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(a) Aerial LiDAR point clouds of Tallinn

(b) A building point cloud (c) A roof point cloud

(d) A mesh model (e) A wireframe model

Figure 1. Illustration of Tallinn, one of the 16 cities in the Building3D dataset

Abstract

Urban modeling from LiDAR point clouds is an im-
portant topic in computer vision, computer graphics, pho-
togrammetry and remote sensing. 3D city models have
found a wide range of applications in smart cities, au-
tonomous navigation, urban planning and mapping etc.
However, existing datasets for 3D modeling mainly focus
on common objects such as furniture or cars. Lack of build-
ing datasets has become a major obstacle for applying deep
learning technology to specific domains such as urban mod-
eling. In this paper, we present an urban-scale dataset con-
sisting of more than 160 thousands buildings along with
corresponding point clouds, mesh and wireframe models,
covering 16 cities in Estonia about 998 Km2. We exten-
sively evaluate performance of state-of-the-art algorithms
including handcrafted and deep feature based methods. Ex-
perimental results indicate that Building3D has challenges

of high intra-class variance, data imbalance and large-
scale noises. The Building3D is the first and largest urban-
scale building modeling benchmark, allowing a comparison
of supervised and self-supervised learning methods. We be-
lieve that our Building3D will facilitate future research on
urban modeling, aerial path planning, mesh simplification,
and semantic/part segmentation etc.

1. Introduction

Deep learning has achieved tremendous success on com-
puter vision applications such as image classification and
object detection [12, 20, 26, 47], semantic segmentation
[5, 11, 43] and human pose estimation [2, 55], to name a
few. With the increased availability of 3D point clouds that
found a wide range of applications in robotics, autonomous
driving and urban modeling, a recent research focus has
been shifted to deal with such massive 3D point clouds
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[29, 39, 40, 48]. The majority of current work on 3D point
cloud processing are focused on 3D shape classification
[39,42,48,49], 3D object detection and tracking [18,29,41],
3D semantic and instance segmentation [16,22,40,49]. Cor-
respondingly, a large number of datasets including synthetic
and real-world ones have been established to train and eval-
uate deep learning algorithms with respect to above men-
tioned applications [1, 3, 6, 8, 10, 15, 44, 50]. The widely
available datasets are prerequisite for rapid algorithm ad-
vancement in supervised learning based on neural networks.
Supervised learning methods heavily rely on labeled data,
which have been intensively studied. Due to the expensive
cost of labeled data, self-supervised learning methods learn-
ing representations from unlabeled data, are receiving more
and more attention. Started from self-supervised learning
on 2D images, SimCLR [7] and CPC [13, 51] have reached
top performance on image classification benchmarks. The
methods of self-supervised learning in 2D are being quickly
adapted for 3D point clouds, such as the jigsaw puzzle pre-
text task [46], estimating rotations [19], contrastive learn-
ing [45], point cloud completion [54].

Current deep learning methods on urban modeling have
been restricted to small datasets or synthetic ones. How-
ever, urban modeling is different from existing object mod-
eling work where small objects are collected under a well-
controlled lab environment. Specifically, urban modeling
deal with large-scale LiDAR scans containing more noisy
and incomplete point clouds that represent complex real-
world scenes. To advance urban modeling research in com-
puter vision, we introduce an urban-scale dataset for 3D
roof modeling from point clouds collected from the air. The
dataset covering 16 cities in Estonian consist of 875.39 mil-
lions of aerial LiDAR point clouds and 161.91 thousands
of 3D building models in both mesh and wireframe for-
mats. A mesh model is a 3D model that is made up of
small discrete cells. The commonly used 2D cell shapes
are the triangle and the quadrilateral, which the triangular
mesh is the one referred in this paper. A wireframe model
is a 3D model that the polygonal faces have been removed
to retain only the outlines of its component polygons. It is
the least complex representation, namely a skeletal descrip-
tion of a 3D object consisting of vector points connected by
lines. Man-made objects such as buildings are mostly poly-
hedral which can be represented by corners, edges and/or
planar surfaces [28]. Therefore, wireframes are particularly
suitable for representing polyhedral objects such as build-
ings or furniture. Besides benefit of efficient storage and
transmit, wireframe models are easy to edit and manipulate
in CAD software which can help create CAD models for
various applications such as quality inspection, metrology,
rendering and animation [28].

We convert mesh models into wireframe models. There
is no wireframe models provided in current building mod-

eling datasets [3, 15, 17, 25, 56]. To our knowledge, we
are the first to provide both mesh and wireframe building
models along with corresponding LiDAR point clouds at
urban scale. Fig.1a shows the aerial LiDAR point clouds of
Tallinn, one out of 16 cities in Building3D dataset. It con-
tains 361.95 million points and 47.05 thousands of build-
ings, covering an area around 195 km2. Figure 1b, 1c 1d 1e
shows building and roof point clouds, as well as correspond-
ing mesh and wireframe models, respectively. Besides a
urban-scale dataset, we also provide two new baselines of
supervised and self-supervised learning, adopted and eval-
uated various supervised and self-supervised pipelines for
3D roof modeling. To our knowledge, we are the first to use
and evaluate self-supervised learning method for 3D object
reconstruction. Overall, our main contributions are in the
following.

• We present the first and largest urban-scale building
modeling dataset consisting of aerial LiDAR point
clouds, mesh and wireframe models. Besides urban
modeling, the proposed dataset can be extended to
support various downstream applications. The whole
dataset is made available to the research community.

• We evaluate representative deep and handcrafted
feature based methods including mainstream self-
supervised learning methods, and establish new base-
lines and evaluation metric for future research. The
new baselines achieve state-of-the-art performance
compared with deep learning based methods. To our
knowledge, we are the first to propose and adopt self-
supervised pre-training methods for 3D building re-
construction.

2. Related Work
2.1. Related Datasets

We only review pertinent 3D modeling datasets with a
focus on point clouds based urban modeling datasets.

ShapeNet [3] is currently one of the most popular 3D
object datasets for part segmentation, point cloud com-
pletion and reconstruction. For 3D object reconstruc-
tion, ShapeNetCore, a subset of ShapeNet, covers 55 com-
mon object categories with about 51,300 unique 3D mod-
els but without corresponding point clouds. The methods
[30, 34, 35] generate simulated point clouds as input, and
use continuous signed distance field or 3D voxel grid with
occupancy information for implicit reconstruction of 3D ob-
ject surfaces. RoofN3D [56] is designed for 3D building
reconstruction. We found that the quality of mesh models
are poor and a large amount of shape and vertex are mis-
matched between point clouds and mesh models. Based on
RoofN3D dataset, Li et al., [23] select 500 roof point clouds
and manually create mesh models to construct a small real-
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Dataset Scene Type Area(Km2) Diversity Point Clouds Mesh Wireframe

ShapeNetCore [3] Object Synthetic – – !

KITTI [9] Street LiDAR – 39.2 Km street !

Simulated dataset [23] – Synthetic – – ! !

RoofN3D by point2roof [56] – LiDAR – 1 city ! !

City3D [17] Urban LiDAR – 3 scenes ! !

UrbanScene3D [25] Urban CAD&MVS 136
6 cities and
10 scenes !

SensatUrban [15] Urban UAV Photogrammetry 7.64 3 cities !

STPLS3D [6] Large scenes Aerial Photogrammetry 17 67 scenes ! !

DublinCity [65] Small Scenes LiDAR 5.6 1 scene !

Building3D Urban LiDAR 998 16 cities ! ! !

Table 1. Comparison with existing 3D datasets

Method Number
Objects Roof(avg.) Corners (avg.) Edges(avg.)

Simulated dataset [23] 17.6 K 1409 8 10
RoofN3D by point2roof [23, 56] 0.5 K 1349 6 8

Tallinn of Building3D 36.9 K 3292 16 18

Table 2. Quantitative comparison between Building3D and most relevant datasets

world dataset on the top of a simulated dataset. However,
both the real-world and simulated datasets consist of very
few categories of primitive shape, which doesn’t exhibit
considerable variability. City3D [17], a large-scale build-
ing reconstruction dataset, consists of about 20 thousands
of building mesh models and aerial LiDAR point clouds.
However, all mesh models are generated by the proposed
method, which means that the quality of mesh models de-
pends on the method’s capability. A major limitation is
that their framework uses only planar primitives. There-
fore their method can’t deal with curved surfaces or non-
planar roofs which commonly exit in the real world. Ur-
banScene3D [25] covers 10 synthetic and six real-world
scenes. Specifically, 10 synthetic datasets consist of 13,352
textured mesh objects and corresponding aerial images for
the sake of 3D reconstruction. The six real-world scenes
provide 488 textured mesh objects and corresponding aerial
images. Although point clouds are also provided, they are
only allowed to be used for evaluating the quality of recon-
struction results not for the training.

2.2. Related Methods

Building reconstruction from point clouds has been in-
tensively studied in the past two decades [4, 14, 23, 24, 31,
32, 37, 38, 52, 53, 64]. This problem remains unsolved due
to complexity in roof structure and building style, sparsity,
noise and possible missing data in point clouds. In general,

traditional 3D roof reconstruction methods can be classi-
fied into three categories: data-driven [38,64], model-driven
[14, 53] and hybrid [53]. Traditional methods normally re-
quire multiple steps of processing to generate 3D building
models, and the errors introduced in each step will be accu-
mulated. The quality of final building models largely rely
on the quality resulted from previous steps. If an end-to-end
deep learning method, which takes point clouds as input and
outputs wireframe building models, is employed, the prob-
lem of accumulated errors can be eliminated to a large ex-
tent [23]. However, there are very few deep learning meth-
ods to address this problem probably due to unavailability
of a well-labeled and diversified dataset.

The PC2WF [28] is the first end-to-end deep learning
approach to generate wireframe models from synthetic 3D
point clouds. The problem of wireframe model generation
is formulated as a problem of vertex and edge classifica-
tion. Due to lack of a publicly available point cloud dataset,
they constructed their own synthetic dataset. Along this line
of work, the Point2Roof [23]is the first trainable end-to-
end deep neural network to generate 3D wireframe build-
ing models from LiDAR point clouds. Due to lack of a
real-world dataset, they also used synthetic point clouds and
models for the pre-training, and constructed a small amount
of real world data to fine tune the network. However, due to
the limited training samples, their algorithm can only gen-
erate very limited types of building models. We believe
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Figure 2. Details of Building3D dataset. (a) Illustration of 16 cities in our dataset. (b) The number of points and objects in each city. (c)
The area of each city. (d) The average memory consumption of a building point cloud, mesh and wireframe model in each city.

that our urban-scale real-world dataset will help advance the
state of art in the field of urban modeling.

3. The Building3D Dataset

We process the raw data provided by land board of re-
public of Estonia to generate Building3D dataset (Build-
ing 3D model data: Estonian Land Board 2022). The
Building3D dataset covers 16 cities about 998 Km2. Fig.2
shows overall statistics of the proposed dataset, which con-
tains about 160 thousands building point clouds with cor-
responding mesh and wireframe models. Fig.2b shows his-
tograms of point clouds and objects (i.e. buildings) in each
city. The order of magnitude of points and objects are in-
dicated by symbols M (million) and K (thousand) respec-
tively. Fig.2c shows the area of each city. Fig.2d shows
the average memory consumption of a building point cloud,
mesh and wireframe model in each city respectively. The
average memory consumption for a building point cloud is
between 83.89KB and 672.97KB, while the corresponding
mesh and wireframe model is less than 6.5KB and 2KB.
The ratio of average sizes among building point clouds,
mesh and wireframe models is approximately 400:4:1. An
straightforward visualization of Building3D is shown in
http://building3d.ucalgary.ca/.

3.1. Data Description and Annotation

Building point clouds The raw LiDAR point clouds
are collected by a high-precision RIEGL VQ-1560i scanner
at altitude 2600 meters then stored in LAZ format. Each
LAZ file covers 1 Km2 and consists of terrain, water, trees,
bushes, buildings, bridges etc. The relative accuracy of
point clouds is 20 mm. The density of point clouds is
30.314 points per square meter and the point-to-point dis-
tance is 0.1816m. For 3D building reconstruction, we re-
move irrelevant point clouds and only retain building point
clouds. To this end, point clouds and corresponding mesh
models are projected onto XY plane. Then all irrelevant
point clouds outside projected regions of mesh models are
removed to obtain building point clouds. To generate fine
point clouds for 3D building reconstruction as shown in
Fig.1b, only points whose shortest distances to correspond-
ing mesh models are within a given threshold are retained.
Each building point clouds are stored in XYZ format includ-
ing XYZ coordinates, RGB color, near infrared information
and intensity.

Roof point clouds It is inevitable that building facade
are incomplete due to use of airborne scanners. In practice,
some building point clouds have relatively complete facade
information, while others may have barely information on
facade. However, it is not an essential problem for 3D roof
reconstruction which doesn’t involve much of facade infor-
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mation. We can remove all the points representing facades.
Basically, almost all facades are vertical to the XY plane.
We calculate normals for each mesh face and remove all
mesh faces whose normals are parallel to the XY plane to
generate roof mesh models. A point is classified as roof if
its distance to the roof mesh model is within a given thresh-
old. The roof point clouds are shown in Fig.1c.

Mesh models Building mesh models are created from
aerial LiDAR point clouds and building footprints by using
the Terrasolid software with manual editing. These mesh
models are typical LoD2 models including detailed and re-
alistic representation of roofs. Compared with mesh models
with dense triangular facets provided by ShapeNet [3] and
UrbanScene3D [25], our mesh models can be considered
as simplified mesh models with an average of 50 faces for
each model. In the Tallinn dataset, approximately 40% of
mesh models are less than 30 faces. A mesh model is shown
in Fig.1d which different colors indicate different triangular
meshes.

Wireframe models wireframe models are designed to
formulate the problem of 3D reconstruction as a problem of
point and edge classification. Compared with mesh models,
wireframe models have clearer and more well-defined struc-
tures and require less disk space. To generate wireframe
models, we calculate normals for each mesh. If the normals
of two adjacent triangular meshes are approximately paral-
lel, it indicates that they are co-planar and the shared edge
will be removed. After all shared edges are removed, we ob-
tain coarse wireframe models with redundant vertices. The
coarse wireframe models also contain short edges that can
be merged into long edges. Finally, the fine wireframe mod-
els are generated by removing all redundant vertices and
merging short edges, then reviewed and adjusted by profes-
sional technicians. A wireframe roof model in the Build-
ing3D dataset is shown in Fig.1e. Root Mean Square Er-
ror (RMSE) represents displacement between original point
clouds and corresponding mesh and wireframe models and
the average RMSE is 0.065m.

3.2. Building Roof Types

The Building3D dataset encompasses more than 60 dis-
tinct roof types, surpassing coverage of all comparable
datasets as shown in Table 1. Table 2 shows differences
compared with most relevant datasets [23, 56]. The num-
ber of corners and edges shows that our roof models are
more complex and have more categories. More points in
roof point clouds indicate that our LiDAR point clouds con-
tain more detailed information and intricate structure. Fig.4
illustrates some of the representative roof types, including
Flat, Dormer, Mansard, Pyramid Hip, Saltbox, Glambrel,
Overlaid Hip, Hip and Valley, Cross Hipped, Combination,
among others. In each category of Fig.4, columns from left
to right show roof point cloud and wireframe (top-down

view), roof point cloud and wireframe (side view), cor-
responding roof mesh and wireframe model, respectively.
The wireframe models contain less facets than mesh mod-
els.

4. Benchmarks

4.1. Evaluation metrics

We use several metrics for evaluation, average corner
offset (ACO), precision, recall and F1 score, 3D mesh IoU,
and root mean square error (RMSE). ACO is the average
offset between predicted corners and ground-truth corners.
Corner precision (CP), edge precision (EP), corner recall
(CR), and edge recall (ER) are calculated through confusion
matrix to evaluate the accuracy of corner and edge clas-
sification. 3D Mesh IoU is a metric for evaluation of the
fit between generated mesh models and ground truth mesh
models. Existing 3D IoU methods use minimum bounding
boxes of mesh models which can’t represent accuracy of
generated mesh models. We develop a numerical solution
to use mesh models for 3D IoU to represent fitting errors.
RMS distance is a metric for evaluation of the fit between
input roof point clouds and generated mesh models.

4.2. Training

We carefully selected about 37k data samples consisting
of roof point clouds and wireframe models from Tallinn.
We use around 33.3k (90%) data for the training and the re-
maining 3.7k (10%) for the testing. The number of each
roof point cloud is either upsampled or downsampled to
3072 as input, where the input P ∈ R3072×7 contains XYZ
coordinates, RGB color and near infrared spectrum values.
All models are trained in a RTX A6000 GPU with 48GB.
In addition, we also select approximately 5,600 for train-
ing and 550 for testing as entry-level Building3D dataset,
which contains approximately 10 corners and 12 edges per
building on average.

4.3. Representative Baselines

To our knowledge, there are only two deep learning
methods [23, 28] available for wireframe reconstruction
from point clouds. This is probably due to limited availabil-
ity of real-world datasets. The PC2WF [28] is designed to
generate furniture models which requires very dense point
clouds as input. It doesn’t work with point clouds of lower
density and fails on the Building3D dataset. We evaluate
performance of Point2Roof and also propose a new super-
vised method. Besides evaluation of four representative
self-supervisions and three supervisions, we also propose
a new self-supervised feature extraction module. In total,
we select ten representative methods as solid baselines to
benchmark our Building3D dataset.
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Figure 3. Point cloud and wireframe models of 10 distinct roof types.

• PointNet [39] and PointNet++ [40]: The most popular
methods to extract 3D point cloud features.

• RandLA-Net [16]: A method that can extract large-
scale point cloud features by an effective local feature ag-
gregation module.

• Point2Roof [23]: It employs the PointNet++ [40] as
feature extractor to generate pointwise point features for
roof corner prediction and edge classification.

• Our Supervised: We use Point-Transformer [60] as fea-
ture extractor to generate pointwise point features for roof
corner prediction and feature generation. Based on graph
neural networks [61],our method makes full use of node
(corners) location and feature information to generate edges
(refer to our supplementary material).

• Point-BERT [58]: A prior baseline that introduces a
new pre-training approach using a masked point modeling
pretext task for 3D point cloud Transformer.

• Point-MAE [33]: A solid baseline that introduces
a self-supervised learning method for point clouds using
masked auto-encoders.

• Point-M2AE [59]: It introduces a hierarchical pre-
training method for point clouds using multi-scale masked
auto-encoders.

• 3D-OAE [62]: It uses occlusions in the point clouds
to train an auto-encoder and outperforms existing self-
supervised methods for point cloud classification and seg-
mentation tasks.

• Our Self-supervised: Based on Point-MAE, we de-
signed a new linear self-attention mechanism to increase
computational efficiency (refer to our supplementary ma-
terial).

4.4. Benchmark Results

Baselines On Deep Learning Methods Table 3 shows
quantitative results of supervised and self-supervised meth-

ods with different feature extractors on the entry-level
Building3D dataset. Although these methods show good
performance in CP and EP metrics, they tend to perform
poorly in CR and ER metrics, particularly in ER metric.
This indicates that these methods struggle to detect all edges
in the wireframe models, resulting in missing edges. In
general, our supervised method performs the best in terms
of F1 score in the supervised learning category. Our self-
supervised performs the best in corner F1 score. Table 4
shows that our supervised method outperforms the only ex-
isting deep-learning method [23] in roof reconstruction by
a large margin on the Tallinn Building3D. This is prob-
ably because Point2Roof was designed without sufficient
real-world data for training, which limits its applicability to
real-world scenarios beyond simulated data. As shown in
Table 3 and Table 4, all methods don’t perform well in the
ER metric, probably because of data incompleteness such
as missing corner point clouds and insufficient edge fea-
ture extraction. This is also one of the major challenges
in the Building3D dataset. For the self-supervised baseline,
we use the pre-trained self-supervised module to replace the
supervised feature extractor [60]. Then use partial labeled
data at a reduced ratio, such as 1%, 10%, 20%, 50% and
80% to fine tune the network to test its performance. Table
4 indicate that the performance of self-supervised method
is increased when using more labeled data. Our method
achieves generally better performance at the same reduced
data ratios compare to the Point-MAE [33]. More experi-
ments are provided in our supplementary material.

Modeling Results on Handcrafted Features We eval-
uate three representative methods, 2.5D Dual Contouring
[63], PolyFit [32], and Topology Aware Modeling [4].
These traditional methods typically require intensive pa-
rameter tuning from experts who well understand the al-
gorithms, and errors in each step are accumulated which
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Methods ACO CP CR F1 EP ER F1

Self-supervised

Point-BERT [58] 0.25 0.88 0.69 0.77 0.90 0.29 0.44
Point-MAE [33] 0.27 0.85 0.69 0.76 0.86 0.22 0.35

Point-M2AE [59] 0.26 0.88 0.69 0.77 0.90 0.31 0.46
3D-OAE [62] 0.27 0.86 0.68 0.76 0.79 0.32 0.46

Our self-supervised
(Based on Linear Transformer) 0.26 0.87 0.69 0.77 0.87 0.37 0.52

Supervised

PointNet [39] 0.36 0.71 0.50 0.59 0.81 0.26 0.39
PointNet++ [40] 0.34 0.79 0.52 0.63 0.84 0.33 0.47

RandLA-Net [16] 0.35 0.70 0.60 0.65 0.67 0.16 0.25
DGCNN [36] 0.32 0.73 0.58 0.65 0.81 0.30 0.44
PAConv [57] 0.33 0.75 0.57 0.65 0.85 0.31 0.45

Stratified Transformer [21] 0.38 0.72 0.51 0.62 0.75 0.22 0.34
FG-Net [27] 0.32 0.77 0.64 0.70 0.84 0.38 0.52

Point2RooF [23] 0.30 0.66 0.48 0.56 0.71 0.26 0.38
Our supervised

(Based on Point Transformer) 0.26 0.89 0.66 0.76 0.91 0.46 0.61

Table 3. Quantitative results on the entry-level Building3D

Methods ACO CP CR F1 EP ER F1

Self-supervised

Point-MAE (1%) 0.49 0.21 0.07 0.11 0.00 0.00 0.00
Point-MAE (10%) 0.38 0.69 0.42 0.52 0.00 0.00 0.00
Point-MAE (20%) 0.36 0.71 0.44 0.54 0.47 0.09 0.15
Point-MAE (40%) 0.34 0.73 0.46 0.56 0.49 0.10 0.17
Point-MAE (50%) 0.33 0.75 0.47 0.58 0.52 0.12 0.20

Self-supervised

Point-M2AE (10%) 0.38 0.69 0.52 0.59 0.42 0.02 0.04
Point-M2AE (20%) 0.35 0.73 0.55 0.63 0.39 0.05 0.09
Point-M2AE (40%) 0.32 0.77 0.57 0.66 0.42 0.08 0.13
Point-M2AE (50%) 0.32 0.79 0.58 0.67 0.50 0.07 0.12

Self-supervised

Our self-supervised (1%) 0.57 0.34 0.04 0.07 0.13 0.00 0.00
Our self-supervised (10%) 0.39 0.71 0.46 0.56 0.60 0.01 0.02
Our self-supervised (20%) 0.37 0.76 0.49 0.64 0.78 0.12 0.21
Our self-supervised (40%) 0.32 0.79 0.51 0.62 0.82 0.14 0.24
Our self-supervised (50%) 0.30 0.84 0.53 0.65 0.85 0.15 0.26
Our self-supervised (80%) 0.28 0.87 0.55 0.67 0.89 0.16 0.27

Supervised

Point2RooF [23] 0.39 0.65 0.30 0.41 0.66 0.08 0.14
Our supervised

(Based on Point Transformer) 0.29 0.90 0.53 0.66 0.88 0.23 0.36

Table 4. Quantitative results on the Tallinn Building3D

affect the final reconstruction. Specifically, the PolyFit
requires complete facade point cloud information for the
reconstruction process. The 2.5D Dual Contouring and
Topology Aware Modeling require denser point clouds as
input. On the contrary, our deep learning method is fed
into open point clouds and can be used by non-professionals
without any parameter tuning. Table 5 shows quantitative
results compared with the traditional methods. Although

our method doesn’t surpass traditional methods in terms of
RMSE and IoU, the generated models have fewer faces, re-
sulting smoother models as shown in Fig.4. This is because
the ground truth wireframe in the Building3D dataset serves
as guide to generate smoother mesh models.
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Method
Building A Building B Building C Building D

RMSE ↓ / IoU ↑ / Faces↓ RMSE ↓ / IoU ↑ / Faces↓ RMSE ↓ / IoU ↑ / Faces↓ RMSE ↓ / IoU ↑ / Faces↓

2.5D Dual
Contouring [64]

0.091 / 0.92 / 268 0.134 / 0.73 / 100 0.091 / 0.92 / 96 0.094 / 0.95 / 283

PolyFit [32] 0.080 / 0.97 / 31 0.111 / 0.36 / 158 0.055 / 0.97 / 73 0.122 / 0.63 / 35
Topology Aware

Modeling [4]
0.114 / - / 3022 0.346 / 0.56 / 320 0.40 / 0.73 / 355 0.22 / - / 1373

Groud Truth 0.086 / - / 80 0.171 / - / 54 0.052 / - / 68 0.063 / - / 54
Ours 0.490 / 0.73 / 19 0.263 / 0.67 / 13 0.133 / 0.93 / 17 0.096 / 0.92 / 27

Table 5. Quantitative results with traditional methods

Figure 4. The visualization results from three traditional and our methods

5. Multi-purpose of Building3D Dataset

Building Semantic & Part Segmentation Our building
point clouds, roof point clouds and facade point clouds have
been assigned unique labels when building the roof recon-
struction dataset. Therefore, Building3D can be extended
for evaluating semantic segmentation and part segmentation
of buildings. Large-scale real-world point cloud processing
are very challenging in terms of semantic segmentation and
part segmentation tasks etc.

Mesh Simplification Building3D dataset provides a
large collection of building point clouds that can be trian-
gulated into continuous and intricate mesh models. These
triangulated mesh models can be used as original input for
mesh simplification. Moreover, the quality of mesh simpli-
fication can be evaluated by calculating 3D mesh IoU be-
tween ground truth mesh models provided by Building3D
dataset and simplified mesh models.

Footprint Detection In our dataset, building models are
generated by using 2D building footprints and aerial LiDAR
point clouds. The Building3D dataset provides 2D build-
ing footprints as ground truth labels, which can be used
to train and evaluate building footprint extraction methods
from aerial LiDAR point clouds. Building footprint extrac-
tion from aerial LiDAR point clouds or images is important
for producing maps which can be used in various applica-
tions such as urban planning and navigation.

Aerial Path Planning Aerial path planning is a process

of planning a path from starting point to target point with
minimum energy consumption and collision avoidance. It
considers factors such as potential threats of collision and
path length. Building3D dataset provides large-scale 3D
urban models that can be used as obstacle factors to train
drones for finding optimal paths.

6. Conclusions and Future Work

In this paper, we present an urban-scale dataset for build-
ing roof modeling from aerial LiDAR point clouds. It con-
sists of more than 160 thousands buildings, covering about
998 Km2 of urban landscape. Besides mesh models and
real-world LiDAR point clouds, it is the first time to re-
lease wireframe models which transforms 3D building re-
construction into a classification problem. We also pro-
vide two new baselines, a supervised and a self-supervised
learning method, allowing a fair comparison between two
learning modalities. The evaluation results indicate that our
dataset is challenging and creates new opportunities for ur-
ban modeling research. We believe that this work will help
advance future research on several fundamental problems
as well as common object modeling such as mesh simpli-
fication and remeshing. In the future work, we aim to add
detailed building facade models to enable LoD3 modeling
for photorealistic building model generation, and associate
address data to each building for holistic 3D scene under-
standing.
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[13] Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali
Razavi, Carl Doersch, S. M. Ali Eslami, and Aäron van den
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