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Abstract

Federated learning (FL) is a privacy-enhanced dis-
tributed machine learning framework, in which multiple
clients collaboratively train a global model by exchang-
ing their model updates without sharing local private data.
However, the adversary can use gradient inversion attacks
to reveal the clients’ privacy from the shared model updates.
Previous attacks assume the adversary can infer the local
learning rate of each client, while we observe that: (1) us-
ing the uniformly distributed random local learning rates
does not incur much accuracy loss of the global model,
and (2) personalizing local learning rates can mitigate the
drift issue which is caused by non-IID (identically and in-
dependently distributed) data. Moreover, we theoretically
derive a convergence guarantee to FedAvg with uniformly
perturbed local learning rates. Therefore, by perturbing the
learning rate of each client with random noise, we propose
a learning rate perturbation (LRP) defense against gradi-
ent inversion attacks. Specifically, for classification tasks,
we adapt LPR to ada-LPR by personalizing the expectation
of each local learning rate. The experiments show that our
defenses can well enhance privacy preservation against ex-
isting gradient inversion attacks, and LRP outperforms 5
baseline defenses against a state-of-the-art gradient inver-
sion attack. In addition, our defenses only incur minor ac-
curacy reductions (less than 0.5%) of the global model. So
they are effective in real applications.

1. Introduction

Federated learning (FL) [16,19,20,33] is popularly used
to meet the needs of learning from distributed data and pro-
tecting the privacy of data owners. Instead of transferring
the local data, each FL client trains a model on its local
data and exchanges its model update under the coordina-
tion of a central parameter server. FL leaves the training
data distributed among its clients, which makes it align well
with data privacy regulations, e.g., General Data Protection

*Corresponding author: Jie Xu (cheer1107@bupt.edu.cn).

Regulation (GDPR) [36]. Thus, FL is suitable for devel-
oping privacy-sensitive machine learning applications such
as medical services [3, 5], financial fraud detection [37],
and various applications of the future sixth-generation (6G)
wireless communication network [24, 31, 38].

Recent works have shown that clients’ private training
data may be leaked through this update-sharing scheme by
gradient inversion attacks [9, 10, 14, 28, 32, 43]. Several de-
fensive strategies have been proposed to strengthen the pri-
vacy properties of the FL system, such as differential pri-
vacy [1], secure multi-party computation [2, 39], gradient
compression [29], and data representation perturbation [35].
Nonetheless, it has been demonstrated that these defenses
are insufficient to provide privacy guarantees against gradi-
ent inversion attacks [28] or incur significant computational
overheads [35]. Since privacy protection is the major mo-
tivation of FL, it is urgent to develop effective defenses to
tackle the data leakage issue.

Assumptions of previous gradient inversion attacks.
Most gradient inversion attacks assume the adversary is a
FL server that is interested in unveiling the private training
data of the clients from the model updates uploaded by the
clients [14, 28, 32, 35], while the server must follow the FL
protocol honestly and cannot modify the model architec-
ture. Moreover, the attackers always explicitly or implic-
itly assume they can get the gradients of each client while
the client only shares its model updates. In other words,
the attackers assume they know the learning rate (LR) of
each client such that they can generate the training gradients
from the uploaded model updates. This assumption is real-
istic with existing FL algorithms since the learning rates of
clients follow a unified regularity developed by the server,
while the necessity of avoiding the heterogeneity of local
learning rates has not been thoroughly investigated.

A natural question is: Can clients utilize local learning
rates to protect their data? To investigate this, we form a
FL system composed of two clients with non-IID data from
the MNIST dataset and adjust the clients’ learning rates to
train the models. Compared with allocating a unified learn-
ing rate by the server, we find randomizing the local learn-
ing rates only causes small fluctuations (about 0.2%) in
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the global models’ accuracy, and allocating relatively big-
ger learning rate expectations to clients with higher-quality
datasets can suppress FL’s drift [17] issue introduced by
non-IID data and thus improve the model’s accuracy.

Based on our above observations, we propose LRP, a
novel defense that perturbs every client’s learning rates,
such that the learning rates appear uniformly random. For
classification tasks on non-IID data, we present an adaptive
defense (ada-LRP) to improve the model’s accuracy by per-
sonalizing the expectations of local learning rates. As the
server cannot extract clients’ exact gradients without know-
ing their learning rates, the data reconstructed by gradient
inversion attacks can be significantly degraded. In addi-
tion, we derive a convergence guarantee to FedAvg with
perturbed local learning rates on non-IID data. The image
classification experiments on MNIST [23], CIFAR-10 [21],
CIFAR100 [21], and ImageNet [6] show that our defenses
do not incur much accuracy loss (less than 0.5%). We con-
duct experiments on MNIST, CIFAR-100, and LFW [13]
for defending against the Deep Leakage from Gradient
(DLG) [43] attack and Improved DLG (iDLG) [42] at-
tack, and on ImageNet against Generative Gradient Leak-
age (GGL) [28] attack. The results show that our defenses
successfully enhance the privacy preservation of FL against
gradient inversion attacks.

Our main contributions are summarized as follows:

• Findings. By analyzing the impact of randomizing and
personalizing local learning rates on FL, we find that
(1) setting the local learning rates to be uniformly ran-
dom has a minor effect on test accuracy but signifi-
cantly degrades gradient inversion attacks, (2) FedAvg
with uniformly distributed random learning rates con-
verges well for strongly convex and smooth problems,
and (3) scaling the local learning rates to be personal-
ized values can mitigate the drift issue suffered by FL
and thus improve the accuracy of the global model.

• Effective defenses against gradient inversion attack.
We propose a learning-rate-perturbation-based defense
(LRP), which outperforms five existing defenses on
five metrics (e.g., MSE-R and LPIPS) against a state-
of-the-art gradient inversion attack. Besides, for classi-
fication tasks, our adaptive defense ada-LRP improves
the global model’s accuracy compared with LRP.

2. Related Work

2.1. Gradient Inversion Attacks in FL

Gradient inversion attacks originate from DLG proposed
by Zhu et al. [43], which reconstructs clients’ private data
by minimizing the distance between gradients from gen-
erated dummy data and real data. On top of this work,
iDLG [42] analytically extracts the labels from the gradi-
ents to improve the attack. As follow-up works, Geiping

et al. [10] succeed in reconstructing ImageNet-level resolu-
tion data samples, and yin et al. [40] improve the attack
by introducing the batch normalization priors. However,
the FL clients may not share their private batch normal-
ization statistics [14, 27]. An orthogonal line of work by
Fowl et al. [9] introduces a new analytic attack to recon-
struct clients’ data samples while the server is malicious.
Lu et al. [32] propose APRIL to recover clients’ data from
gradients of self-attention-based models. Additionally, Li et
al. propose GGL [28], which substantially enhances the at-
tack by leveraging generative adversarial networks (GAN),
and the work validates that clients’ private data can still be
reconstructed under several privacy-preserving settings.

2.2. Privacy Preservation in FL

Existing defense methods for privacy preservation in
FL can be generally categorized into two types: encrypt-
ing updates and perturbing updates. Cryptographic ap-
proaches prevent data leakage by encrypting updates to
achieve multi-party computation (MPC) [2, 12]. However,
these approaches can incur unignorable computational over-
heads, and merely relying on MPC cannot provide sufficient
privacy guarantees to preserve clients’ privacy [9, 28, 35].
Perturbing updates is another line of research, which per-
turbs the updates shared by clients to degrade the informa-
tion inferred by adversaries.

In detail, differential privacy (DP) [1,16] is a straightfor-
ward method to perturb the clients’ shared updates through
clipping and adding noise to gradients. Nevertheless, for
preventing gradient inversion attacks, DP requires adding
too much noise which can cause unneglectable accuracy
loss [43]. In addition, gradient compression [29] is effec-
tive to degrade the gradient inversion attack. More recently,
Sun et al. [35] propose a new privacy-preserving defense
named Soteria, which perturbs the data representation such
that the reconstructed data by adversaries is dissimilar to the
clients’ raw data. However, merely applying these methods
is demonstrated to be not sufficient to prevent information
leakage against state-of-the-art attacks [28].

3. Preliminaries
3.1. Federated Averaging (FedAvg)

The recent multitude of federated learning algorithms
can be understood as variants of FedAvg [33]. Thus, it is
natural that we start from FedAvg. In classical FedAvg, the
objective functions of the FL system are defined as:

min
W

{
L(W,Dglobal) ≜

N∑
k=1

pkLk(W,Dk)
}

(1)

L(W,D) ≜ 1

|D|
∑

x∈D
ℓ(W ;x),
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where N is the numer of clients, pk is the aggregation
weight of the k − th client, pk ≥ 0 and

∑N
k=1 pk = 1,

ℓ(·; ·) is a user-specified loss function, and D is the dataset
for training.

After receiving the model parameters Wt from the cen-
tral server, every client (i.e., k − th) lets W k

t = Wt and
performs E (≥ 1) local steps 1

W k
t+i+1 ←− W k

t+i − ηt+i∇Lk(W
k
t+i, ξ

k
t+i), (2)

where ηt+i denotes the learning rate and ξkt+i is a training
batch sampled from the local data. Then each client sends
Wt+E to the server.

In a realistic FL system, the server can only collect the
outputs of the first K responded clients. Supposing the first
K responded clients form a set St (|St| = K), the server
aggregates the clients model parameters following

Wt+E ←−
N

K

∑
k∈St

pk W
k
t+E . (3)

3.2. Gradient Inversion Attack

After the local training stage, the curious server can col-
lect the clients’ model updates and extract a client’s gradi-
ents g computed on its local data {x, y}. Given the global
model parameters W and the client’s gradients g, the server
could reveal the client’s private local data by generating an
{x∗, y∗} with an objective function:

argmin
(x∗, y∗)

Lgrad(x
∗, y∗,W, g) + αP(x∗), (4)

where Lgrad(x
∗, y∗,W, g) denotes the matching loss of the

gradients generated from reconstructed data {x∗, y∗} with
the provided real gradients g. The attacker may leverage
GAN to generate {x∗, y∗} [28]. P(x∗) is a regularization
term based on the adversary’s prior knowledge [14].

4. FL with Learning Rate Perturbation
In this section, we first show that (1) the local learning

rates can be hidden from the server by adding perturbation
and (2) scaling the clients’ learning rates can mitigate the
drift [17] issue of FL under non-IID data. We also derive
a convergence guarantee of FedAvg with perturbed local
learning rates. Finally, we present our defense algorithms
against gradient inversion attacks.

4.1. Personalizing and Randomizing Local LRs

The non-IID data across the clients is one of the key
challenges in FL, which can introduce a drift in the local
and global updates, as shown in the left part of Figure 1.

1Unlike the original paper [33], we use E to denote the times of local
steps instead of epochs, following [26].

Figure 1: Examples of drift in FL on non-IID data.

As the distribution of each client’s dataset is not identical
to the global distribution, the local optimum of each client
is inconsistent with the global optimum. Since each local
model is updated towards its local optimum, the global up-
date, which is the average of the clients’ updates, may drift
from the direction towards the global optimum, which can
significantly influence the FL model’s accuracy. A natural
thought is: The direction of the global update can be cor-
rected by enabling clients with optima closer to the global
optimum to use larger local step sizes (i.e., learning rates),
as shown in the right part of Figure 1.

To validate our thought, we form a simple FL task with
two clients where the datasets of the clients are non-IID. In
detail, we first sort the training data of the MNIST dataset
by label, then divide it into 600 shards of size 100. For each
of the first two labels, we choose four shards and assign
them to the first client. Then for each of the last eight labels,
we choose one shard and assign them to the second client.
Therefore, both clients do not have data of all ten digits,
and the labels of their data are not overlapped. It allows
us to explore what perturbing the local learning rate will
introduce to FL under a non-IID setting.

We experiment on a convolutional neural network
(CNN), a multilayer perceptron (MLP), and a logistic re-
gression, respectively. The models are trained for 100 com-
munication rounds following FedAvg, and the two clients
may use different learning rates sampled from {0.005, 0.01,
0.02}. Besides, to investigate whether perturbing learning
rate causes much accuracy loss, there are also sets of ex-
perimental cases where each client randomly samples their
learning rates in each local training step following uni-
form distributions with a minimum of 0 and expectations
of 0.005, 0.01, and 0.02, respectively.

As shown in Table 1, on all three models, we get the best
test accuracy with {η1, η2} = {0.005, 0.02} and the worst
with {η1, η2} = {0.02, 0.005}. This indicates that (1) per-
sonalizing clients’ learning rates can mitigate or aggravate
the drift issue of non-IID FL and thus impact the global
model’s performance. In addition, the experimental results
with and without learning rate perturbation show that (2)
setting the local learning rates to be uniformly random in
every local training step does not cause unneglectable accu-
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Table 1: Comparison of test accuracy (%) with different learning rate combinations, including the mean and standard devi-
ation across 3 runs. The η1 and η2 indicate the local learning rates of the two clients. The ✓ in the column of perturbation
indicates the two clients’ learning rates are randomly sampled following uniform distributions with expectations η1 and η2.

Model Perturbation η1 = 0.005 η1 = 0.01 η1 = 0.02

η2 = 0.005 η2 = 0.01 η2 = 0.02 η2 = 0.005 η2 = 0.01 η2 = 0.02 η2 = 0.005 η2 = 0.01 η2 = 0.02

CNN 88.36 ± 0.17 92.10 ± 0.05 94.21 ± 0.04 87.07 ± 0.71 91.55 ± 0.25 93.96 ± 0.17 85.97 ± 0.55 90.98 ± 0.52 93.56 ± 0.17
✓ 87.97 ± 0.24 92.00 ± 0.08 94.39 ± 0.02 86.91 ± 0.31 91.32 ± 0.25 93.95 ± 0.09 85.53 ± 0.54 90.34 ± 0.19 93.59 ± 0.25

MLP 87.22 ± 0.07 88.62 ± 0.07 89.18 ± 0.14 86.44 ± 0.04 88.08 ± 0.08 88.84 ± 0.13 85.50 ± 0.05 87.61 ± 0.11 88.50 ± 0.19
✓ 87.18 ± 0.09 88.59 ± 0.12 89.18 ± 0.08 86.35 ± 0.05 88.16 ± 0.07 89.02 ± 0.05 85.46 ± 0.10 87.67 ± 0.11 88.63 ± 0.11

Logistic Regression 86.84 ± 0.02 87.14 ± 0.02 87.22 ± 0.01 86.21 ± 0.03 86.78 ± 0.02 86.83 ± 0.01 85.35 ± 0.03 86.14 ± 0.00 86.46 ± 0.04
✓ 86.84 ± 0.05 87.14 ± 0.04 87.24 ± 0.03 86.26 ± 0.03 86.78 ± 0.01 86.88 ± 0.04 85.48 ± 0.09 86.29 ± 0.06 86.46 ± 0.05

racy loss. Our experiments using Adam [18] for local train-
ing have similar results, which are shown in the Appendix.

4.2. Convergence Analysis

The observations in section 4.1 give an intuition that ran-
domizing FL clients’ learning rate does not incur much ac-
curacy loss. In this section, we derive the convergence guar-
antee of FedAvg with uniformly random local learning rates
on non-IID data. The analysis is inspired by Li et al. [26].

Since each client trains its local model with random and
different learning rates, eq. (2) is changed to:

W k
t+i+1 ←− W k

t+i − ηkt+i∇Lk(W
k
t+i, ξ

k
t+i), (5)

where every client perturbs its learning rate to be values fol-
lowing a uniform distribution with expectation η in every
local step t:

ηkt ∼ U(0, 2η). (6)

We make the following assumptions, which have been
also made by the work [26].
Assumption 1. L1, · · · ,LK are all L-smooth: for all V
and W , Lk(V ) ≤ Lk(W )+(V −W )T∇Lk(W )+ L

2 ∥V −
W∥22.
Assumption 2. L1, · · · ,LK are all µ-strongly convex: for
all V and W , Lk(V ) ≥ Lk(W ) + (V −W )T∇Lk(W ) +
µ
2 ∥V −W∥22.
Assumption 3. Let ξkt be sampled from the k-th de-
vice’s local data with batch size B. The variance
of stochastic gradients in each device is bounded:
E
∥∥∇Lk(W

k
t , ξ

k
t )−∇Lk(W

k
t )

∥∥2 ≤ σ2
k for k = 1, · · · , N .

Assumption 4. The expected squared norm of stochastic
gradients is uniformly bounded, i.e., E

∥∥∇Lk(W
k
t , ξ

k
t )
∥∥2 ≤

G2 for all k = 1, · · · , N and t = 1, · · · , T − 1
Assumption 5. Assume St contains a subset of K indices
uniformly sampled from [N ] without replacement. Assume
the data is balanced in the sense that p1 = · · · = pN = 1

N .
The aggregation step performs Wt ←− N

K

∑
k∈St

pk W
k
t .

Let L∗ and L∗
k be the minimum values of L and Lk, re-

spectively. We use the term Γ = L∗−
∑N

k=1 pkL∗
k for quan-

tifying the degree of non-IID. If the data are non-IID, then
Γ is nonzero, and its magnitude reflects the heterogeneity of
the data distribution.

Theorem 1. Let Assumptions 1 to 5 hold and L, µ, σk, G
be defined therein. Choose κ = L

µ , γ = max{8κ,E} and
the expected learning rate ηt =

2
µ(γ+t) . Then FedAvg with

uniformly perturbed local learning rates satisfies

E [L(WT )]− L∗ ≤ κ

γ + T

(
2(B + C)

µ
+

µγ

2
D

)
, (7)

B =

N∑
k=1

p2k(σ
2
k +

1

3
G2) + 6LΓ + 32(E − 1)2G2,

C =
N −K

N − 1

16

K
E2G2, D = L∥W1 −W ∗∥2.

Assumption 5 requires pk = 1
N for any client, which is

unrealistic. To address this, we first transform L̃k(W ) =
pkNLk(W ) be a scaled local objective function. Thus

L(W ) =

N∑
k=1

pkLk(W ) =
1

N

N∑
k=1

L̃k(W ). (8)

Then each client performs its local updates following:

W k
t+i+1 = W k

t+i − ηkt+i∇L̃k(W
k
t+i, ξ

k
t+i)

= W k
t+i − η̃kt+i∇Lk(W

k
t+i, ξ

k
t+i), (9)

where η̃kt+i is transformed to pkNηkt+i, which increases
the heterogeneity of local learning rates. And if we replace
L, µ, σk, G to L̃ ≜ νL, µ̃ ≜ ςµ, σ̃k =

√
νσ, and G̃ =√

νG, Theorem 1 holds. Here, ν = N · maxk pk and ς =
N ·mink pk. We put the proof in the Appendix.

4.3. Defense Algorithm

Based on our observations in section 4.1 and theoretical
analysis in section 4.2, we propose a defense against gra-
dient inversion attacks by perturbing every client’s learning
rates in every local training step. Without loss of generality,
we build the algorithm based on FedAvg, which is the fun-
damental FL algorithm, and it can be naturally generalized
to other FL algorithms.

Algorithm 1 details the training process with our de-
fenses. After receiving the learning rate η initialized by the
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Algorithm 1 FL with learning rate perturbation. We use
blue color to mark the part for adaptive algorithm.
Input: The N local clients are indexed by k, local batch
size B, learning rate initialized by server η, proportion of
selected clients in every global communication round C,
number of global communication rounds R, number of lo-
cal steps E.
Output: The final model.
Server executes:

1: initialize W0

2: compute and broadcast
∑N

k=1 nk and
∑N

k=1 |Yk|
3: for each global round r = 0, 1, 2, ... R-1 do
4: K ← max(C ·N, 1)
5: St ← (random set of K clients)
6: for each cleint k ∈ St in parallel do
7: W k

r+1 ← ClientUpdate(k,Wr)
8: end for
9: Wr+1 ←

1

K

∑K
k=1 W

k
r+1

10: end for
11: return WR

ClientUpdate(k,W ):
1: B ← (split the local dataset into batches of size B)
2: η̃ ← pkNη
3: K ← ζ · (|Yk| − 1/N ·

∑N
i=1 |Yi|) + β

4: for each local step t = 0, 1,2,... E-1 do
5: generate (i) ηkt ∼ U(0, 2η̃) or (ii) ηkt ∼ U(0, 2Kη̃)
6: // update local model on mini-batch b ∈ B
7: W ←W − ηkt∇L(W, b)
8: end for
9: return W

server, every client perturbs its learning rate by sampling a
random value ηkt which follows a uniform distribution with
expectation η in every local step t:

ηkt ∼ U(0, 2η̃), (10)

where U(0, 2η̃) denotes a uniform distribution with a mini-
mum of 0 and a maximum of 2η̃ where η̃ = pkNη.

Since the local learning rates appear uniformly random
to the server, the assumption that the server knows the exact
learning rate of every client is relaxed. Thus, the gradients
gk∗r inferred by the server from W k

r+1 will be different from
the real gradients, which can degrade the gradient inversion
attack by misleading it into wrong reconstructions:

argmin
(x∗, y∗)

Lgrad(x
∗, y∗,W k

r , g
k∗
r ) ̸= (x, y). (11)

We also observe the objective function misleading phe-
nomenon in our experiments, which is shown in Figure 4
in section 5.

The observations in section 4.1 indicate personalizing
clients’ local learning rates can mitigate the drift issue.

Therefore, to improve the model’s accuracy and further in-
crease the range of random values, we present an adaptive
method for the classification task in label distribution skew
settings, by which each client samples its learning rates
w.r.t. the number of classes it possesses:

ηkt ∼ U
(
0, 2K(|Yk|)η̃

)
, (12)

where |Yk| is the number of classes in the kth client’s
dataset. Since the local optimum of clients possessing more
classes of data tends to be closer to the global optimum,
K(|Yk|) is a monotonically increasing function to allow
clients with more classes of data to use relatively larger
learning rate expectations. We find that a simple linear func-
tion is effective in scaling the local learning rates and thus
improves the model performance:

K(|Yk|) = ζ · (|Yk| −
1

N

N∑
i=1

|Yi|) + β, (13)

where ζ and β are two introduced parameters to control the
range of random values. For instance, β can be set to 1 to
keep the average expectation of all clients’ learning rates to
be η̃.

As shown in Algorithm 1, unlike other FL algorithms,
there is no need for any client to send the size of local
datasets nk or the local class number |Yk| to the server. But
each client may need the sum of them to generate pk and
K(|Yk|). We model this as a secure multi-party computa-
tion problem and present a brief protocol inspired by [2]
when the server is honest-but-curious which faithfully de-
livers all messages between users and a public-key infras-
tructure (PKI) exists.

Each pair of clients first agree on a random value sk1,k2

using Diffie-Hellman (DH) server-mediated key agreement
scheme [8]. Then each client computes

n∗
k1

= nk1
+

∑
k1>k2

sk1,k2
−

∑
k1<k2

sk1,k2
, (14)

and sends n∗
k1

to the server. The server computes∑N
k1=1 n

∗
k1

which is equal to
∑N

k1=1 nk1
and sends it back

to every client. The sum of |Yk| can be computed in the
same way. If the server wishes to obtain the sk1,k2 in a DH
key agreement process from the messages it receives, it has
to solve a Discrete logarithm Problem that belongs to the
class NP (nondeterministic, polynomial). Therefore, each
client can get

∑N
k=1 nk and

∑N
k=1 |Yk| while nk and |Yk|

is preserved locally, which prevent the server from inferring
the expectation of each client’s local learning rates.

5. Experiments
5.1. Experimental Setup

FL Task and Datasets. We compare the accuracy of
models trained with our algorithms and FedAvg on the
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Table 2: Test accuracy (%) on MNIST, CIFAR-10, CIFAR-100, and ImageNet for vanilla training and LRP, including the
mean and standard deviation of test accuracy across 3 runs except for ImageNet.

Non-IID Local learning rate MNIST CIFAR-10 CIFAR-100 ImageNet

Vanilla training (Schme I) ηk = η 98.84± 0.01 92.99± 0.19 65.69± 0.61 61.52(83.10)
Vanilla training (Schme II) ηk = η 98.36± 0.05 93.01± 0.09 65.56± 0.45
LRP ηk ∼ U(0, 2pkNη) 98.90± 0.02 93.03± 0.17 65.44± 0.36
Ada-LRP ηk ∼ U(0, 2KpkNη) 98.97± 0.04 93.32± 0.14 65.69± 0.29 61.66(83.04)

IID Local learning rate MNIST CIFAR-10 CIFAR-100

Vanilla training ηk = η 99.20± 0.02 94.30± 0.09 72.15± 0.21
LRP ηk ∼ U(0, 2η) 99.19± 0.01 94.15± 0.07 72.65± 0.29

MNIST, CIFAR-10, CIFAR-100, and ImageNet ILSVRC
2012 datasets for image classification tasks. For the non-
IID setting, we first sort the training data by label, divide it
into shards, and assign these shards randomly to 100 clients.
Each shard contains examples of at most two classes and
most shards only have examples of one class. The size of
each shard of the MNIST dataset is 200 and each client will
have at least one shard and at most nine shards. For CIFAR-
10, CIFAR-100, and ImageNet, we choose 50 as the shard
size. Each client can get at least one shard and at most nine
shards of CIFAR-10 and CIFAR-100 datasets. And we as-
sign each client at least 50 shards and at most 200 shards
of the ImageNet dataset. Our dataset partition is similar to
the configuration in [33], while in the work of McMahan et
al. [33], each client can get an identical number of shards,
which is less realistic than ours. In addition, we also con-
struct IID datasets from MNIST, CIFAR-10, and CIFAR-
100 where the training data is shuffled and uniformly par-
titioned into 100 clients. We reserve 20% of each client’s
data for validation. The random seeds for repeated trials are
set to be 1024, 1022, and 1020.

Attack methods. We evaluate the effectiveness of our
defenses against three gradient inversion attacks. (1) DLG
attack [43] generates reconstructed data with the objective
function to minimize the distance between the gradients up-
loaded by clients and the gradients generated by the recon-
structed data. (2) iDLG attack [42] optimize reconstructed
inputs with the same idea as DLG while it analytically ex-
tracts ground-truth labels from the gradients. (3) GGL at-
tack [28] leverages the latent space of generative adversar-
ial networks (GAN) as a prior, which is a state-of-the-art
attack that can recover high-resolution images from the gra-
dients under its considered defense settings. Therefore, we
use this attack to compare LRP with defense baselines.

Defense baselines. We compare our proposed de-
fense with the following existing defenses. (1) Additive
noise [1, 28, 35, 43] injects noise into the gradients. We ap-
ply Gaussian noise with σ = 0.1 and central 0. (2) Gra-
dient Clipping [1, 11] clips the gradient as Tcli(g, S) =

g/max(1, ||g||2
S ) and we set the bound S as 4. (3) Differen-

tial privacy [1] combines the gradient clipping and additive

noise. (4) Gradient compression [29] prunes the gradients
below a given threshold. We prune 90% of the original gra-
dients. (5) Soteria [28, 35] prunes the representations em-
bedded in the gradients with a rate of 0.8.

Hyperparameter configurations. For the image clas-
sification tasks, we set the number of local steps E as 50
for MNIST, CIFAR-10, and CIFAR-100 and 2000 for Im-
ageNet. The batch size B is set as 32, 40, 40, and 64
for MNIST, CIFAR-10, CIFAR-100, and ImageNet, respec-
tively. The number of sampled devices in each communica-
tion round is 10. For DLG and iDLG attacks, we apply
L-BFGS [30] with learning rate 1, history size 100, max it-
erations 20, and optimize for 1000 iterations. For the GGL
attack, following the configuration of [28], we use a pre-
trained BigGAN [4] as a prior and CMA-ES as the opti-
mizer. The number of updates is set to 800.

5.2. Accuracy Results

We report the accuracy results across 3 repeated tri-
als in Table 2. Since the implementation of the aggrega-
tion scheme of FedAvg can vary, we choose two schemes:
Wt = N

K

∑
k∈St

pk W
k
t (Scheme I) [26] and Wt =∑

k∈St

pk∑
i∈St

pi
W k

t (Scheme II) [25], both as vanilla train-
ing algorithms. For the firsr scheme, we transform Lk

to pkNLk to keep pk = 1/N as [26] did. Note that
LRP and ada-LRP are developed based on Scheme I. For
ada-LRP, we set β = 1 to keep the average expecta-
tion across all the clients to be η. And ζ are chosen to
be 1/6, 1/10, 1/20, 1/400 for MNIST, CIFAR-10, CIFAR-
100, and ImageNet respectively.

We use a shallow CNN model architecture for MNIST,
ResNet-18 architecture for CIFAR-10 and CIFAR-100, and
RexNet-130 architecture for ImageNet. We apply data aug-
mentation to CIFAR-10 and CIFAR-100 datasets follow-
ing [7]. The initial learning rate is set to 0.01 for MNIST,
CIFAR-10, and CIFAR-100 and 0.1 for ImageNet. On the
four datasets, we use a cosine learning rate decay. Please
refer to the Appendix for other implementation details.

As shown in Table 2, we report the top-1 test-set ac-
curacy of the trained global model on MNIST, CIFAR-10,
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Table 3: Quantitative comparison of our defense with baseline methods against GGL attack. ↑: the higher the metric the
better privacy preservation. ↓: the lower the metric the better privacy preservation.

Evaluation Metric Additive Noise Gradient Clipping Clipping+Noise Gradient Compression Soteria LRP
MSE (↑) 0.2746 0.2335 0.3443 0.2117 0.2079 0.4627
PSNR (↓) 5.7325 6.4000 4.7408 5.7545 6.8540 4.1501

LPIPS (VGG) (↑) 0.6170 0.5808 0.6448 0.6068 0.5748 0.6966
LPIPS (ALEX) (↑) 0.5215 0.4755 0.5703 0.4895 0.4538 0.6227

MSE-R (↑) 0.0014 0.0014 0.0114 0.0017 0.0018 0.3181

Iters=0 Iters=10 Iters=50 Iters=1000 Iters=0 Iters=10 Iters=50 Iters=1000 Ground truth
DLG iDLG

Proposed

Original

Proposed

Original

Proposed

Original

Figure 2: Defense against DLG and iDLG on images from
MNIST, CIFAR-100, and LFW, respectively.

and CIFAR-100, and the top-1 and top-5 accuracy on the
50k validation images of ImageNet, including the mean
and standard deviation across 3 runs with different random
seeds except for ImageNet.

Compared with vanilla training, LRP only incurs a small
accuracy loss of less than 0.5%. Besides, compared with
the best accuracy obtained from the two schemes of vanilla
training, ada-LRP increases the accuracy by 0.15%, and
0.31% on MNIST and CIFAR-10 respectively. Ada-LRP
also reduces the accuracy loss suffered by LRP from 0.25%
to less than 0.01% on CIFAR-100. These results validate
that personalizing local learning rates can suppress the drift
issue and thus improve the model accuracy, even if the
learning rates are uniformly perturbed. Moreover, Table 2
also shows that ada-LRP increases the top-1 accuracy by
0.14% and reduces the top-5 accuracy by 0.06% compared
with vanilla training (Scheme I) on ImageNet. Our exper-
imental results of more types of non-IID data splits are re-
ported in the Appendix.

5.3. Defense Results

We choose an ideal case for the adversary where both
the batch size and the number of local steps are set to 1.
We evaluate our defenses in that case for a fair comparison
with prior works [28, 35, 43]. But our defenses should pro-
vide much better privacy preservation in general cases (i.e.,
both B and E are larger than one). Since LRP and ada-LRP
share the same key idea that uniformly perturbing the learn-
ing rates and hiding the learning rate expectations, we set
pkN = KpkN = 2, which is realistic for clients in a FL

Original
Additional 

Noise

Gradient 

Clipping

Gradient 

Compression Soteria
Our

Method

Clipping 

+ Noise

Figure 3: Visual comparison of our method with defense
baselines against GGL: original images (first column) and
their reconstructions (the rest of columns).

system, and thus unify the defense of the two methods. Re-
sults with other expectations can be found in the Appendix.
We present visual results against DLG and iDLG with and
without our defense on MNIST, CIFAR-100, and LFW in
Figure 2. The results demonstrate our defense prevents data
leakage under the two attack methods.

For defending GGL, we evaluate the similarity be-
tween the client’s private images and their reconstructions
via five types of evaluation metrics: Mean Square Error
(MSE); Peak Signal-to-Noise Ratio (PSNR); Learned Per-
ceptual Image Patch Similarity [41] measured by VGG net-
work [34] (LPIPS-VGG) and ALEX network [22] (LPIPS-
ALEX); MSE in Representation Space [28] (MSE-R). Due
to the difference of random seeds, our results of the base-
lines are similar but not identical to the original paper [28].

From the visualization results in Figure 3, it can be seen
that GGL produces high-quality images that can reveal at-
tributes of the original data when the baseline defenses are
applied. Moreover, the reconstructions of GGL become im-
ages that seem to be arbitrarily generated by GAN under
our defense setting. For the quantitative comparison, Ta-
ble 3 shows that our defense statistically outperforms the
baseline defenses for all the evaluation metrics.

Experimental results on more privacy defense strategies
and attack methods are shown in the Appendix.

To investigate the data leakage problem under the model
inversion attack, we visualize the gradient matching loss
and the LPIPS in the GAN latent space, inspired by [28].
Specifically, we plot the loss functions by interpolating be-
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(a) No defense (b) Additive noise (c) Learning rate perturbation

Figure 4: Curves of gradient matching loss and LPIPS under no defense, additive noise, and LRP.

tween the latent vectors z1 found by GGL, which gen-
erate latent vectors based on the gradients, and z2 from
GAN inversion [15], which generate latent vectors giving
the ground truth image, as z(α) = (1 − α)z1 + αz2. We
plot the gradient matching loss and LPIPS w.r.t. α in Fig-
ure 4 in cases of no defense, additive noise, and LRP are ap-
plied respectively. We only show the result with the defense
of additive noise while we have similar observations with
cases where other baseline defenses are applied. We also
extend the visualization to a 2D surface by adding a second
direction vector. Details can be found in the Appendix.

It can be seen from Figure 4 that: (1) In all three cases,
the latent vector found by GGL reaches the lowest gradi-
ent matching loss on the curve. (2) When additive noise is
applied, the gradient matching loss significantly increases.
But the shape of the two curves in Figure 4b do not obvi-
ously change compared with the curves in Figure 4a. (3)
In Figure 4a and 4b, the shapes of the two curves match
well. The latent vector with the lowest gradient matching
loss generates images with low LPIPS that can reveal pri-
vate information of original data. (4) LRP reforms the two
curves. The latent space vectors with low gradient matching
loss do not result in images with low LPIPS, which explains
why our defense enhances privacy preservation against the
gradient inversion attack.

5.4. Convergence Results

To verify our analysis in section 4.2, we conduct experi-
ments on MNIST in a non-IID setting as mentioned in sec-
tion 5.1. As shown in Figure 5, LRP and ada-LRP converge
well. It also can be seen that perturbing local learning rates
has little effect on the convergence process, and personaliz-
ing clients’ learning rates performs better than the original
schemes, no matter whether the learning rates are perturbed
or not, which cross-validate the results of Table 1. For fair
comparisons, we choose FedAvg (Scheme I) as the vanilla
training algorithm to eliminate the impact of different ag-
gregation schemes. Details are shown in the Appendix.

6. Discussion
Our proposed defenses perturb the learning rates through

sampling from uniform distributions. In theory, adversaries

Figure 5: Convergence of LRP and ada-LRP. Vanilla train-
ing (scaled) denotes the case where the learning rates are
personalized and not perturbed.

could nullify the defenses by brute-force guessing the learn-
ing rates. However, in realistic cases with a considerable
number of local steps, adversaries would need to guess the
learning rate values for each step. Since clients do not pro-
vide learning rate expectations, while theoretically possible,
attempting to neutralize our defenses through learning rate
guessing would significantly increase the computation over-
head of the adversaries.

Beyond image recognition tasks, LRP can also enhance
privacy protection against attacks on text.. Detailed experi-
mental results can be found in Appendix.

7. Conclusion and Future Work
This work presents learning rate perturbation (LRP),

which perturbs the local learning rates to enhance privacy
preservation in FL. We also propose an adaptation (ada-
LRP) for classification tasks to suppress the drift issue
by personalizing clients’ learning rate expectations. Our
defenses offer stronger privacy protection compared with
baselines, while the FL model’s performance is maintained.

In this work, we uniformly perturb the learning rates.
There are other methods for learning rate perturbation such
as adding Gaussian and Laplacian noise, while adding noise
following these distributions may generate extremely large
learning rates, which is unacceptable for the training pro-
cess. In the future, we will research on the impact of other
random distributions.

4779



Acknowledgments
This work was supported by Beijing University of Posts

and Telecommunications-China Mobile Research Institute
Joint Innovation Center and the Fundamental Research
Funds for the Central Universities (2022RC14).

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan

McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep
learning with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 308–318, 2016. 1, 2, 6

[2] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio
Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ra-
mage, Aaron Segal, and Karn Seth. Practical secure aggre-
gation for privacy-preserving machine learning. In proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1175–1191, 2017. 1, 2, 5

[3] Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex
Olshevsky, Ioannis Ch Paschalidis, and Wei Shi. Feder-
ated learning of predictive models from federated electronic
health records. International Journal of Medical Informat-
ics, 112:59–67, 2018. 1

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthe-
sis. In International Conference on Learning Representa-
tions, 2018. 6

[5] Olivia Choudhury, Yoonyoung Park, Theodoros Salonidis,
Aris Gkoulalas-Divanis, Issa Sylla, et al. Predicting ad-
verse drug reactions on distributed health data using fed-
erated learning. In AMIA Annual Symposium Proceedings,
volume 2019, page 313. American Medical Informatics As-
sociation, 2019. 1

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255. IEEE, 2009. 2

[7] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 6

[8] Whitfield Diffie and Martin E Hellman. New directions in
cryptography. In Democratizing Cryptography: The Work of
Whitfield Diffie and Martin Hellman, pages 365–390. 2022.
5

[9] Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum,
and Tom Goldstein. Robbing the fed: Directly obtaining pri-
vate data in federated learning with modified models. arXiv
preprint arXiv:2110.13057, 2021. 1, 2

[10] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and
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