaving manner, to produce optimal perturbed data.

5. Experiments

5.1. Experimental setup

Datasets. To evaluate the effectiveness of the proposed
methods, we look for facial benchmarks that satisfy the fol-
lowing criteria: (1) each dataset covers a large number of
different subjects with identity annotated, (2) each subject
must have enough images to form two image sets for refer-
ence (XA) and protection (Xdb), (3) the images should have
mid- to high-resolution, (4) the images should be diverse
and in-the-wild. Based on those criteria, we select two fa-
mous face datasets CelebA-HQ [29] and VGGFace2 [11].

CelebA-HQ is a high-quality version of CelebA [34] that
consists of 30, 000 images at 1024 × 1024 resolution. We
use the annotated subset [2] that filters and groups images
into 307 subjects with at least 15 images for each subject.

VGGFace2 [11] contains around 3.31 million images of
9131 person identities. We filter the dataset to pick subjects
that have at least 15 images of resolution above 500× 500.

For fast but comprehensive evaluations, we choose 50
identities for each dataset. For each subject in these
datasets, we use the first 12 images and divide them into
three subsets, including the reference clean image set, the
target protecting set, and an extra clean image set for uncon-
trolled setting experiments (Sec. 5.5). Each mentioned sub-
set has 4 images with diverse conditions. We then center-
crop and resize images to resolution 512× 512.
Training configurations. We train each DreamBooth
model, both text-encoder and UNet model, with batch size
of 2 and learning rate of 5 × 10−7 for 1000 training steps.
By default, we use the latest Stable Diffusion (v2.1) as the
pretrained generator. Unless specified otherwise, the train-
ing instance prompt and prior prompt are “a photo of sks
person” and “a photo of person”, respectively. It takes 15
minutes to train a model on an NVIDIA A100 GPU 40GB.

We optimize the adversarial noise δ(i) in each step of
FSMG and ASPL using the untargeted PGD scheme (Eq.
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Dataset Method “a photo of sks person” “a dslr portrait of sks person”
FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑ FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑

VGGFace2

No Defense 0.07 0.63 0.73 15.61 0.21 0.48 0.71 9.64
FSMG 0.56 0.33 0.31 36.61 0.62 0.29 0.37 38.22
ASPL 0.63 0.33 0.31 36.42 0.76 0.28 0.30 39.00
T-FSMG 0.07 0.58 0.74 15.49 0.28 0.44 0.71 17.29
T-ASPL 0.07 0.57 0.72 15.36 0.39 0.44 0.70 20.06

CelebA-HQ

No Defense 0.10 0.68 0.72 17.06 0.26 0.44 0.72 7.30
FSMG 0.34 0.48 0.56 36.13 0.35 0.36 0.66 33.60
ASPL 0.31 0.50 0.55 38.57 0.34 0.39 0.63 34.89
T-FSMG 0.06 0.64 0.73 25.75 0.24 0.45 0.73 8.04
T-ASPL 0.06 0.64 0.73 20.58 0.26 0.46 0.72 5.36

Table 1: Comparing the defense performance of the proposed methods in a convenient setting on different datasets.

FSMG ASPL T-FSMGNo defense T-ASPL

Input

“a photo 
of sks 

person”

“a dslr 
portrait 
of sks 

person”

(a) Comparison between proposed methods

“a photo of 
sks person 

looking at the 
mirror”

“a close-up 
photo of sks 
person, high 

details”

“a photo of 
sks person in 
front of eiffel 

tower”

(b) Inference prompts

Figure 3: Qualitative defense results for two subjects in VGGFace2 in the convenient setting. Best viewed in zoom.

3). We use 100 PGD iterations for FSMG and 50 iterations
for ASPL. Both methods use α = 0.005 and the default
noise budget η = 0.05. It takes 2 and 5 minutes for FSMG
and ASPL to complete on an NVIDIA A100 GPU 40GB.

Evaluation metrics. Our methods aim to disrupt the target
DreamBooth models, making them produce poor images of
the target user. To measure the defense’s effectiveness, for
each trained DreamBooth model and each testing prompt,
we generate 30 images. We then use a series of metrics to
evaluate these generated images comprehensively.

Images generated from successfully disrupted Dream-
Booth models may have no detectable face, and we mea-
sure that rate, called Face Detection Failure Rate (FDFR),
using RetinaFace detector [17]. If a face is detected, we
extract its face recognition embedding, using ArcFace rec-
ognizer [18], and compute its cosine distance to the average
face embedding of the entire user’s clean image set. This
metric is called Identity Score Matching (ISM). Finally,
we use two extra image quality assessment metrics. One
is SER-FQA [55], which is an advanced, recent metric ded-
icated to facial images. The other is BRISQUE [36], which
is classical and popular for assessing images in general.

5.2. Convenient setting

We first evaluate the proposed defense methods, includ-
ing FSMG, ASPL, T-FSMG, and T-ASPL, in a convenient
setting on the two datasets. We try two image generation
prompts, one used in training (“a photo of sks person”)
and one novel, unseen prompt (“a dslr portrait of sks per-
son”). The average scores over DreamBooth-generated im-
ages with each defense are reported in Table 1. As can
be seen, the untargeted defenses significantly increase the
face detection failure rates and decrease the identity match-
ing scores, implying their success in countering the Dream-
Booth threat. We provide some qualitative images in Fig.
3a. As expected, ASPL defends better than FSMG since it
mimics better the DreamBooth model training at test time.
Targeted methods perform poorly, suggesting that the noise
generated by these methods, while providing more consis-
tent adversarial guidance in DreamBooth training, is sub-
optimal and ineffective. Since ASPL performs the best, we
will try only this method in all follow-up experiments.
Qualitative Evaluation. We further evaluate ASPL via a
user study with 40 participants. For each of 50 identities in
VGGFace2, we train two DreamBooth models on (1) origi-
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Version Defense? “a photo of sks person” “a dslr portrait of sks person”
FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑ FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑

v1.4 ✗ 0.05 0.46 0.65 21.06 0.08 0.43 0.64 10.05
✓ 0.80 0.18 0.12 26.76 0.17 0.28 0.55 13.07

v1.5 ✗ 0.07 0.49 0.65 18.53 0.07 0.45 0.64 10.57
✓ 0.71 0.20 0.20 22.98 0.11 0.26 0.57 16.10

Table 2: Defense performance of ASPL with different generator versions on VGGFace2 in a convenient setting.

η
Quality “a photo of sks person” “a dslr portrait of sks person”

PSNR↑ LPIPS↓ FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑ FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑
0 - - 0.07 0.63 0.73 15.61 0.21 0.48 0.71 9.64

0.01 48.74 0.01 0.08 0.58 0.72 33.03 0.28 0.45 0.72 17.14
0.03 38.42 0.12 0.44 0.38 0.38 36.45 0.55 0.32 0.43 37.86
0.05∗ 34.56 0.21 0.63 0.33 0.31 36.42 0.76 0.28 0.30 39.00
0.10 28.77 0.40 0.76 0.21 0.22 37.33 0.86 0.23 0.26 40.92
0.15 25.97 0.50 0.80 0.15 0.15 37.07 0.91 0.17 0.14 41.18

Table 3: Quality of protected images and defense performance of ASPL with different noise budgets on VGGFace2 in a
convenient setting. “*” is default.

nal and (2) ASPL-perturbed images. From each model, we
generate 6 images with the prompt “A photo of sks person”.
Users are asked to input the numbers of good-quality and
correct-identity images for each set. The average numbers
are used as evaluation scores (lower is better). ASPL sig-
nificantly degraded the quality (4.72 to 0.42) and identity
preservation (3.70 to 1.16) of the generated images, con-
firming our method’s effectiveness.

5.3. Ablation studies

Text-to-image generator version. In previous experi-
ments, we used Stable Diffusion (SD) v2.1 as the pretrained
text-to-image generator. In this section, we examine if our
proposed defense (ASPL) is still effective when using dif-
ferent pretrained generators. Since SD is the only open-
source large text-to-image model series, we try two of its
versions, including v1.4 and v1.5. Note that while belong-
ing to the same model family, these models, including v2.1,
are slightly different in networks and behaviors. As reported
in Table 2, ASPL shows consistent defense effectiveness.
Noise budget. Next, we examine the impact of noise budget
η on ASPL attack using SD v2.1. As illustrated in Table 3,
our defense is already effective with η = 0.03. The larger
the noise budget is, the better defense performance we get,
at the cost of the perturbation’s stealthiness.
Inference text prompt. As indicated in Table 1, ASPL
well-disturbs images generated with an unseen text prompt
(“a dslr portrait of sks person”). We further test the ASPL-
disturbed DreamBooth models with different inference text
prompts and get similar results. Fig. 3b provides some ex-
amples generated with these extra prompts.
Textual Inversion [20] and DreamBooth with LoRA [24].
We additionally test ASPL againts other personalized text-
to-image techniques. Textual Inversion learns new concepts

by optimizing a word vector instead of finetuning the full
model. LoRA uses low-rank weight updates to improve
memory efficiency and is commonly used by the commu-
nity. While being weaker than DreamBooth, they can be
used to verify the robustness of our defense. As shown in
Table 7, ASPL successfully defends against both methods,
further demonstrating our effectiveness against other per-
sonalization techniques.

5.4. Adverse settings

In this section, we investigate if our proposed defense
still succeeds when some component is unknown, leading to
a mismatch between the perturbation learning and the target
DreamBooth model finetuning processes. Unless otherwise
specified, all experiments will be conducted using ASPL
with SD V2.1 and on the VGGFace2 dataset.
Model mismatching. The first scenario is when the pre-
trained generators are mismatched. We provide an example
of transferring adversarial noise trained on SD v1.4 to de-
fend DreamBooth models trained from v2.1 and v2.0 in the
first and third rows in Table 4. ASPL still provides good
scores as in Table 1. We also examine the ensemble solu-
tion suggested in the literature, as discussed in Sec. 4.2. We
combine that ensemble idea with ASPL, called E-ASPL, us-
ing SD v1.4, 1.5, and 2.1. It further improves the defense in
both cases, as illustrated in the upper half of Table 4.
Term mismatching. The malicious user can change the
term representing the target from the default value (“sks”) to
another, e.g., “t@t”. As reported in the first row in the lower
half of Table 4, this term mismatch has only a moderate
effect on our results; key scores, like ISM, are still good.
Prompt mismatching. The malicious user can also use a
different DreamBooth training prompt. ASPL still provides
low ISM scores, as reported in the last row of Table 4.
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Train Test “a photo of sks person” “a dslr portrait of sks person”
FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑ FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑

Model
mismatch

v1.4 v2.1 0.62 0.31 0.28 36.00 0.70 0.31 0.35 38.39
v1.4 v2.0 0.70 0.27 0.23 36.83 0.61 0.26 0.31 37.28

Ensemble v1.4, 1.5, 2.1 v2.0 0.79 0.24 0.18 37.96 0.71 0.23 0.23 38.99
v1.4, 1.5, 2.1 v2.1 0.70 0.27 0.28 36.71 0.75 0.29 0.33 39.23

Term/
Prompt
mismatch

DreamBooth prompt “a photo of S∗ person” “a dslr portrait of S∗ person”
FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑ FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑

“sks”→ “t@t” 0.34 0.30 0.48 36.67 0.34 0.28 0.52 28.17
“a dslr portrait of sks person” 0.07 0.15 0.69 17.34 0.49 0.37 0.36 38.42

Table 4: Defense performance of ASPL on VGGFace2 when the model, term, or prompt used to train the target DreamBooth
model is different from the one used to generate defense noise and when the ensemble technique is applied. Here, S∗ is “t@t”
for the first row and “sks” for second row.

Perturbed Clean “a photo of sks person” “a dslr portrait of sks person”
FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑ FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑

4 0 0.63 0.33 0.31 36.42 0.76 0.28 0.30 39.00
3 1 0.50 0.43 0.41 35.53 0.52 0.35 0.51 34.01
2 2 0.29 0.53 0.61 28.99 0.40 0.37 0.62 26.13
1 3 0.08 0.61 0.73 18.92 0.27 0.45 0.70 15.55
0 4 0.07 0.63 0.73 15.61 0.21 0.48 0.71 9.64

Table 5: Defense performance of ASPL on VGGFace2 in uncontrolled settings. We include two extra results with 0 clean
image (convenient setting) and 0 perturbed image (no defense) for comparison.

FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑
ASPL 0.63 0.33 0.31 36.42
Gaussian Blur K=3 0.48 0.42 0.39 42.05
Gaussian Blur K=5 0.19 0.51 0.62 42.46
Gaussian Blur K=7 0.10 0.56 0.68 43.72
Gaussian Blur K=9 0.07 0.59 0.71 40.67
JPEG Comp. Q=10 0.09 0.58 0.71 43.93
JPEG Comp. Q=30 0.08 0.59 0.73 32.56
JPEG Comp. Q=50 0.11 0.56 0.70 30.29
JPEG Comp. Q=70 0.19 0.49 0.56 37.04
No def., no preproc. 0.07 0.63 0.73 15.61

Table 6: ASPL’s performance on VGGFace2, using the
prompt “A photo of sks person”.

Def.? FDFR↑ ISM↓ SER-FQA↓ BRISQUE↑
TI ✗ 0.06 0.50 0.67 7.79
TI ✓ 0.43 0.12 0.59 36.79
LoRA ✗ 0.06 0.52 0.69 17.25
LoRA ✓ 0.64 0.23 0.27 42.07

Table 7: ASPL’s performance against Textual Inversion and
LoRA DreamBooth, the prompt is “A photo of sks person”.

Image preprocessing. We also evaluate the robustness
of our defense under common image preprocessing tech-
niques. As shown in Table 6, applying Gaussian blur or
JPEG compression on protected images slightly weakens
the defense. However, the impact on generated image qual-
ity remains significant, as evidenced by the high BRISQUE
scores across different settings. Hence, our defense demon-
strates reasonable robustness against these techniques.
Real-world test. Our method successfully disrupts person-

alized images generated by Astria [1], a black-box commer-
cial service (see the Supplementary).

5.5. Uncontrolled settings

Anti-DreamBooth is designed for controlled settings, in
which all images have protection noises added. In this sec-
tion, we examine when the assumption does not hold, i.e.,
the malicious user gets some clean images of the target sub-
ject and mixes them with the perturbed images for Dream-
Booth training. Assuming the number of images for Dream-
Booth finetuning is fixed as 4, we examine three configura-
tions with the number of clean images increasing from 1
to 3 (Table 5). Our defense is still effective when half of
the images are perturbed, but its effectiveness reduces when
more clean images are introduced. Still, these uncontrolled
settings can be prevented if our system becomes popular
and used by all social media with lawmakers’ support.

6. Conclusions
This paper reveals a potential threat of misused Dream-

Booth models and proposes a framework to counter it. Our
solution is to perturb users’ images with subtle adversarial
noise so that any DreamBooth model trained on those im-
ages will produce poor personalized images. We designed
several algorithms and extensively evaluated them. Our de-
fense is effective, even in adverse conditions. In the future,
we aim to improve the perturbation’s imperceptibility and
robustness [15, 59, 58] and conquer uncontrolled settings.
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