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Abstract

Depth cues are known to be useful for visual percep-
tion. However, direct measurement of depth is often im-
practicable. Fortunately, though, modern learning-based
methods offer promising depth maps by inference in the
wild. In this work, we adapt such depth inference models
for object segmentation using the objects’ “pop-out” prior
in 3D. The “pop-out” is a simple composition prior that
assumes objects reside on the background surface. Such
compositional prior allows us to reason about objects in
the 3D space. More specifically, we adapt the inferred
depth maps such that objects can be localized using only
3D information. Such separation, however, requires knowl-
edge about contact surface which we learn using the weak
supervision of the segmentation mask. Our intermediate
representation of contact surface, and thereby reasoning
about objects purely in 3D, allows us to better transfer
the depth knowledge into semantics. The proposed adapta-
tion method uses only the depth model without needing the
source data used for training, making the learning process
efficient and practical. Our experiments on eight datasets
of two challenging tasks, namely salient object detection
and camouflaged object detection, consistently demonstrate
the benefit of our method in terms of both performance and
generalizability. The source code is publicly available at
https://github.com/Zongwei97/PopNet.

1. Introduction

The 3D knowledge of the scene is long known to be
complementary to the task of visual perception [12, 16,
56, 67, 91]. Often in practice, though, visual perception
needs to be carried out using only 2D images. Given mul-
tiple images, 3D geometry may be recovered using the
structure-from-motion techniques [26, 41, 55, 86]. Such in-
version, however, is not compatible when only a single im-
age is available. Under such circumstances, image inversion
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Figure 1. Depth to semantics conversion using the object pop-out
prior. For input RGB and source-free depth pair, we learn contact
surface. The obtained contact surface is then used to separate ob-
jects and backgrounds to derive pseudo semantics for supervision.

to depth map is usually done using learning-based meth-
ods [13,45,50,51,65], which have shown unparalleled suc-
cess in the recent years. Unfortunately, the learning-based
methods may not offer high-quality depth maps due to the
generalization deficiency across domains [68, 73].

Despite poor generalization, the knowledge gained in
one domain is shown to be useful in other close-by domains.
This utility is harnessed by performing the so-called domain
adaptation (DA) [2,3,6,53,61,89]. In fact, it has been shown
recently that DA methods can efficiently transfer knowledge
using only the prediction models, i.e., without requiring ac-
cess to the data where the model is trained – also known as
the source-free domain adaptation (SDA) [25,28,39,71,77].
The SDA methods are of gripping interest due to their effi-
ciency and privacy promises.

The most existing SDA methods make one or both of
these implicit assumptions: (a) a similar (as that of the
source) supervising task at the target [28, 75, 77]; (b) task
of discrete (and known) label space [27, 29, 36, 71]. The
former assumption not only makes the source and target
domains easier to compare but also potentially keeps the
two domains closer. The latter assumption allows perform-
ing SDA by self-training where the discrete labels facilitate
reasoning about the model’s confidence. The self-training
is then performed by boosting the confidence at the target
for some picked reliable examples.
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Figure 2. The performance gained in F-measure using our method over the established baselines. Our method (▲,■) significantly
improves baselines on 8 datasets and 2 tasks (each task on 4 datasets– SOD: left two; COD: right two). We also compare 24 methods
(•), where our method offers state-of-the-art results despite their task specialization. Note that all methods are connected using lines to
illustrate their performance fluctuations across datasets. Please, refer Tables 1 & 2 and Section 4.3 for more details and discussions.

In this work, we aim for source-free transfer of depth
knowledge for object detection. Such transfer is desired
to assist in locating the object by depth cues and to ex-
ploit the depth knowledge despite the domain gap. The ad-
dressed problem setting differs from the standard SDA in
terms of (a) the source and target tasks’ difference; (b) and
the continuous label space of the depth. These differences
(with standard SDA) make our task at hand very challeng-
ing, which is addressed for the first time in this paper, up to
our knowledge. To address such a challenging problem, we
rely on the “pop-out” prior, which allows us to reason about
the object’s location directly in the 3D space. The “pop-out”
is a simple composition prior that assumes objects reside on
the background surface. A graphical illustration of the used
“pop-out” prior, using the results obtained by our method,
is given in Figure 1.

The pop-out prior for image composition was success-
fully used by Kang et al. in [24]. An early work of Treis-
man has provided an in-depth study of such prior in [62]. In
this work, we rely on the same compositional foundation of
these works and exploit the pop-out before transferring the
depth of knowledge across domains. Although our motiva-
tion comes from these early works, our experimental setup
largely differs from theirs. We differ in terms of not only
depth knowledge transfer across domains (without source
data) but also in target supervision using only semantics.

The proposed method exploits the source-free depth to
map it into a space where objects in depth stand out bet-
ter against the background. This mapping is used for ob-
ject and background separation using a learned contact sur-
face between them. Such separation allows us to derive
the semantic masks which can be directly compared against
the ground truth for supervision. Using this supervision at
the target, we can minimize the domain and task gap be-
tween the source and target. The overall framework of our
method that performs cross-task cross-domain knowledge
transfer by using the intermediate representation of the pop-
out space is shown in Figure 3. As can be seen, we first
leverage an object popping network to encourage the object

to jump out from the source-free depth. Then, we introduce
another network i.e., the segmentation with contact sur-
face, to localize the object and predict the contact surface.
These learning modules are jointly trained in an end-to-end
manner, transferring the source-free depths into interme-
diate representations which are adapted to the target task,
i.e., object detection. To evaluate the proposed method, we
conducted exhaustive experiments on eight datasets of two
challenging tasks, namely salient object detection and cam-
ouflaged object detection. In both tasks, our method signif-
icantly improves the established baselines and offers state-
of-the-art results at the same time, whose overview can be
seen in Figure 2. The major contributions are as follows:

• Our problem of transferring source-free depth knowl-
edge across domains and tasks is practical and novel.

• Our method relies on our object pop-out prior for vi-
sual understanding, which is simple and effective.

• Results of our method in two different tasks are signif-
icantly better than the baselines and existing models.

2. Related Works
Source-free Adaptation: Knowledge transfer by domain
adaptation without access to the source data has recently
gathered vast interest [1,25,28,39,71,77], due to the privacy,
practicality, and efficiency reasons. We observe accessing
the source data for transferring the depth knowledge learned
by the off-the-shelf knowledge models [13, 51] is particu-
larly impractical due to their multi-stage training on various
datasets. The existing source-free adaptation methods ei-
ther use generative [28, 29, 34], pseudo-label [25, 37, 64],
or other customized [54, 76] approaches. In this work, we
use the pseudo-label-based approach. However, using ex-
isting methods is not straightforward in our setting due to
the tasks’ difference between source and target. With our
pop-out technique that provides the pseudo semantics, the
source-free depth is better transferred across tasks.
Salient Object Detection (SOD): Saliency detection aims
to detect and segment the most prominent region within
an image that visually attracts human attention [11]. A
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Figure 3. Our proposed framework, termed PopNet, is composed of a source-free network, an object popping network, a segmentation
with contact surface, and an object separation module. The source-free depth network generates pseudo-depth in an off-the-shelf manner
(Section 3.1). The object popping network converts the source-free depth into the popped-out depth of objects, bridging the cross-domain
and cross-task gaps (Section 3.2). The segmentation network uses this depth to estimate the object’s mask and contact surface (Section
3.3). The object separation module then converts popped-out depth to the second mask of objects using the contact surface (Section 3.4).
We compare both semantic masks against ground truth to supervise the whole pipeline in an end-to-end manner.

number of works have shown that saliency can be an aux-
iliary step for different vision tasks such as object track-
ing [93], object detection [58], etc. Conventional saliency
works are unimodal, i.e., they only require RGB images as
input. In generic and common settings, RGB-based mod-
els [38, 70, 84] have already achieved very promising re-
sults. More recently, several works [10,20,49,66,68,88,92]
exploit depth maps as additional clues to the 3D geometry
since the depth can provide more truthful information on
the object boundary as well as the scale awareness. These
3D features further improve the detection accuracy and per-
formance in challenging scenarios [22, 33, 69, 80].
Camouflaged Object Detection (COD): Camouflage de-
tection aims to find the preying object within an image.
For computer vision society, primary works [9,32,47] often
compare COD with SOD. A number of works [8, 9, 74, 79]
have shown that simply extending saliency models [70] on
COD will lead to undesired results, which is mainly caused
by the nature of target object, i.e., concealed or prominent.
Hence, to constrain the attention on the concealed objects,
several works come up with different perceptual systems
that mimic human behavior vis-a-vis camouflaged objects,
such as three-stage localize-segment-rank strategy [42]; it-
erative refinement [21], which is similar to repeatedly look-
ing on the images; zooming into possible regions [47, 59].
Others [18, 40, 60, 82, 83, 90, 94, 95] deeply explore the
texture difference with the help of the gradient [18], fre-
quency [90], edges [60, 94], and probability [32, 74].

The latest psychological studies [5, 7] have shown that
human perception can naturally benefit from the depth cues
to understand the scene: (A) the smooth variation within the
object can contribute to alleviating the fake edges and pre-
serving the object structure; (B) the depth discontinuity on
the object boundary can make the segmentation easier. In-

spired by these observations, we aim to explore the source-
free depth for both SOD and COD tasks. To tackle the do-
main gap for source-free depth maps, we propose to jointly
finetune the source-free depth together with the semantic
network in an end-to-end manner, with both self-supervised
loss and weak semantic supervision.

3. Proposed PopNet

Given an input RGB image I with size I ∈ R3×H×W ,
where H and W are the spatial resolutions, i.e., height and
width, of the image, our objective is to predict the semantic
mask S̃ ∈RH×W for object detection. As shown in Figure 3,
the input image I is firstly fed into a frozen-weight depth
network to generate the source-free depth Ds f ∈ RH×W

(Section 3.1). Then the mimicked multi-modal images are
fed together into the depth popping network to compute the
intermediate popped-out depth Dpo ∈ RH×W (Section 3.2).
This intermediate representation, as well as the RGB im-
age I, is later processed by the segmentation network and
transformed into a contact surface Dc ∈ RH×W and a se-
mantics prediction S̃ ∈ RH×W (Section 3.3). On the one
hand, the semantics prediction is directly supervised by the
ground truth mask GT , denoted as G, which is similar to
conventional segmentation supervision. On the other hand,
we further explore the contact surface to pop the object out
of the background by means of our object separation mod-
ule (Section 3.4). This transfers the geometric cues into
pseudo semantics and leads to another level of supervision.

3.1. Source-free Depth Network

In a practical setting, the GT depth is not always avail-
able. Therefore, we generate the source-free depth Ds f in
an off-the-shelf manner to mimic the multi-modal input.
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We choose the state-of-the-art DPT model [50] with frozen
weights as our source-free depth network, which offers us
promising depth at the target. This choice is made upon
its generalization capability as suggested in [51]. To ob-
tain the depth map with the highest quality possible, by en-
hancing local details, we apply the boosting method [45]
together with DPT. Despite the plausible results achieved
by learning-based methods, the obtained source-free depth
does not always offer high-quality geometric cues due to
the domain gap. Therefore, we leverage the geometric and
semantic priors to jointly finetune the source-free depth.

3.2. Object Popping Network

Network Architecture: We build a depth popping network
to refine/smooth the source-free depth. The popping net-
work follows the encoder-decoder design with skip connec-
tion as shown in Figure 4. In our case, we simply concate-
nate RGB and source-free depth at the input side to form
a 4-channel input and feed them into the popping network.
The encoder extracts semantic cues and generates five-scale
outputs. Our decoder is composed of Conv2D, BN, ReLU,
and upsampling layers. Following U-Net [52], we build a
skip connection through simple addition.
Structure Preserving: To supervise our popping network,
we first guide the depth refinement with the help of gen-
erated pseudo-depth. We only leverage structural similarity
since we aim to detect, preserve, and extract object structure
from the intermediate representation. We use the following
SSIM loss [13] for structural similarity.

Ldep = SSIM(Dpo,Ds f ). (1)

Local Depth Smoothing: In addition to the pseudo-depth
supervision, we propose two losses to constrain the depth
also by semantics. We assume that the objects’ struc-
ture should be distinguishable from the background, i.e., it
should be smooth within the object region and sharp on the
bounding pixels. Hence, we propose to leverage the weak
semantic cues together with the geometric priors. Specifi-
cally, we first introduce a local smoothness loss. The local-
ity is defined by the ground truth semantics G. Technically,
we mask out background pixels with element-wise multipli-
cation to suppress the inactive area through Dob j =Dpo⊗G.
Let ∇x and ∇y be the Sobel operations. Then, our local loss
Lloc is expressed as:

−−→
n(p) = (−∇x(Dob j(p)); −∇y(Dob j(p)); 1);

Lloc = ∑
p

∑
q∈N(p)

1− cosine(
−−→
n(p);

−−→
n(q)), (2)

where −→n stands for the normal, p denotes the pixels within
the object region, N(p) is the neighboring pixels, and cosine
is the cosine similarity between two vectors. This way, our
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Figure 4. Our object popping network maps RGB-D inputs into
popped-out depths. This network is supervised using a combina-
tion of structure preserving, local depth smoothing, and depth edge
sharpening losses Ldep, Lloc, and Lwtv, respectively.

local loss only works on the object area, making the object
structure consistent within the target region. Applying local
smoothness loss reduces the depth noise at the object level.
Depth Edge Sharpening: In addition to the local smooth-
ness, we also use edge sharpening. The edge sharpening
loss is formulated as a weighted total variation. For this, we
first compute the edge-aware weight w(p) at any pixel p as,

w(p) =

{
w0, if ∇x(G(p))2 +∇y(G(p))2 ̸= 0,
w0 + γ, otherwise,

(3)

where w0 is a pre-defined non-zero weight and γ is an ad-
ditional weight for boundary pixels. In our setting, we
choose w0 as the normalized (by the image size) count of
the boundary pixels, and we set γ = 0.5. We adopt the
square form such that the large gradients play more impor-
tant roles. Our weighted total-variation loss is given by,

Lwtv = ∑
p

∑
q∈N(p)

w(p) · ||Dpo(p)−Dpo(q)||2. (4)

Our weighted total-variance loss differs from the conven-
tional edge loss, due to our weighting function. More
specifically, our weighting function relies on semantic
boundaries, unlike the commonly used image gradients
[14, 17]. Our motivation for using semantic boundaries in-
stead of image gradients comes from our interest in per-
forming object detection under challenging conditions, such
as camouflaged objects. In such cases, image gradients may
result in misleading weights. At first glance, our loss func-
tion seems to be similar to semantic-guided depth estima-
tion methods [4, 35, 72]. However, [72] uses GT depths,
and [4,35] use multi-frames for supervision. Unfortunately,
such supervision is not possible in our setup. Note that we
exploit single-view source-free depth while only using se-
mantic ground truth for supervision. Furthermore, we trans-
fer the source-free depths’ knowledge despite their domain
gap. Existing regularizations between depth and semantics
are already exploited in our method, which is shown to be
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complimentary to our pop-out prior. We argue that our net-
work architecture that exploits the pop-out prior is not trivial
while simultaneously being generic and easy to use.

The total objective function Lpop to supervise our object
popping network is given by,

Lpop = Ldep +λ1 ·Lloc +λ2 ·Lwtv, (5)

where λ1 and λ2 are the hyperparameters.

3.3. Segmentation with Contact Surface

The smoothness and edge losses encourage homoge-
nizing the object structure, making it noticeable from the
background. We now aim to further enlarge the object-
background distance to make the object structure jump out.
Specifically, we use an RGB-D segmentation network as
shown in Figure 5. The main component of our segmenta-
tion network is a three-stream RGB-D network with some
fusion design. In our setting, we choose [92] as our baseline
since it is one of the SOTA RGB-D methods for saliency
detection. We add a surface head to learn the depth of the
contact surface Dc, which has the same resolution as the in-
put depth Dpo. Our surface head is composed of ConvLayer
(Conv2D, BN, ReLU) and a Conv2D, which first decodes
the feature maps and then transfers them into a 1-D map.

3.4. Object Separation

Using the previously discussed contact surface, in this
section, we aim to separate the object from its background.
At this point, we make an assumption that pixels in front of
the contact surface belong to objects. The remaining pixels
belong to the background. This assumption allows us to
explicitly transfer the 3D knowledge into 2D semantics. Let
the predicted depth of the contact surface be Dc ∈ RH×W .
We obtain the the pseudo semantics Ss, using the popped-
out depth Dpo and surface’s depth Dc, as:

Ss = sigmoid(σ · (Dpo −Dc)), (6)

where σ is a scalar value that controls the slope of the sig-
moid function. In our experiments, we use σ = 10 to per-
form soft-thresholding, mimicking the desired hard one for
binary outputs. Such soft thresholding facilitates the gra-
dient back-propagation required for training. Finally, we
minimize the gap between the pseudo semantics Ss and the
GT semantics G with binary cross-entropy (BCE):

Lsep = BCE(Ss,G). (7)

3.5. Overall Loss Function

Both of our trainable modules, i.e., object popping and
segmentation networks, of our framework (Figure 3) are
trained in an end-to-end manner. Therefore, the overall
loss function consists of three parts: our depth popping loss
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Figure 5. Our segmentation network uses a basic RGB-D three-
stream network [92]. In addition to the conventional semantic
head, we learn to predict pixel-wise contact surface. The con-
tact surface is later used to transfer depth knowledge to semantics.

Lpop, our object separation loss Lsep, and the conventional
semantic loss Lsem from the RGB-D baseline network. The
total loss Ltotal used for training is given by,

Ltotal = Lpop +α1 ·Lsep +α2 ·Lsem, (8)

where α1 and α2 are hyperparameters.
Remarks: Our losses work in a complementary manner.
The Lpop plays the same role as a smooth filter as in
image smoothing. It removes the noisy depth response
due to the domain gap while preserving the object struc-
ture with the help of a weak semantic label. Hence, the
smoothed background becomes less informative while the
object region becomes uniform, making it easily detectable.
These functionalities contribute to transferring the source-
free depth into popped-out depth, as desired. Such a pro-
cess brings objects above the background surface, despite
their distance from the camera and other distracting sur-
faces. The Lsep, on the other hand, fully benefits from the
“pop-out” prior to segment the object from the background.
With the help of the learned contact surface, this loss en-
larges the foreground-background distance by pulling them
in opposite directions. Such pulling results in a binary-like
mask, which effectively bridges the gap between geometric
knowledge and semantics. Finally, both depth-transferred
and learned semantics are compared to the ground truths
for supervised training.

4. Results
4.1. Experimental Setup

Dataset Preparation: To better illustrate the generalizabil-
ity of our approach, we evaluate the effectiveness of our
approach on both SOD and COD benchmarks. We choose
four widely used RGB-D SOD datasets, i.e., NLPR [48],
NJUK [23], STERE [46], and SIP [10], as well as four
COD datasets, i.e., CAMO [30], CHAMELEON [57],
COD10K [9], and NC4K [42]. For SOD datasets, we con-
duct experiments with both GT depth and source-free depth.
We follow the conventional learning protocol [19, 69, 92]
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Table 1. Quantitative comparison on RGB-D SOD datasets. ↑ (↓) denotes that the higher (lower) is better. We use the Mean Absolute Error
(M), max F-measure (Fm), S-measure (Sm), and max E-measure (Em) as evaluation metrics. G.D. stands for GT Depth. Bold denotes the
best performance.

G.D. Public. Dataset NLPR [48] NJUK [23] STERE [46] SIP [10]
Metric M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

Performance of RGB-D Models Trained with Source-free Depth
✗ MM21 [85] DFM-Net .027 .909 .914 .944 .046 .903 .895 .927 .042 .906 .903 .934 .067 .873 .850 .891
✗ T IP22 [63] DCMF .027 .915 .921 .943 .044 .908 .903 .929 .041 .909 .907 .931 .067 .873 .853 .893
✗ CV PR22 [21] SegMAR .024 .923 .920 .952 .036 .921 .909 .941 .037 .916 .907 .936 .052 .893 .872 .914
✗ CV PR22 [47] ZoomNet .023 .916 .919 .944 .037 .926 .914 .940 .037 .918 .909 .938 .054 .891 .868 .909
✗ Ours PopNet .022 .925 .926 .956 .031 .931 .920 .949 .032 .922 .916 .947 .046 .911 .885 .926
Performance of RGB-D Models Trained with GT Depth
✓ T IP21 [87] BIANet .032 .888 .900 .930 .056 .878 .867 .898 .048 .898 .895 .918 .091 .816 .802 .847
✓ T IP21 [33] HAINet .024 .920 .924 .956 .037 .924 .911 .940 .040 .917 .907 .938 .052 .907 .879 .917
✓ T NNLS21 [10] D3Net .029 .904 .911 .942 .046 .909 .899 .927 .044 .902 .906 .925 .063 .880 .860 .897
✓ ECCV22 [31] SPSN .023 .917 .923 .956 .032 .927 .918 .949 .035 .909 .906 .941 .043 .910 .891 .932
✓ Ours PopNet .019 .927 .932 .963 .030 .936 .924 .952 .033 .924 .917 .947 .040 .923 .897 .937

and use 700 images from NLPR and 1,485 images from
NJUK for training. The rest are used for testing. For the
unimodal COD dataset, we compare with both RGB COD
models and RGB-D SOD models retrained on the COD
datasets with the same source-free depth Ds f . We follow the
conventional training/testing protocol [8, 9, 21, 42, 47] and
use 3,040 images from COD10K and 1,000 images from
CAMO for training. The rest are used for testing.
Evaluation Metrics: We evaluate the performance with
four generally-recognized metrics: Mean Absolute Error
(M), max F-measure (Fm), S-measure (Sm), and max E-
measure (Em). All the object segmentation masks are
trained or downloaded from the official resources. To make
a fair comparison, we evaluate the prediction semantics
with the standardized evaluation protocol as [92].
Implementation Details: Our model is implemented based
on Pytorch with a V100 GPU. We use the Adam algorithm
as an optimizer. The learning rate is initialized to 1e−4 and
is further divided by 10 every 60 epochs. We set the input
resolution to 352×352 resolution for RGB and depth. A
detailed comparison with higher resolution can be found in
Table 3. During training, conventional data augmentation
such as random flipping, rotating, and border clipping are
adopted. The training takes around 6 hours for RGB-SOD
tasks and 12 hours for COD tasks for 100 epochs.

4.2. Comparisons

Comparison with RGB-D SOD Models: We present in
Table 1 the performance on SOD benchmarks with our
source-free depth or with GT depth. It can be seen that
our model with source-free depth achieves very competi-
tive performance compared to many RGB-D models with
GT depths. Our method with GT depth also outperforms
the SOTA counterparts. The qualitative comparison can be
found in Fig. 6. Note that we also retrain the SOTA uni-
modal COD models SegMAR [21] and ZoomNet [47] on
the SOD dataset only with RGB images. We show that our
model with source-free depth outperforms these counter-
parts, showing that our method can better generalize across

GT SPSN DSA2F DCF D3Net HAINet BBSNetOursDepthRGBImage Depth GT Ours SPSN DSA2F DCF
Figure 6. Qualitative Comparison with GT Depth. Our method
outperforms all counterparts while dealing with multi-objects,
large depth variation, and visually-mixed foreground-background.

different tasks with favorably better performance.
Comparison with COD Models: We present in Table 2
the performance of the most competitive SOTA methods,
including task-specific COD models as well as retrained
RGB-D SOD models with source-free depth. For a fair
comparison, we retrain all RGB-D methods, SegMAR [21],
and ZoomNet [47] in an end-to-end manner on the same
resolution images as ours. Some RGB-only methods per-
form even better than many RGB-D methods, mainly due
to their COD task-specific designs and the lack of ground-
truth depths required for RGB-D methods. It is important
to note that competing RGB-only COD methods do not per-
form favorably on SOD tasks. Please, refer to Table 1 & 3
to observe their poor cross-tasks generalization.
Towards Higher Resolution: Previous studies have shown
that the image resolution may influence the model perfor-
mance [43,47,73,83]. For example, the current SOTA COD
method ZoomNet [47] is with main scale 3842 and implies
the highest resolution of (384×1.5)2 = 5762, as it operates
on 0.5×,1×, and 1.5× scales. To make a fair compari-
son, we retrain the model with the same resolution (3522

or 5122) as ours. We show in Table3-ZoomNet* that the
results deteriorate as expected. Compared to these counter-
parts, our method offers a good trade-off between accuracy
and efficiency. More comparisons on SOD and COD bench-
marks can be found in the supplementary material.
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Table 2. Quantitative comparison on COD datasets. Pseudo stands for source-free depth used for RGB-D methods.

Pseudo Public. Dataset CAMO [30] CHAMELEON [57] COD10K [9] NC4K [42]
Metric M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

Performance of RGB COD Models
✗ CV PR20 [9] SINet .099 .762 .751 .790 .044 .845 .868 .908 .051 .708 .771 .832 .058 .804 .808 .873
✗ CV PR21 [42] SLSR .080 .791 .787 .843 .030 .866 .889 .938 .037 .756 .804 .854 .048 .836 .839 .898
✗ CV PR21 [78] MGL-R .088 .791 .775 .820 .031 .868 .893 .932 .035 .767 .813 .874 .053 .828 .832 .876
✗ CV PR21 [44] PFNet .085 .793 .782 .845 .033 .859 .882 .927 .040 .747 .800 .880 .053 .820 .829 .891
✗ CV PR21 [32] UJSC .072 .812 .800 .861 .030 .874 .891 .948 .035 .761 .808 .886 .047 .838 .841 .900
✗ IJCAI21 [59] C2FNet .079 .802 .796 .856 .032 .871 .888 .936 .036 .764 .813 .894 .049 .831 .838 .898
✗ ICCV21 [74] UGTR .086 .800 .783 .829 .031 .862 .887 .926 .036 .769 .816 .873 .052 .831 .839 .884
✗ CV PR22 [21] SegMAR .080 .799 .794 .857 .032 .871 .887 .935 .039 .750 .799 .876 .050 .828 .836 .893
✗ CV PR22 [47] ZoomNet .074 .818 .801 .858 .033 .829 .859 .915 .034 .771 .808 .872 .045 .841 .843 .893
Performance of RGB-D Models Retrained with Source-free Depth
✓ MM21 [80] CDINet .100 .638 .732 .766 .036 .787 .879 .903 .044 .610 .778 .821 .067 .697 .793 .830
✓ CV PR21 [19] DCF .089 .724 .749 .834 .037 .821 .850 .923 .040 .685 .766 .864 .061 .765 .791 .878
✓ ICCV21 [81] CMINet .087 .798 .782 .827 .032 .881 .891 .930 .039 .768 .811 .868 .053 .832 .839 .888
✓ ICCV21 [92] SPNet .083 .807 .783 .831 .033 .872 .888 .930 .037 .776 .808 .869 .054 .828 .825 .874
✓ T IP22 [63] DCMF .115 .737 .728 .757 .059 .807 .830 .853 .063 .679 .748 .776 .077 .782 .794 .820
✓ ECCV22 [31] SPSN .084 .782 .773 .829 .032 .866 .887 .932 .042 .727 .789 .854 .059 .803 .813 .867
✓ Ours PopNet .073 .821 .806 .869 .022 .893 .910 .962 .031 .789 .827 .897 .043 .852 .852 .908

Image GT Ours ZoomNet UGTR UJSC C2FNet PFNet MGL-R SLSR SINet
Figure 7. Qualitative comparison. Our method can better preserve the object structure compared to other counterparts, especially while
dealing with objects with occlusion (two first rows). Our method performs favorably with multiple objects (last row). Better to zoom in.

Table 3. End-to-end comparison with different resolutions on SOD
benchmarks. Our method with source-free depth generalizes sig-
nificantly better compared to SOTA COD models.

Model Size Flops NJUK [23] SIP [10]
(G) M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑

SegMAR [21] 3522 67.3 .036 .921 .909 .941 .052 .893 .872 .914
ZoomNet [47] 3522 167.8 .037 .926 .914 .940 .054 .891 .868 .909
Ours 3522 228.8 .031 .931 .920 .949 .046 .911 .885 .926
SegMAR [21] 5122 142.4 .035 .927 .914 .943 .050 .899 .878 .917
ZoomNet [47] 5122 353.4 .036 .926 .915 .942 .052 .895 .873 .910
Ours 5122 484.0 .031 .933 .922 .951 .044 .911 .890 .927

Qualitative Comparisons: Figure 7 presents the output of
our network on challenging cases. It can be seen while deal-
ing with objects occluded by thin objects (1st − 4th rows),
our method can accurately reason about the segmentation
masks closer to the GT. We also achieve better performance
while dealing with multiple objects (last row). More discus-
sions on multiple objects can be found in Table 6.

4.3. Ablation Study

Loss: In this section, we conduct experiments on analyzing
the effectiveness of the proposed losses. The quantitative re-
sults of different loss combinations are provided in Table 4.
It can be seen that each proposed loss behaves properly, i.e.,
improving the performance compared to the baseline. More

Table 4. Ablation study on the proposed losses.

Ldep Lloc Lwtv Lsep
SIP [10] NC4K [42]

M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑
- - - - .048 .903 .884 .922 .052 .832 .832 .893
✓ - - - .046 .907 .889 .925 .051 .833 .839 .895
- ✓ - - .045 .908 .893 .929 .048 .837 .844 .898
- - ✓ - .046 .906 .891 .927 .050 .833 .841 .894
- - - ✓ .043 .914 .893 .933 .048 .840 .848 .900
✓ ✓ - - .044 .911 .893 .928 .049 .837 .844 .897
✓ - ✓ - .046 .909 .893 .927 .046 .840 .845 .898
✓ - ✓ ✓ .040 .918 .897 .935 .045 .848 .849 .904
✓ ✓ - ✓ .042 .916 .894 .931 .044 .850 .850 .906
✓ ✓ ✓ ✓ .040 .923 .897 .937 .043 .852 .852 .908

discussions and ablation studies on the hyperparameters can
be found in the supplementary material.
Object Popping Network as Plug-in: Our object popping
network can be easily adapted with different encoders and
with different existing RGB-D models. For example, with
a ResNet-18 [15] encoder and convolution-based decoder,
our poping only costs around 12.7M additional learning pa-
rameters or 48.7 MB model size. We show in Table 5 that
our method can favorably improve performance over the
baseline with less than an extra 10% GFlops.
Pop-out Under Reduced Training Data: Here, we are in-
terested in analyzing source-free depth’s benefits. There-
fore, we conduct different experiments by reducing the
training data. As shown in Figure 8(left), when both our
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Table 5. Generalization and cost over different RGB-D baselines.
Dataset Flops Param SIP [10] NC4K [42]
Metric (G) (M) M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑
HAINet [33] 363.2 59.8 .053 .899 .874 .919 .057 .809 .804 .872
+ Ours 373.7 72.5 .051 .910 .886 .923 .055 .814 .811 .878
SPNet [92] 149.0 150.4 .044 .911 .887 .914 .054 .828 .825 .874
+ Ours 159.5 163.1 .042 .917 .894 .932 .044 .851 .851 .905
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Figure 8. Benefit of our method on reducing training data.
When our network is trained only with 25% data, the perfor-
mance remains competitive compared to the baseline, i.e., the ab-
solute performance gains are +0.4% max F-measure and +0.1% S-
measure on NC4K compared to the baseline trained with all data.
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Figure 9. Histogram on the gain. Please zoom in for details.

PopNet and our baseline are trained with all data, our Pop-
Net can lead to absolute improvements with 5.6% in max F-
measure and with 3.9% in S-measure on COD10K dataset.
While our PopNet is trained with only 25% data, it can still
achieve competitive performance compared to our baseline
trained with all data. Similar phenomena can be observed in
the NC4K dataset as shown in Figure 8(right). To conclude,
our method can efficiently explore the geometric prior and
significantly reduce the required training data volume.
Gain over baseline: With depth cues, as shown in Fig-
ure 9, we boost the performance in 3125 over 4121 images
(∼75% cases). We also show in Table 6 that our network
performs favorably over baselines with single or multiple
objects. Our method may fail when the source-free depth is
clueless. This mainly happens when the object is well con-
cealed and fools the depth network. However, such cases
are also challenging, even for humans.
Are RGB-D Methods Better Than RGB-only Methods?
RGB-D methods are indeed better than RGB-only methods
provided GT depth. However, only a few RGB-D meth-
ods can benefit from the source-free depth. For example,

Table 6. Multi-Object performance on NC4K [42] with size 5122.
Obj. Nbr. (%) Single (92%) Two (6%) More (2%) Overall
Metric M ↓ Fm ↑ M ↓ Fm ↑ M ↓ Fm ↑ M ↓ Fm ↑
RGB Baseline .054 .828 .067 .811 .091 .738 .056 .825
+ Ds f .050 .842 .063 .821 .093 .746 .051 .839
Ours .040 .864 .051 .847 .079 .767 .042 .861

Table 7. Performance with RGB-Ds f model vs. with RGB-only
baseline. Ds f stands for source-free depth.
Dataset COD10K [9] NC4K [42]
Metric M ↓ Fm ↑ Sm ↑ Em ↑ M ↓ Fm ↑ Sm ↑ Em ↑
DASNet [88] .041 .643 .793 .864 .055 .747 .830 .879
+ Ds f .041 .642 .796 .858 .055 .743 .830 .874
SPNet [92] .040 .743 .801 .867 .052 .846 .833 .883
+ Ds f .037 .776 .808 .869 .054 .828 .825 .874

as shown in Table 7, DASNet [88] achieves poorer per-
formance compared to RGB baseline when trained with
source-free depth. Similarly, even for one of the SOTA
RGB-D models, SPNet [92], the performance on NC4K
dataset with RGB-only input is better than with additional
source-free depth. Moreover, when provided with source-
free depth, none of the existing RGB-D methods outper-
form the best performing RGB-only method (e.g., Zoom-
Net [47]) on COD. The same observation was also made on
SOD as well. This could be because of the domain gap cou-
pled with the fusion design, among others. We also found
it non-trivial to extend the most well-performing RGB-only
methods to the RGB-D case. Note that our PopNet per-
forms better than all existing RGB-only and RGB-D meth-
ods, with source-free or GT depth maps.

5. Conclusion

We demonstrate a successful case of cross-domain cross-
task depth to semantics knowledge transfer using only the
source model. In this paper, the source-free depth at the tar-
get offered by a given source model is used. The proposed
method learns to transfer knowledge from depth to seman-
tics using the objects’ pop-out prior. We facilitate our net-
work to use such prior by designing a novel network archi-
tecture. The designed network reasons about the objects by
popping them out from the provided depth maps. This pro-
cess is followed by separating objects from the background
using the learned contact surface. We show that the joint
learning of object pop-out and contact surface can be suc-
cessfully supervised using the target semantics. Exhaustive
experiments on SOD and COD benchmarks show the suc-
cessful transfer of depth knowledge to the target, in terms
of improved performance and generalization.
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[50] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In IEEE ICCV, 2021.
1, 4
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