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Abstract

Model-based 3D human mesh recovery aims to recon-
struct a 3D human body mesh by estimating its parame-
ters from monocular RGB images. Most of recent works
adopt the Skinned Multi-Person Linear (SMPL) model to
regress relative rotations for each body joint along the kine-
matics chain. This pipeline needs to transform each rel-
ative rotation matrix into a global rotation matrix to ar-
ticulate the canonical mesh, and suffers from accumulated
errors along the kinematics chain. This paper proposes to
directly estimate the global rotation of each joint to avoid
error accumulation and pursue better accuracy. The pro-
posed Sequentially Global Rotation Estimation (SGRE) di-
rectly predicts the global rotation matrix of each joint on
the kinematics chain. SGRE features a residual learning
module to leverage complementary features and previously
predicted rotations of parent joints to guide the estimation
of subsequent child joints. Thanks to this global estimation
pipeline and residual learning module, SGRE alleviates er-
ror accumulation and produces more accurate 3D human
mesh. It can be flexibly integrated into existing regression-
based methods and achieves superior performance on vari-
ous benchmarks. For example, it improves the latest method
3DCrowdNet by 3.3 mm MPJPE and 5.0 mm PVE on 3DPW
dataset and 3.0 AP on COCO dataset, respectively†.

1. Introduction

3D human mesh recovery aims to estimate the 3D sur-
face mesh of a human body from monocular RGB images.
It has a wide range of applications in human-object in-
teraction, action recognition and virtual/augmented reality.
Thanks to parametric human body models [2, 29, 33], 3D
human mesh recovery can be simplified, i.e., a realistic 3D
mesh of human body can be generated by a few parameters
like shape parameters and joint rotations. Most of recent
3D human mesh recovery methods can be regarded as the

†Code & Model: https://github.com/kennethwdk/SGRE
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Figure 1. (a) Illustration of the five kinematics chains in SMPL
model. (b) Visualization of the joint rotation angle error along one
of kinematics chain from root to toe. It can be observed that error
increases along the chain, and our global estimation gets more ac-
curate joint rotation than the relative estimation.

model-based method, which estimates shape and rotation
parameters to recover the 3D human mesh.

Current model-based human mesh recovery methods can
be summarized into two categories according to their fol-
lowed pipelines. Optimization-based approaches [4, 25] es-
timate the body pose and shape parameters by an iterative
fitting process. Parameters of the statistical model are tuned
to reduce the error between its 2D projection and 2D ev-
idences, e.g., 2D joint locations and silhouette, which can
be obtained by current advanced methods [5, 40, 38, 39].
These methods can typically produce well-aligned results,
but could take a long time because the optimization is non-
convex. These methods are also sensitive to the initializa-
tion. Regression-based methods adopt the powerful neural
networks to directly regress model parameters [18, 22, 7],
which have exhibited promising results. To tackle the dif-
ficulty of non-linear mapping from input image to param-
eter space, many regression-based methods have been pro-
posed [27, 15, 42]. More detailed review of existing meth-
ods can be found in Sec. 2.

Existing regression-based methods regress the relative
rotation matrix for each joint with respect to (w.r.t) their
parent joints along the kinematics chain as illustrated in
Fig. 1 (a). This design is partially because parametric body

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Visualization of the average angle of relative and global
rotation of 5 kinematics chains, e.g., root-head, root-toe and root-
hand, where parent and child joints are highly correlated, i.e., the
relative rotation angle is substantially smaller. The results are ob-
tained on 3DPW dataset.

models like SMPL [29] adopt relative rotations as parame-
ters. To articulate the canonical mesh, those models need to
transform each relative rotation matrix into a global rotation
matrix by multiplying its parent rotation matrixes along the
kinematics chain. This procedure propagates and accumu-
lates errors in parent rotation matrices into those of child
joints, leading to larger rotation errors long the kinematics
chain. As illustrated in Fig. 1 (b), larger errors can be ob-
served in the end of the kinematics chain, which represents
end joints like head and ankle that are far from the root joint.

Instead of predicting relative rotations, this paper pro-
poses to directly estimate the global rotation for each joint
through end-to-end optimization w.r.t. the groundtruth, to
alleviate the accumulated errors. Compared with relative
rotation estimation, the global rotation estimation is more
challenging because of a larger solution space. In other
words, the relative rotation angle of each joint is commonly
small w.r.t. its parent joints, as illustrated in Fig. 2. Dif-
ferently, global rotation exhibits larger freedom of rotation
angles, making an accurate prediction more difficult.

To relieve the difficulty of direct global estimation, we
leverage the rotation of parent joints to estimate the rota-
tion of child joints as they are closely correlated as shown
in Fig. 2. This intuition leads to the Sequentially Global
Rotation Estimation (SGRE), which leverages rotation ma-
trixes of some joints as references to guide the estimation
of subsequent joints on the kinematics chain, a similar way
of residual learning [13]. Considering that rotation can be
determined by the corresponding body part with canonical
pose [15], SGRE further imposes the local body part fea-
tures. Experiments show that, SGRE effective alleviates
error accumulation and produces more accurate 3D recon-
struction results for end joints like neck, head, ankle, etc.

SGRE presents a novel direct rotation prediction
pipeline. It is general and can be flexibly integrated into
existing regression-based methods by replacing their rel-
ative rotation estimation branches. We test the effective-
ness of SGRE on both a baseline regression model and the
latest 3DCrowdNet [7] with extensive experiments on vari-
ous 3D/2D human pose and shape estimation benchmarks.
Integrating 3DCrowdNet [7] with SGRE, we achieve 78.4
MPJPE and 93.3 PVE on 3DPW [37] test set, outperform-
ing the original 3DCrowdNet by 3.3 MPJPE and 5.0 PVE.
On 3DPW-OCC dataset, SGRE exhibits more substantial
advantages and reduces joint errors by 4.0 MPJPE.

To the best of our knowledge, this is an original effort
on global rotation estimation for 3D human mesh recov-
ery. Compared with the relative rotation estimation pipeline
followed by previous works, SGRE effective alleviates the
error accumulation issue and produces better results. The
SGRE can be flexibly applied to recent regression-based 3D
human mesh recovery works to further boosts their perfor-
mance. Those advantages make SGRE a promising method
for 3D human mesh recovery.

2. Related Work
This part briefly reviews existing 3D human mesh recov-

ery works, that can be summarized into model-based and
model-free methods, respectively.

Model-based 3D human mesh recovery adopts para-
metric human model like SMPL [29] and estimates its pa-
rameters to generate 3D human mesh. Because parameters
of human model are embedded in the low dimensional space
and provide a strong structure prior of human body, model-
based methods can be trained with few annotations, e.g., 2D
evidences. Benefited by this property, model-based meth-
ods have dominated this area. Related works can be divided
into optimiztion-based and regression-based ones.

Optimization-based methods: Due to the lack of large
3D annotation datasets, early model-based 3D mesh recov-
ery methods follow an iterative optimization process. Pa-
rameters of the statistical model are tuned to reduce the er-
ror between 2D projection and 2D evidences, such as 2D
joint locations and silhouette [11, 4]. The objective func-
tion typically contains a regularization part to penalize the
unnatural shape and pose, as well as another part to mea-
sure the fitting error between the 2D projection and 2D ev-
idences. SMPLify [4] detects 2D keypoints with off-the-
shelf CNNs as evidence to iteratively train model param-
eters. 3D body joints [44], silhouettes [25] and part seg-
mentation [41] are also adopted in some works as evidence.
HoloPose [12] refines the regressed model parameters with
FCN estimated DensePose, 2D and 3D keypoints. Despite
their well-aligned results, those method need a slow training
procedure and are sensitive to initialization.

Regression-based methods [18, 23, 16, 6, 22, 7] take ad-
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vantage of the powerful nonlinear mapping capability of
neural networks, e.g., CNN [13] or Transformer [9] to di-
rectly predict pose and shape parameters of parametric hu-
man model from 2D images. These methods learn model
priors implicitly in a data-driven manner under different
types of supervision including parameters loss, 3D joints
loss and 2D projection loss, etc. To relieve the difficulty of
directly regression, researchers have proposed many meth-
ods. A line of works progressively refines the regressed re-
sults in a loop. HMR [18] adopts an adversarial prior and an
Iterative Error Feedback (IEF) loop to reduce the difficulty
of regression. PyMAF [42] further addresses the misalign-
ment between estimated mesh and input evidence in IEF
and proposes a mesh alignment feedback. Another line of
works proposes powerful networks to regress model param-
eters. PARE [22] designs a part attention module to enhance
the model capability and handle occlusion. 3DCrowd-
Net [7] proposes a joint-based regressor with graph convo-
lution to better estimate model parameters.

Recently there appears the third line of works that adopts
inverse kinematics to analytically estimate pose parameters
from 3D keypoints. KAMA [15] uses a learned 3D key-
point model to obtain the 3D location of each joint. Then,
the rotation of each part can be analytically calculated. An
optional refinement can be applied for shape estimation and
pose refinement. HybrIK [27] decouples the rotation into
twist and swing parts, then estimates twist rotation with a
network and analytically calculates the swing rotation based
on estimated 3D keypoints. Those methods relieve the dif-
ficulty of rotation regression and achieve superior perfor-
mance. There also exist other methods to improve the per-
formance of regression-based methods. SPIN [23] adds an
optimization step after regression to provide extra 3D su-
pervision from unlabeled images. Temporal context infor-
mation [3, 21] is also exploited for better regression.

Model-free 3D human mesh recovery directly esti-
mates the mesh vertex coordinates instead of parameters
of parametric human model. Those methods commonly
rely on pseudo-groundtruth mesh vertex annotations on
large-scale datasets [14, 28, 37]. Among those methods,
GraphCMR [24] adopts graph convolutional neural network
to directly predict mesh vertex location. Pose2Mesh [6]
adopts graph network to recover 3D human pose and mesh
from 2D pose. I2L-MeshNet [32] proposes a lixel 1D
heatmap to encode the 3D location of each mesh vertex on
x, y, z dimension separately.

Difference with previous works: This paper proposes
a novel direct rotation prediction pipeline. It alleviates the
accumulated error in the relative rotation prediction pipeline
commonly used in existing methods. The proposed method
can be integrated with existing regression-based methods to
further boost the performance. Therefore, this work differs
with existing works in both motivation and methodology.

3. Method
3.1. Overview

The goal of 3D human mesh recovery is to estimate the
triangulated mesh M ∈ RN×3 with N = 6980 vertices
from monocular input RGB image I, which can be concep-
tually denoted as

M = Recovery(I). (1)

We leverage the SMPL model to compute M.
SMPL [29] is a parametric human body model that allows to
use shape and pose parameters to reconstruct the 3D human
body mesh. The shape parameters β ∈ R10 are the first 10
principal components of the shape space. The pose param-
eters θ are 3D rotation matrixes of K=24 joints. We denote
it as θ = (θ1, θ2, ..., θK), where θ1 is the global rotation
of root joint, and θk (k > 1) denotes the relative rotation of
the k-th joint w.r.t its parent. The parent-child relation is de-
fined by the kinematics chain illustrated in Fig. 1 (a). SMPL
provides a differentiable function M = M(θ, β) that out-
puts the mesh M. With M, the coordinates of 3D joint
J3D ∈ RK×3 can be obtained by applying a pre-trained lin-
ear regressor on M. More details about SMPL can be found
in [29] and previous regression-based methods [18, 7].

With SMPL, our goal is to estimate pose and shape pa-
rameters by training a CNN model Φ(·), i.e., {θ, β} =
Φ(I), where {θ, β} are used to generate the 3D body mesh
with the function M(θ, β). More specifically, the backbone
Φ(·) takes an image I as input and outputs a feature map
F ∈ RC×H×W , where H and W denote the spatial size of
feature map. Following HMR [18], we apply global average
pooling on F to get a global feature vector fg . Then a pa-
rameter regressor R(·) takes feature fg as input and outputs
the estimated parameters θ and β, respectively, i.e.,

θ = Rpose(fg), β = Rshape(fg), (2)

where parameters θ and β are feed into SMPL to generate
mesh vertices M = M(θ, β). We illustrate this inference
procedure in Fig. 3.

To train the backbone Φ(·), we map mesh vertices to 3D
joints J3D ∈ RK×3 by the pretrained linear regressor in
SMPL, then further project 3D joints to the image coordi-
nate system as 2D keypoints J2D = Π(π,J3D), where
J2D ∈ RK×2 and Π(ϕ, ·) denotes the projection function
based on the camera parameters π predicted via a regressor
π = Rcam(fg).

As minor parameter errors in 3D space can lead to large
misalignment in 2D space, we follow previous works [18,
22, 7] to add supervision on the projected 2D keypoints to
penalize 2D misalignment. Meanwhile, additional 3D su-
pervision on 3D joints and SMPL parameters are also con-
sidered during the training. The overall training loss can be
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Figure 3. The proposed framework for 3D human mesh recovery. A backbone, e.g., CNN is adopted to extract the image feature, which is
sent to different regressors to obtain the camera, shape and pose parameters to generate final mesh with the SMPL model. The complicated
pose parameter θ is estimated by Sequentially Global Rotation Estimation (SGRE) to alleviate accumulated errors in previous methods.

denoted as,

L = λ3DL3D + λ2DL2D + λSMPLLSMPL, (3)

where the superscript “∗” denotes the groundtruth, and each
term is calculated as

L2D = ||J2D − J ∗
2D||1, (4)

L3D = ||J3D − J ∗
3D||1, (5)

LSMPL = ||θ − θ∗||2 + ||β − β∗||2. (6)

Fig. 3 illustrates our framework, which regresses three
parameters ϕ, β, θ. Among those parameters, the pose pa-
rameter θ = (θ1, θ2, ..., θK) is the most complicated one
and largely determines the reconstruction accuracy. The
following part presents details of our Sequentially Global
Rotation Estimation (SGRE), which implements the regres-
sor Rpose(·).

3.2. Sequentially Global Rotation Estimation

Relative Rotation Estimation: Previous methods esti-
mate the relative rotations from input image via deep neural
networks, which can be denoted as,

{θk}Kk=1 = Rpose(fg), (7)

where θk denotes the relative rotation of k-th joint. To ar-
ticulate the mesh, the global rotation θ̄k of the k-th joint is
computed as,

θ̄k =
∏
i=1:k

θi. (8)

The relative rotation estimation is straightforward and θ can
be directly used in SMPL model. However, it suffers from

error accumulation along the kinematics chain as illustrated
in Eq. (8).

Global Rotation Estimation: We propose to directly
estimate the global rotations from the input image, and train
the regressor R̄pose(·), i.e.,

θ̄ = {θ̄k}Kk=1 = R̄pose(fg), (9)

θk = θ̄−1
pa(k)θ̄k, (10)

where pa(k) is the index of parent joint of the k-th joint.
θ̄−1
pa(k) denotes the inverse matrix of parent joint, which can

be efficiently computed as the transposed matrix θ̄tpa(k) due
to the orthogonality of rotation matrix. We adopt the com-
monly used 6D representation [45] to represent a rotation,
therefore the dimension of θ̄ is 24× 6 = 144.

Because existing datasets only provide the relative rota-
tion annotation, we transform the ground truth relative rota-
tion θ∗ into global rotation θ̄∗ via Eq. (8). During inference,
we use Eq. (10) to transform the estimated global rotation
into relative rotation, which is required by the SMPL model
to generate mesh. Our method is optimized w.r.t. the global
rotation and directly predicts the global rotation. Compared
with accumulating multiple relative predictions to get the
global rotation as in Eq. (8), our method has better poten-
tials to alleviate the accumulated error during inference.

As shown in Fig. 2, global rotation exhibits larger free-
dom of rotation, making global prediction more difficult. To
address this issue, we introduce two components into global
regressor R̄pose(·). The first is a sequential estimation pro-
cedure that leverages the prediction of parent joints to guide
the estimation of child joints. This procedures leverage the
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correlation between parent and child joints to relieve the dif-
ficulty of directly estimation. The second is a local feature
enhancement module that provides extra local part cues as
a complementary feature to the commonly used global fea-
ture. Those two components constitute the SGRE model.

Sequential Estimation. As shown in Fig. 3, the global
rotation of root joint will be computed first. To compute
θ̄k, SGRE takes the rotation matrix of its parent joint, i.e.,
θ̄pa(k) as reference. Therefore, SGRE sequentially estimates
the global rotation of each joint along the kinematics chain.
As adjacent parts are highly correlated, the global rotation
of k-th joint should be constraint by the rotation of its parent
joint. We hence predict θ̄k as,

θ̄k = R̄k
pose(Fk, θ̄pa(k)) + θ̄pa(k), (11)

where Fk denotes the visual feature adopted by SGRE to
predict θ̄k.

Eq. (11) differs with the relative rotation estimation of
Eq.(7) in several aspects. First, it adopts both the θ̄pa(k)
and the visual feature as input, hence allows to leverage the
rotation of parent joint to guide the rotation prediction of
child joint. Secondly, the regressor R̄(·) in Eq. (11) pre-
dicts the residual matrix between k-th joint and its parent,
hence is easier than the direct estimation. In other words,
this residual learning strategy can output reasonable rota-
tion matrix even the regressor R̄(·) produces zero output,
because θ̄pa(k) and θ̄k are correlated as shown in Fig. 2.

Local Feature Enhancement. Besides introducing new
regressor model, SGRE also adopts complementary fea-
tures to pursue a better performance. Relative rotation com-
putation involves two adjacent body parts, and requires a
large receptive field, especially for large body parts like
thigh and calf. Differently, global rotation can be deter-
mined by a local body part with canonical pose [15], there-
fore a local body part clue is more preferred for global rota-
tion estimation. We propose the local feature enhancement
to provide local feature of the k-th joint into its global rota-
tion prediction. The visual feature Fk adopted by the SGRE
can be denoted as,

Fk = {fg, fk}, (12)

where fk denotes the feature sampled around the location of
k-th joint via bilinear interpolation. It is concatenated with
the global feature fg as the Fk to provide complementary
global and local visual information.

We adopt the commonly used soft-argmax [34] to ob-
tain the spatial coordinates of each joint from input image.
Specifically, given the feature map F outputted by the back-
bone, we pass it to several convolutional layers to obtain
the estimated heatmap Hk for k-th joint, then an integration
operation is applied to get the continuous coordinates pk,
which is used to sample fk from F . During training we add
L1 loss to pk to supervise the keypoint estimation training.

Discussions: SGRE alleviates the difficulty of directly
global rotation estimation by estimating the residual rota-
tion of parent and child joint, which is different from rela-
tive rotation in optimization objective. SGRE can tolerate
the error of parent joint because it only serves as a good
starting point in optimization. Errors in starting points could
be corrected by the training procedure. While errors in mul-
tiple relative rotations of previous works can not be cor-
rected by Eq. (8), and leads to error accumulation during
inference.

The residual rotation estimation in SGRE is also dif-
ferent from previous HMR [18] and HKMR [10]. HMR
and HKMR update each joint recursively to pursue more
accurate relative rotation, where each iteration aims to de-
crease the residual between the previous prediction and the
groundturth of each joint. SGRE explores the kinematics
chain to reduce the difficulty of directly estimating global
rotation. It estimates the residual rotations between each
joint and its parent node.

4. Experiments

4.1. Datasets and Evaluation Metric

Training sets. Following the setting of previous
work [7], the proposed method is trained on a mixture of
data from several datasets with 3D and 2D annotation, in-
cluding Human3.6M [14], MuCo-3DHP [31], COCO [28]
and MPII [1]. Human3.6M [14] and MuCo-3DHP [31]
are large-scale 3D human pose estimation benchmarks.
COCO [28] and MPII [1] contain large-scale in-the-wild
images with 2D human joint coordinates annotations. We
use the pseudo SMPL groundtruth annotation from [7].

Evaluation sets. 3DPW [37] contains 60 video se-
quences captured mostly in outdoor conditions. We use
this dataset only for evaluation on its test set. Following
PARE [22], we also report the performance on 3DPW-OCC,
an occlusion subset of 3DPW dataset to evaluate the per-
formance of methods under heavy occlusion. To evaluation
the alignment of predicted mesh with 2D evidences, we also
follow [42, 19] to report the 2D human pose estimation per-
formance on COCO [28] val set and CrowdPose [26] test set
by projecting the estimated 3D joints on the image plane.

Evaluation metric. We report 3D pose and shape evalu-
ation metrics, as well as 2D pose estimation metrics. For
the 3D evaluation, we use mean per-joint position error
(MPJPE), Procrustes-aligned mean per-joint position error
(PA-MPJPE) and mean per-vertex position error (MPVPE).
All errors are measured after aligning root joints of GT and
estimated human body meshes. We also adopt mean per-
joint angle error (MPJAE) to evaluate the accuracy of esti-
mated joint rotation. For 2D pose estimation, we report av-
erage precision (AP) with different thresholds, object sizes
and CrowdIndex [26].
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Method MPJPE ↓ PA-MPJPE ↓ PVE ↓

Relative baseline 88.4 56.7 105.5
Global baseline 87.8 56.3 104.4
SGRE 85.5 55.0 101.8

Relative++ 87.6 56.1 105.9

Table 1. Ablation study with other baselines on 3DPW test set.

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓

Global baseline 87.8 56.3 104.4
+Sequential 86.5 55.6 102.6
+Local feat 85.5 55.0 101.8

Table 2. Validity of each component in SGRE on 3DPW test set.

Infer (s) Feat Extract Param Regress Mesh Generate

Baseline 0.102 0.002 0.045
SGRE 0.102 0.010 0.045

Table 3. Runtime analysis of each component in baseline and
SGRE. The inference time is tested with batch size 64 on 3DPW
test set.

4.2. Implementation Details

All experiments are conducted using PyTorch. We adopt
ResNet-50 [13] as backbone for all experiments and follow
all the training and test configuration of [7]. The input im-
age is resized to 256× 256 and produces image feature map
with size 2048 × 8 × 8. Average pooling is applied on the
output feature map and results in a 2048 × 1 feature vec-
tor fg . We adopt Adam optimizer [20] with a batch size of
160. The learning rate is set to 10−4 for backbone and 10−3

for other parameters. For ablation study we train model
on COCO for 10 epochs and evaluate on 3DPW test set.
To compare with other methods, we incorporate all training
data and train model for 10 epochs.

4.3. Ablation Study

This section aims to evaluate the effectiveness of SGRE
and investigate the contribution of each proposed compo-
nents. All evaluation is conducted on the 3DPW test set.

Comparison with baselines. We first compare the pro-
posed global rotation estimation with relative rotation esti-
mation under the same setting, e.g., same input and back-
bone. The results are shown in Table 1. We can observe
that directly estimate global rotation achieves similar per-
formance to relative baseline. This demonstrates that es-
timating global rotation is feasible and can achieve good
performance. However, directly estimating global rotation
cannot provide accurate results due to the large joint angle.
The proposed SGRE can relieve this problem and constantly
improve the performance of global rotation estimation. We
also evaluate a relative rotation estimation model with se-

Method 3DPW MPJAE ↓ 3DPW-OCC MPJAE ↓

Relative baseline 22.3 25.3
SGRE 21.0 23.8

Table 4. Analysis on joint rotation error in SO(3), the units of ro-
tation error are in degree.
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Figure 4. Visualization of the joint error along difference kinemat-
ics chains of different rotation estimation methods. (a) Root to
head, (b) Root to toe, and (c) Root to hand. BS and 3DC denote
the baseline and 3DCrowdNet [7] respectively.

quentially estimation and local feature enhancement, which
is denoted as Relative++. It achieves slightly better per-
formance to baseline but is inferior to SGRE. This demon-
strates that the proposed SGRE is better for global rotation
estimation and alleviate the error accumulation.

Component Analysis. We then analyze the effective-
ness of each components. The results are shown in Ta-
ble 2. We first test the effectiveness of sequentially esti-
mation. Compared with directly estimation, it improves the
MPJPE by 1.3 and PVE by 1.8. Local feature enhancement
is also useful, which further improves the MPJPE from 86.5
to 85.5 mm. These results demonstrate the effectiveness of
each component in SGRE.

Error Analysis. We directly measure the joint rotation
error in SO(3) using geodesic distance and the results are
shown in Table 4. We can observe that SGRE obtains more
accurate joint rotation than baseline. We also conduct error
analysis on the joint position along the kinematics tree to in-
vestigate the error accumulation phenomenon. The results
are shown in Fig. 4. We test three paths in kinematics tree,
e.g., from root joint to head, toe and hand joints. The chains
are truncated to better illustrate the error of end joints. Fig. 4
shows that the error increases along all kinematics chains.
And we can observe that global rotation estimation reduces
more error in the deeper joint than relative rotation estima-
tion. This indicates that SGRE can alleviate the error accu-
mulation in relative rotation estimation methods.

Runtime Analysis. Table 3 gives a detailed analysis on
the efficiency of each component of SGRE with baseline.
The difference is that SGRE sequentially decodes param-
eters, which is slower than parallel estimation in baseline,
e.g., from 0.002 to 0.010. Compared with feature extraction
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3DPW

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓

HMMR [18] 116.5 72.6 -
Doersch et al. [8] - 74.7 -
Sun et al. [36] - 69.5 -
VIBE [21] 93.5 56.5 113.4
MEVA [30] 86.9 54.7 -

HMR [18] 130.0 76.7
CMR [24] - 70.2 -
SPIN [23] 96.9 59.2 135.1
HMR-EFT [17] - 54.2 -
Pose2Mesh [6] 89.2 58.9 -
I2L-MeshNet [32] 93.2 58.6 -
ROMP [35] 91.3 54.9 108.3
PyMAF [42] 92.8 58.9 110.1
PARE [22] 82.9 52.3 99.7
3DCrowdNet [7] 81.7 51.5 98.3

Baseline 83.1 52.3 99.9
+SGRE 81.5 51.4 97.4
3DCrowdNet† 82.0 51.4 98.0
+SGRE 78.4 49.6 93.3

Table 5. Comparison with other methods on 3DPW test set. The
units for mean joint and vertex errors are in mm. † denotes our
implementation results.

and mesh generation, the increased time is negligible and
has little impact on the final inference time. Accelerating
the sequentially estimation can be left for future research.

Visualization. We also give qualitative comparison be-
tween relative rotation estimation and SGRE in Fig. 5. Ben-
efited by the powerful neural network and large scale 3D
body mesh datasets, both methods can generate natural and
well-aligned mesh for images in the wild. However, we can
observe that SGRE can generate better mesh, especially at
the end of kinematics chains like elbow and knee.

4.4. Comparison with Other Methods

We compare SGRE with previous methods on 3D human
mesh recovery benchmark 3DPW [37] and 2D human pose
estimation benchmark COCO [28] and CrowdPose [26].
The results are shown in Table 5, 6, 7 and 8.

Table 5 compares SGRE with recent works on 3DPW
test set, which is the most widely adopted evaluation
benchmark. We compare previous methods that adopt
temporal information: HMMR [18] and VIBE [21],
multi-stage methods including Pose2Mesh [6] and I2L-
MeshNet [32], and single-stage methods: HMR [18],
SPIN [23], PARE [22] and 3DCrowdNet [7]. Compared
with these methods, the proposed SGRE achieves competi-
tive or superior results. For example, SGRE with 3DCrowd-
Net achieves 78.4 MPJPE on 3DPW test set, which is lower
than PARE by 4.5 mm, 3DCrowdNet by 3.3 mm. It also re-
duces the PVE to 93.3 mm, outperforming previous meth-

3DPW-OCC

Method MPJPE ↓ PA-MPJPE ↓ PVE ↓

Zhang et al. [43] - 72.2 -
SPIN [23] 95.6 60.8 121.6
HMR-EFT [17] 94.4 60.9 111.3
PARE [22] 90.5 56.6 107.9

Baseline 93.7 58.2 110.1
+SGRE 89.9 56.9 104.4
3DCrowdNet† 87.6 54.2 101.2
+SGRE 83.6 53.1 97.2

Table 6. Comparison with other methods on 3DPW-OCC. The
units for mean joint and vertex errors are in mm. † denotes our
implementation results.

COCO

Method AP ↑ AP50 AP75 APM APL

OpenPose [5] 65.3 85.2 71.3 62.2 70.7

HMR [18] 18.9 47.5 11.7 21.5 17.0
GraphHMR [24] 9.3 26.9 4.2 11.3 8.1
SPIN [23] 17.3 39.1 13.5 19.0 16.6
PyMAF [42] 24.6 48.9 22.7 26.0 24.2

Baseline 42.5 74.6 43.5 46.1 40.3
+SGRE 44.6 75.5 46.6 47.6 42.7
3DCrowdNet† 55.4 85.1 64.3 61.8 53.1
+SGRE 58.4 86.5 66.2 62.5 55.6

Table 7. Comparison with other methods on COCO val set. † de-
notes our implementation results.

CrowdPose

Method AP ↑ AP50 AP75 APE APM APH

SPIN [23] 17.2 42.4 11.2 - - -
PyMAF [42] 17.4 42.7 13.0 - - -
ROMP [35] 28.5 58.8 24.7 - - -
OCHMR [19] 23.6 51.1 18.7 - - -

Baseline 41.9 68.9 43.7 51.0 43.1 32.0
+SGRE 43.1 69.3 46.2 52.6 44.2 33.1
3DCrowdNet† 48.0 77.7 51.5 54.2 48.9 41.3
+SGRE 52.9 79.8 57.5 59.3 53.6 46.1

Table 8. Comparison with other methods on CrowdPose test set. †
denotes our implementation results.

ods by a large margin. Note that SGRE is general and can
be flexibly integrated into other methods. In Table 5 we
show that SGRE can constantly improve the performance
of baseline and sota regression-based methods.

We also test the proposed SGRE in more challenging
scenarios, i.e., occlusion. Following previous work [22], we
conduct experiments on 3DPW-OCC, which is a occlusion-
specific dataset to evaluate the robustness of methods under
occlusion. Table 6 compares SGRE with previous meth-
ods, including SPIN [23], HMR-EFT [17] and PARE [22].
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(a) (b) (c) (a) (b) (c)
Figure 5. Qualitative results on COCO (columns 1-3) and 3DPW (columns 4-6) datasets. From left to right: (a) Input image, (b) Relative
rotation estimation by 3DCrowdNet [7], (c) and our SGRE results.

SGRE with sota 3DCrowdNet achieves 83.6 MPJPE and
97.2 PVE on 3DPW-OCC, outperforming previous meth-
ods by a large margin. Table 6 and Table 5 shows that
SGRE gets more substantial adavantages on occlusion sce-
narios. This indicates that the proposed SGRE is better than
relative rotation estimation, because it alleviates the error
accumulation along the kinematics chains.

Finally, we evaluate 2D human pose estimation perfor-
mance on COCO val set and CrowdPose test set to ver-
ify the effectiveness of SGRE in real-world scenarios. We
project the 3D joints regressed from mesh on the image
plane and report the performance. The results are shown
in Table 7 and Table 8. We can observe that SGRE can
significantly improve the performance of both baseline and
3DCrowdNet and achieves superior performance over pre-
vious regression-based methods.

5. Conclusion

This paper proposes the SGRE to estimate the accurate
global rotations for 3D human mesh recovery. Different
from previous methods that estimate relative rotations, the
proposed SGRE alleviates the error accumulation along the
kinematics chains, leading to smaller joint and mesh ver-
tex error. SGRE successively estimates the global rotation
of each joint based on previous estimated results, relieving
the difficulty of directly estimation. Experiments on several
3D human mesh recovery and 2D human pose estimation
benchmarks demonstrate the effectiveness of SGRE.
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