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Abstract

We describe a method to parse a complex, cluttered in-
door scene into primitives which offer a parsimonious ab-
straction of scene structure. Our primitives are simple con-
vexes. Our method uses a learned regression procedure to
parse a scene into a fixed number of convexes from RGBD
input, and can optionally accept segmentations to improve
the decomposition. The result is then polished with a de-
scent method which adjusts the convexes to produce a very
good fit, and greedily removes superfluous primitives. Be-
cause the entire scene is parsed, we can evaluate using
traditional depth, normal, and segmentation error metrics.
Our evaluation procedure demonstrates that the error from
our primitive representation is comparable to that of pre-
dicting depth from a single image.

1. Introduction
Primitive based abstractions of geometry offer simpler

reasoning – it is easier, for example, to deal with a fridge
as a cuboid than attend to the detailed curves around a cor-
ner. But obtaining primitive representations that abstract
usefully and accurately has been hard. Parsing isolated ob-
jects into parts has seen considerable recent progress, but
parsing indoor scenes into collections of primitives has re-
mained difficult. We describe a method to decompose in-
door scenes into convex primitives which largely describe
the scene. Our method is trained on labeled RGBD + se-
mantic segmentation maps, and the predicted decomposi-
tion can be refined on depth + segmentation maps that are
predicted from a suitable pretrained network.

Our method draws on a long history of fitting primitives
to objects with two main methods (review Sec. 2). A de-
scent method chooses primitives for a given geometry by
minimizing a cost function. These methods are plagued by
local minima and robustness issues. A regression method
uses a learned predictor to map geometry to primitives and
their parameters. These methods can pool examples to
avoid local minima, but may not get the best prediction for a
given input. Our method uses regression to predict an initial

Figure 1. Our method decomposes complex cluttered indoor
scenes into simple geometric shapes. The segmentation itself is su-
pervised from known labels, and the losses attempt to capture the
geometric information in the depth map input with a pre-defined
number of convexes. A convex decomposition predicted by a neu-
ral network is the input to a refinement process that removes excess
parts while improving the fit. Top row: Test RGB image, depth
map input, ground truth normals. Bottom row: predicted seg-
mentation, predicted depth map, predicted normals. Notice how
strongly the predicted depth and normals match the ground truth.
Different from previous work, our method generally captures the
whole input, allowing traditional depth and normal error metrics.

decomposition, then applies descent to polish the primitives
for each particular test geometry. We show that both steps
are critical to achieving a good fit.

It can be hard to tell if a primitive based representation
captures the abstraction one wants. But for a representation
to be useful, it must have three necessary properties:

1. Accuracy: The primitives should represent the orig-
inal geometry. As Section 4 demonstrates, we do
not need to create metrics specifically for scene pars-
ing and instead existing evaluation procedures from
depth/segmentation prediction literature are sufficient.

2. Segmentation: Generally, the decomposition should
“make sense.” For isolated objects, this means that
each primitive should correspond to an object part
(which is difficult to evaluate). For scenes, this means
that each primitive should span no more than one ob-
ject. An object might be explained by multiple prim-
itives, but a primitive should not explain multiple ob-
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jects. This property is not usually evaluated quantita-
tively; we show that it can be.

3. Parsimony: In line with previous geometric decom-
position work, we desire a representation with as few
primitives as possible. In this work, we show that our
method can vary the number of primitives per-scene
by initially starting with a fixed number, and allowing a
post-process to find and remove unnecessary convexes.

Our contributions are:

1. Our primitive decomposition method for indoor scenes
is a simple procedure that works well on established
and novel metrics on the benchmark NYUv2 dataset.
In particular, we are the first, to our knowledge, to eval-
uate primitive decompositions using standard metrics
for depth, normal, and segmentation.

2. We show our mixed strategy offers drastic advantages
over either descent or regression methods in isolation.
The key insight is that convex fitting to noisy indoor
scenes is extremely difficult via pure optimization, but
very good start points can be generated via regression.

3. We are the first to use segmentation labels to drive
primitive generation.

2. Related Work
There is a huge early literature on decomposing scenes or

objects into primitives for computer vision. Roberts worked
with scenes and actual blocks [42]; Binford with general-
ized cylinder object descriptions [4]; and, in human vision,
Biederman with geon descriptions of objects [3]. A rep-
resentation in terms of primitives offers parsimonious ab-
straction (complex objects could be handled with simple
primitives; an idea of broad scope [7]) and natural segmen-
tation (each primitive is a part [3, 4, 49]). Desirable prim-
itives should be easily imputed from image data [35, 43],
and allow simplified geometric reasoning [37]. Generally,
fitting was by choosing a set of primitives that minimizes
some cost function (descent).

There has been much focus on individual objects (as
opposed to scenes). Powerful neural methods offer the
prospect of learning to predict the right set of primitives
from data – a regression method. Such methods can avoid
local minima by predicting solutions for test data that are
“like” those that worked for training data. Tulsiani et
al. demonstrate a learned procedure that can parse 3D
shapes into cuboids, trained without ground truth segmen-
tations [48]. Zou et al. demonstrate parses using a re-
current architecture [53]. Liu et al. produce detailed re-
constructions of objects in indoor scenes, but do not at-
tempt parsimonious abstraction [32]. There is alarming ev-

Figure 2. (top row) RGB image input, (middle row) cuboid decom-
position predicted by [26], (bottom) our decomposition. Qualita-
tive comparison of our method against previous work. Our method
achieves better coverage of the input image (notice white patches
in [26]), enabling direct comparison of the resulting depth and nor-
mals against the GT using established techniques instead of hand-
crafted metrics.

idence that 3D reconstruction networks rely on object iden-
tity [47]. Deng et al. (CVXNet) recover representations
of objects as a union of convexes from point cloud and
image data, again without ground truth segmentations [8].
Individual convexes appear to map rather well to parts.
An early variant of CVXNet can recover 3D representa-
tions of poses from single images, with reasonable parses
into parts [9]. Meshes can be decomposed into near con-
vex primitives, by a form of search [52]. Part decomposi-
tions have attractive editability [19]. Regression methods
face some difficulty producing different numbers of prim-
itives per scene (CVXNet uses a fixed number; [48] pre-
dicts the probability a primitive is present; one also might
use Gumbel softmax [23]). Primitives that have been ex-
plored include: cuboids [5, 13, 33, 48, 41, 44, 46, 27];
superquadrics [2, 22, 36]; planes [7, 30]; and generalized
cylinders [35, 54, 29]. There is a recent review in [12].

Another important case is parsing outdoor scenes.
Hoiem et al parse into vertical and horizontal surfaces [20,
21]; Gupta et al demonstrate a parse into blocks [14]. Yet
another is indoor scenes. From images of indoor scenes,
one can recover: a room as a cuboid [16]; beds and some
furniture as boxes [17]; free space [18]; and plane layouts
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Figure 3. An overview of our inference procedure. An RGBD image and segmentation map is the input to an encoder-decoder. A series
of losses supervise the training process, requiring samples labeled as “inside” or “outside.” The network tries to adjust the convexes to
classify the points correctly. The network output can be optionally refined by greedily removing primitives that do not increase the loss,
splitting convexes (effectively trading off parsimony for granularity) and finally directly optimizing the convex parameters with respect to
the losses. This refinement procedure accepts a segmentation map and depth map (either GT or inferred e.g. [40, 39, 6]). Note that the
network is unaware of the refinement process during training - it just tries to predict the best decomposition possible via the losses. The
final decomposition can be visualized by ray marching from the original viewpoint and labeling each convex with a different color. Unlike
previous methods, we can evaluate our approach against the original depth map by using traditional depth and normal error metrics.

[45, 31]. If RGBD is available, one can recover layout
in detail [55]. Patch-like primitives can be imputed from
data [11]. Jiang demonstrates parsing RGBD images into
primitives by solving a 0-1 quadratic program [24]. Like
that work, we evaluate segmentation by primitives (see [24],
p. 12), but we use original NYUv2 labels instead of the
drastically simplified ones in the prior work. Also, our
primitives are truly convex. Most similar to our work is
that of Kluger et al, who identify cuboids sequentially with
a RANSAC-like greedy algorithm [26]. In contrast, our net-
work parses the entire depth map in one go, and the primi-
tives are subsequently refined.

The success of a descent method depends critically on
the start point, typically dealt with using greedy algorithms
(rooted in [10]; note the prevalence of RANSAC in a recent
review [25]); randomized search [38, 15]; or multiple starts.
Regression methods must minimize loss over all training
data, so at inference time do not necessarily produce the
best representation for the particular scene. The prediction
is biased by the need to get other scenes right, too. To man-
age this difficulty, we use a mixed reconstruction strategy –
first, predict primitives using a network, then polish using
descent combined with backward selection.

It is usual that segmentations are a by-product of fitting
primitives, and that regression methods are learned with-
out any segmentation information. In contrast, our method
uses semantic segmentation results to both predict and pol-
ish primitives. We do so because we predict primitives from
images of real scenes (rather than renderings of isolated ob-
jects), and reliable methods for semantic segmentation of
scenes are available. We know of no other method that ex-
ploits segmentation results in this way.

3. Method - Convex Decomposition

At runtime, we seek a collection of primitives that mini-
mizes a set of losses 3.1. We will obtain this by (a) passing
inputs into a network to predict a start point then (b) pol-
ishing these primitives. The network is trained to produce a
fixed length set of primitives that has a small loss 3.4. Pol-
ishing uses a combination of descent and greedy strategies
3.2. We summarize our procedure in Fig. 3.

3.1. Losses

Our losses use samples from depth 3.3. We begin with
the losses and hyperparameters of [8]. A signed distance
function of each point Φ(x) against every halfplane is de-
fined using logsumexp to facilitate smooth learning. An
indicator function based on sigmoid outputs a continuous
classification score per-point between [0, 1] effectively indi-
cating whether a sample is outside all convexes or inside at
least one. The primary loss is a sample loss that encourages
the convexes to classify each sample correctly. We found
the remaining auxiliary losses in the paper to be beneficial
and adopted them with default hyperparameters. Addition-
ally, in our early experiments we noticed long and thin con-
vexes generated occasionally during training, whereas the
types of convexes we’re interested in tend to be cuboidal.
Thus we modify the unique parametrization loss to pe-
nalize small offsets:

Lunique =
1

H

∑
h

||dh||2 +
1

H

∑
h

||1/dh||2 (1)

where H = 6 is the number of halfplanes per convex.
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Figure 4. Results from our convex decomposition method (third row) as compared with prior work from [26] (second row), which does not
model the whole input. Using our data generation strategy and hybrid method, our primitives obtain better coverage. Our refinement and
pruning process started from a fixed number of convexes (24 in this example) and was able to represent these scenes with an average of 14
convexes.

Manhattan World Losses We introduce three auxil-
iary losses to help orient the convexes in a more structured
way. We have the network predict 9 additional parameters
M ∈ R3×3 encoding a Manhattan world, and encourage
orthonormality with the loss:

Lortho =
1

9

∑
(I −M′M)2 (2)

where M′ is the transpose, and I is the identity. The weight
of this loss is 10.

Next, we must introduce an alignment loss that encour-
ages the faces of each convex to follow the Manhattan world
(which forces us to fix the number of planes per convex to
6 for simplicity). Let N be the 3 × 6 matrix containing
the predicted normals of a given convex as its columns. Let
W = [M;−M] be the 3 × 6 matrix capturing the Man-
hattan world basis and its negative. The second auxiliary
loss is given by maximizing the element-wise dot product
between N and W:

Lalign = 1− 1

6

∑
N ·W (3)

We normalize the Manhattan world vectors in M before ap-
plying Lalign, and set its weight to 1. This loss effectively
enforces an order for the normals within each convex.

Finally, we establish an explicit ordering of the convexes
themselves, encouraging the network to generate them in
order of volume. Since the predicted convexes are approx-
imately cuboids, the volume of a convex can be estimated
with (d0+ d3) ∗ (d1+ d4) ∗ (d2+ d5) where di is the offset
for halfplane i. Given a vector V ∈ RK of volumes where

there are K convexes at training time, we can encourage the
network generate convexes in order of volume:

Lvol =
1

K

∑
ReLU(V[1 :]− V[0 : −1]) (4)

The weight of this loss is 1. In practice, we observed that
the first (and largest convex) was almost always the floor.
Downstream applications may benefit from having the con-
vexes presented sorted by size. As we show in our supple-
ment, the volume loss has an approx. neutral effect on the
error metrics but did improve parsimony.

We set the number of convexes K = 24. With more con-
vexes, structures that could be explained by one convex may
be explained by multiple potentially overlapping convexes
in some scenes, which we notice in practice. However, seg-
mentation accuracy generally improves with more parts due
to the increased granularity.

Segmentation Loss We construct a loss to encourage the
convexes to respect segmentation boundaries. Ideally, each
face of each convex (or, alternatively, each convex) spans
one label category in the image. To compute this loss, we
obtain a smoothed distribution of labels spanned by a face
(resp. convex), then penalize the entropy of the distribution.
This loss penalizes convexes that span many distinct labels
without attending to label semantics. We use the standard
40 NYUv2 labels, with one background label.

To compute the loss for convexes, write C for the K×N
matrix representing the indicator function response for each
inside surface sample for each convex, and L for the N×41
one-hot encoding of the segment label for each sample.
Then each row of CL represents the count of labels within
each convex, weighted so that a sample that is shared be-
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tween convexes shares its label. We renormalize each row
to a distribution, and compute the sum of entropies. To com-
pute the loss for convex faces we obtain Cf , (6K) × N
matrix, where each row of Cf corresponds to a face. For
the row corresponding to the i’th face of the k’th convex,
we use the k’th row of C masked to zero if the closest face
to the sample is not i. Then each row of CfL represents
the count of labels spanned by each face, weighted so that
a sample that is shared between faces shares its label. We
renormalize each row to a distribution, and compute the sum
of entropies.

Lentropy =
1

6K

∑
entropy(CfL) (5)

We train with GT segmentation labels from NYUv2.
During refinement, we can either use a GT segmentation
map if available, or an inferred map (we use [6]). We ex-
perimentally weight Lentropy to 1.

3.2. Polishing

Our network produces reasonable decompositions.
However, it does not produce the best possible fit for a par-
ticular input. The network is a mapping that produces an
output with a good loss value on average. Unlike the usual
case, we can provide all necessary information to evaluate
losses at inference time, and so we can polish the network
output for a given input. Thus to improve our primitives,
we apply a descent procedure on the network predictions
using the original loss terms applied to a very large number
of samples from the test-time input, refining our predicted
primitives significantly.

The number of samples per scene at training time is lim-
ited (18K per image); the refinement process allows using
a large number of samples (we use 250K) during optimiza-
tion because the batch size is only 1. We refine for 500
iterations with SGD optimizer, learning rate 0.01, adding
about 40 seconds to the inference time.

Furthermore, in our experimentation we have not found
existing methods to control the number of primitives partic-
ularly effective for this problem [48]. Thus in this work
we use simple backward selection to remove primitives.
For each primitive, we evaluate the loss with that primi-
tive removed. If the loss does not go up by more than
ϵprune = 0.001 then we remove it and continue searching.
In practice, this removal procedure requires K additional
forward passes through the network but helps find a more
parsimonious representation of the input.

We remind the reader that the network input is an RGBD
image (both training and test time). When applying the op-
tional segmentation loss eqn. 5, a segmentation map is re-
quired. At test time, the network still requires an RGBD
image to obtain an initial set of primitives; if applying pol-
ishing, a depth map is required and segmentation map is

optional. At test time, “oracle” refers to GT depth and
segmentation being available, whereas “non-oracle” refers
to depth and segmentation maps inferred by off-the-shelf
depth/segmentation networks.

Finally, before applying this polishing, we can optionally
increase the number of primitives by splitting each convex
into 8 pieces. For parallelepipeds, the child convexes can
inherit the parent’s normals, child offsets are half of the par-
ent’s, and new translations can be computed by taking the
midpoint of the original translation coordinate and each of
the 8 corners. We focus our experimentation on 0 or 1 splits,
as the number of parts grows very quickly. Future work may
consider only splitting convexes that show high error with
respect to the provided depth or segmentation.

3.3. Sampling

The philosophy of our sampling strategy is to encour-
age placement of convexes to overlap objects in the scene,
and discourage placement of convexes where we do not
want them. Our losses require samples that can be obtained
from the input depth map and camera calibration parame-
ters translating each pixel to a world space 3D coordinate.
Given those world space coordinates, we then re-scale the
coordinates (per depth map) to lie in a range amenable to
training neural networks (approx. a unit cube). Because
we work with 240x320 pixel depth maps (4:3 aspect ra-
tio), we rescale X coordinates to lie between [− 2

3 ,
2
3 ]; Y

coordinates between [−0.5, 0.5] and Z coordinates between
[0,0.8]. Downstream we need the parameters used to trans-
form a depth map back in the original scale to ray march the
predicted decomposition.

Surface samples From there we need to generate two
classes of samples: “free space” and “surface.” Each sample
is a 4-tuple combining the 3D normalized coordinate and
a binary label indicating whether the sample is inside the
desired volume (1) or outside (0). Inside surface samples
are generated by taking the normalized depth coordinates
and adding a small constant to Z (we use ϵsurf = 0.03,
obtained experimentally) resulting in the tuple (X,Y, Z +
ϵsurf , 1). Analogously, outside surface samples are given
by (X,Y, Z − ϵsurf , 0).

Free space samples We can generate free space sam-
ples on the fly as follows. Cast orthographic rays along the
Z dimension through each pixel and sample along that ray.
If the depth value of the random sample is less than the Z
value from the depth at that pixel, that sample is classified
as outside. If the depth of the random sample lies between
[Z,Z + t] (where t is a thickness parameter we experimen-
tally set to 0.1) then we classify the sample as inside. The
Z-coordinate of a random free space sample for pixel (i, j)
ranges from [−md, Z(i, j) + t] where we set md = −0.1
and Z(i, j) is the re-scaled depth value at pixel (i, j). To
avoid convexes deviating far from the inside samples, we
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Cfg. Prune Refine DepthGT SegGT ninit nused AbsRel↓ RMSE↓ Mean↓ Median↓ 11.25◦ ↑ 22.5◦ ↑ 30◦ ↑ SegAcc ↑
noInit × ✓ ✓ ✓ 24 24.0 0.447 1.604 81.286 80.566 0.021 0.061 0.096 0.359
noSeg × × × × 24 24.0 0.179 0.664 41.687 38.224 0.115 0.291 0.391 0.626

withSeg × × × × 24 24.0 0.310 1.231 52.305 48.846 0.088 0.231 0.317 0.528
A × ✓ × × 24 24.0 0.163 0.679 40.692 35.697 0.124 0.313 0.424 0.623
B × ✓ × × 24 24.0 0.166 0.696 41.019 35.964 0.122 0.310 0.421 0.623
C ✓ ✓ × × 24 14.4 0.144 0.603 38.235 33.621 0.133 0.335 0.451 0.615
D ✓ ✓ ✓ × 24 14.0 0.098 0.513 37.361 32.402 0.144 0.353 0.469 0.619
E ✓ ✓ ✓ ✓ 24 13.9 0.098 0.514 37.355 32.395 0.144 0.353 0.469 0.618
ref - - ✓ ✓ - - 0.110 0.357 14.9 7.5 0.622 0.793 0.852 0.719

Table 1. Ablation study with different configurations on 654 NYUv2 test images, all error metrics evaluated against ground truth. P refers
to whether pruning is applied during refinement, R refers to whether refinement optimization steps are taken, DGT and SegGT refer to
whether GT depth and segmentation were available during refinement (and inferred by pretrained networks if not). nstart refers to the
number of parts available at training time nused refers to the mean number of convexes remaining post-refinement. Unlike previous work,
we can evaluate directly against ground truth depth and normals. We evaluate depth error metrics (AbsRel/RMSE) [39], normal error
metrics (subsequent 5 columns) [51], and pixel-wise segmentation accuracy (last column) on the 654 NYUv2 test images previous work
considers [28, 26]. Segmentation accuracy assumes that we label each convex with the most common label within its boundary from the
ground truth segmentation before computing mean pixel-wise accuracy. noInit Polishing convexes from a random start point yields very
poor results. Since we cannot trust refinement with an arbitrary start point, we train a neural network (on the NYUv2 795 train split). noSeg
The convexes predicted by a neural network without refinement offer a dramatic improvement over directly optimizing from a random start
point. withSeg When training with the segmentation loss, all error metrics are worse. We’re not sure why this is, but as we show below,
all error metrics significantly improve when we add refinement. A We refine the network prediction with all losses except entropy (for
segmentation). Depth map for refinement is inferred by [39]. We notice further improvements in depth and normal metrics, but slightly
worse segmentation accuracy. B Same as A, but we refine with the segmentation loss, where segmentation maps are inferred by [6]. Overall,
introducing the segmentation loss has a neutral effect across the board. C We allow pruning unused convexes in the refinement process via
backward selection (note how nused drops). Observe how depth and normal metrics improve, but segmentation is slightly worse due to
there existing fewer convexes. D Same as C, but allow GT depth maps during refinement instead of inferred. We see a drastic improvement
in depth and normal error metrics. E we allow GT segmentation maps during refinement instead of inferred. This has an overall neutral
effect on the quality as compared with D. D and E rely on oracles and the best metrics for oracle systems are italicized. The best non-oracle
cfg. was C, and the best metrics are bolded. The last row ref shows the reference error of our pretrained depth estimation network, a recent
normal estimation work, and our pretrained segmentation network [39, 1, 6]. Our primitive decompositions using inferred depth/seg in C
show depth and segmentation metrics that are only a bit worse than ref., despite the challenging task of representing the scene with just a
few primitives. But the normals show a significant gap - this could be due to the presence of curved or complex geometry that can achieve
good depth error with just a simple convex, but cannot capture the intricacies in the normals. Further ablations in supplement.

also construct a shell of ”outside” free space samples around
all of the aforementioned samples. This shell can be thought
of as the difference of two cubes with identical center but
different edge length. We let the thickness of this shell be
0.3 and let it start at ±1.2 along the x-direction, ±1.0 along
the y-direction, and [−0.5, 1.3] along the z-direction, leav-
ing a min. 0.4 margin between any inside sample and these
outside shell samples along all axes. Thus during the train-
ing process the convexes have some volume to move freely
without any samples encouraging convexes to exist or not
exist in this ”gap” and they can focus on getting samples
near the depth boundary classified correctly.

3.4. Learning

As Table 1 indicates, polishing our loss from a random
start produces very weak results. Thus training a network
to produce a start point is essential.

Data Our training procedure requires depth maps with
known camera calibration parameters. Like previous scene
parsing work, we focus on NYUv2 [34], containing 1449
RGBD images. We use the standard 795-654 train-test split.

While 795 images is usually quite low for training neural
networks, we show that the decomposition predicted by the
network is actually a good start point for subsequent refine-
ment that achieves a very good fit.

Network We use the architecture of [8] consisting of a
ResNet18 encoder that accepts an RGBD image and a de-
coder consisting of 3 fully-connected layers, 1024 neurons
each. The output of the decoder consists of parameters rep-
resenting the translations and blending weight of each con-
vex as well as the normal and offset of each halfplane. The
number of halfplanes and convexes is fixed during training
time, which determines the number of output parameters.
By forcing each predicted convex to be a parallelepiped, we
only need to predict three normals per convex instead of six,
which eased training in our experiments.

Training Details We implement our method with Ten-
sorFlow and train on one NVIDIA A40 GPU. We use Adam
Optimizer and learning rate 0.0001. We set our minibatch
size to 32 images (requiring 2.5 hours for 20k iterations)
and randomly sample 6k free space and 12k surface sam-
ples per image in each element of the minibatch. 10% of the
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RGB Input

GT Depth

Prediction (infer  
during polish)

Prediction (GT  
during polish)

0.130 0.150 0.082

0.078 0.130 0.049

Figure 5. Qualitative evaluation of our method on depth. These
are random test images not seen during the training process. The
third row shows having only inferred depth and segmentation dur-
ing refinement, whereas the last row shows having GT depth/seg
available during refinement. AbsRel depth superimposed over pre-
dictions. Fairly good approximations of depth can be generated
with just a few convexes - 24 at train time, and about 14 remain
after refinement. Only a small penalty in quality is observed by
not having GT depth/seg available.

free space samples are taken from the outside shell. Within
the sample loss, we also observed slightly better quality and
more stable training by annealing the relative weight of free
space samples vs. surface samples, starting from a 0.9 : 0.1
split and saturating to 0.5 : 0.5 midway through training.
Intuitively, this allows the network to focus on big picture
features of the geometric layout early on, and then adjust
fine-scale details of the surface near the end.

4. Experiments & Evaluation

We investigate several design choices in our pipeline.
The primary finding is that our network alone (regression)
produces reasonable but not great convex decompositions.
Polishing alone (descent) generates completely unusable
primitives. But allowing network input as initialization of
our refinement procedure results in our best quality. Our re-
sults remain strong even when ground truth depths and seg-
mentations are not available during refinement and must be
inferred by other networks. In the remainder of this section,
we show that our mixed procedure produces good depth,
normals, and segmentation on our test dataset.

Quantitative evaluation of normals and depth: Given
parameters of a collection of convexes for a given test im-
age, we can ray march from the original viewpoint to obtain
a depth map, part segmentation, and normals. Our method
involves ray marching and interval halving at the first inter-

RGB Input

GT Normal

Prediction (infer  
during polish)

Prediction (GT  
during polish)

Prediction (infer  
during polish)

41.0/38.5 40.2/36.0 31.9/27.5

39.3/35.6 36.0/31.5 31.8/25.4

Figure 6. Qualitative evaluation of our method on normals. These
are random test images not seen during the training process. The
third row shows having only inferred depth and segmentation dur-
ing refinement, whereas the last row shows having GT depth/seg
available during refinement. Mean/median normal error in degrees
superimposed over predictions. Fairly good approximations of
normals can be generated with just a few convexes - 24 at train
time, and about 14 remain after refinement.

RGB Input

GT Seg

Prediction (infer  
during polish)

Prediction (GT  
during polish)

Prediction (infer  
during polish)

0.654 0.667 0.758

0.602 0.619 0.754

Figure 7. Qualitative evaluation of our method on segmentation.
These are random test images not seen during the training pro-
cess. The third row shows having only inferred depth and seg-
mentation during refinement, whereas the last row shows having
GT depth/seg available during refinement. Mean per-pixel seg-
mentation accuracy is superimposed over predictions. Fairly good
approximations of segmentation can be generated with just a few
convexes - 24 at train time, and about 14 remain after refinement.

section point. In Table 1 we use the standard depth error
metrics to evaluate the depth associated with the convex de-
composition against the input depth map, evaluating on the
654 NYUv2 test images from [28]. Although we train with
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GTRandom Start Full PolishNetwork Only GTRandom Start Full PolishNetwork Only

Seg

Depth

Normals

PartSeg/RGB

0.390

46.4/45.9

0.457

0.599

90/90

0.233

0.092

32.7/25.9

0.582

0.126

45.5/38.7

0.66

0.042

30.9/25.0

0.618

0.055

36.5/31.2

0.709

Figure 8. Qualitative ablation study of our method. Two random test images never seen by the network are shown. The first row shows
segmentations, the second depth, the third normals, and the fourth shows convex segmentations for ease of visualization (as well as the
RGB image input in the fourth and eight columns). Random Start Randomly initializing convexes followed by polishing does not yield
results resembling the input. This is an extremely difficult optimization problem. Network Only By training a neural network to predict
primitives, we get fairly good results, even without subsequent polishing. Full Polish When we polish the result by performing backward
selection to remove extraneous convexes and perform additional optimization steps on the convex parameters, we can improve the overall
fit. Notice how polishing removed an extraneous primitive at the top of the scene in column 6. Mean segmentation accuracy, depth AbsRel,
and normal mean/median error are overlaid.

samples that are re-normalized to a small cube near the ori-
gin, we transform the predicted depth map back to world
space coordinates when computing depth error metrics.

Further, in Table 1 we also use an existing suite of er-
ror metrics for evaluating normals of the predicted convexes
[51]. We can compute the normals from the input depth map
by first extracting per-pixel 3D coordinates (Xij , Yij , Zij).
Let Zx and Zy be image gradients of the depth map in the x
and y directions respectively, and Xx and Yy be the image
gradients of the X and Y coordinates in x and y directions
respectively. The final normal per pixel is given by normal-
izing: (−Zx

Yy
,
−Zy

Xx
, 1).

To obtain normals from the collection of convexes, we
can compute the gradient of the implicit function that de-
fines it and evaluate it per-pixel at the first ray-surface inter-
section point for each pixel:

∇Φ(x) =
δ
∑

h nhe
δ∗(nh·x+dh)∑

h e
δ∗(nh·x+dh)

(6)

Note that sums over h iterate over all the halfplanes associ-
ated with the convex that the ray hit first.

Our error metrics strongly indicate that polishing alone
produces unusable results, network alone produces better
results that often resemble the input, and our very best re-
sults come from a mixed method that uses the network pre-
diction as a start point for subsequent refining. Our pruning
procedure shows that we can improve depth and normal er-
ror metrics while reducing the number of parts. However,
our ablations showed that our entropy-based segmentation

loss yielded a neutral effect on the segmentation quality.
That loss did help in toy models we tried, so we leave it
in the paper to possibly help future research.

We compute the Chamfer-L1 distance of the predicted
and ground truth depth map (in meters). Our best non-
oracle network (row C, Table 1) got a score of 1.46; our
best oracle network (row E, Table 1) got a score of 0.541.

Quantitative evaluation of segmentation: Ideally,
primitives “explain” objects, so each primitive should span
only one object (though individual objects could consist of
more than one primitive). We can evaluate this property by
comparing primitive based segmentations with ground truth
for the test partition of NYUv2. We render an image where
each pixel has the number of the visible primitive at that
pixel. Each primitive then gets the most common label in
its support. Finally, we compute the pixel accuracy of this
labeling. Note that this test is unreliable if there are many
primitives (for example, one per pixel), but we have rela-
tively few. A high pixel accuracy rate strongly suggests that
each primitive spans a single object. Our mean pixel accu-
racy rate for different configurations is shown in Table 1,
last column. Our best configurations, C & D, showed a seg-
mentation accuracy rate of 0.618. We also show qualitative
results in Fig. 7. We conclude that our primitive decomposi-
tion mostly identifies objects, but could likely be improved
by having more primitives.

Qualitative evaluation We compare our method against
previous work [26] on six NYUv2 images in Fig. 4. Our
representation generally covers the whole depth map with-
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out leaving gaps, and finds more convexes that correspond
with real-world objects. We also evaluate our method
specifically looking at depth (Fig. 5), normals (Fig. 6), and
segmentation (Fig. 7). Our network-initialized refinement
procedure accurately predicts convexes whose depth and
normals closely match the ground truth. This is true even
when GT depth isn’t available to the refinement. Finally, we
evaluate whether our hybrid method is necessary in Fig. 8,
showing that polishing without a network (random start)
does not produce useful results due to the extremely difficult
optimization problem; fair quality with running our network
but no polishing; and our very best quality when running
our network followed by polishing (hybrid method).

5. Conclusion
We presented a novel procedure to decompose complex

indoor scenes into 3D primitives, relying on both regression
and descent. By capturing the whole input, we used existing
depth, normal, and segmentation error metrics to evaluate,
unlike previous work. Further, our qualitative evaluation
shows that our primitives map to real-world objects quite
well, capturing more of the input than previous work. By
relying on suitable pretrained networks, our experiments
showed successful primitive decomposition when ground
truth depth or segmentation isn’t available.

One application we have had success with is generating
scenes conditioned on the primitives - we can edit the geom-
etry of the scene by simply moving a cuboid, far easier than
editing say a depth map [50]. Future work may analyze the
latent space, perhaps with applications to generative model-
ing or scene graph construction. Training with a large scale
RGBD+Segmentation dataset could also improve the start
points of our method. Further, a natural extension is gener-
ating primitives that are temporally consistent across video
frames.

Our refinement process showed it’s possible to control
the number of primitives and their granularity even though
the start point was produced by a network trained with a
fixed number of convexes. Some scenes could benefit from
a convex merge process such as flat walls that are decom-
posed into several convexes. Such a procedure may improve
qualitative results when we train with more convexes than
the input requires.
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