
CBA: Improving Online Continual Learning via Continual Bias Adaptor

Quanziang Wang1 Renzhen Wang1* Yichen Wu2 Xixi Jia3 Deyu Meng1,4*

1 Xi’an Jiaotong University 2 City University of Hong Kong 3 Xidian University
4 Macau University of Science and Technology

quanziangwang@gmail.com, {rzwang, dymeng}@xjtu.edu.cn

Abstract

Online continual learning (CL) aims to learn new knowl-
edge and consolidate previously learned knowledge from
non-stationary data streams. Due to the time-varying train-
ing setting, the model learned from a changing distribu-
tion easily forgets the previously learned knowledge and bi-
ases toward the newly received task. To address this prob-
lem, we propose a Continual Bias Adaptor (CBA) module
to augment the classifier network to adapt to catastrophic
distribution change during training, such that the classi-
fier network is able to learn a stable consolidation of pre-
viously learned tasks. In the testing stage, CBA can be
removed which introduces no additional computation cost
and memory overhead. We theoretically reveal the reason
why the proposed method can effectively alleviate catas-
trophic distribution shifts, and empirically demonstrate its
effectiveness through extensive experiments based on four
rehearsal-based baselines and three public continual learn-
ing benchmarks1.

1. Introduction

Continual learning (CL) [40, 48] focuses on designing
a model that can learn continuously from streaming data
and accumulate new knowledge while consolidating previ-
ously learned knowledge. In the context of CL, the data
distribution of streaming tasks is in general non-stationary
and changes over time, which violates the independent and
identically distributed (i.i.d) assumption that is commonly
adopted in machine learning. Therefore, continual learn-
ing suffers from the notorious catastrophic forgetting prob-
lem [16], where the model severely forgets the previously
learned knowledge after being trained on a new task.

Traditional offline CL stores all training batches of the
current task and the model is trained on these samples for

*Corresponding author
1Code is available at https://github.com/wqza/CBA-online-CL

multiple epochs with repeat shuffle. However, the availabil-
ity of previously learned batches might be restricted due to
privacy concerns [14] or memory limitations. In this pa-
per, we mainly focus on a more challenging and realistic
setting, online CL [28], where samples from each task can
be trained only single-pass (i.e., one epoch) and the past
batches are not accessible.

In online CL, the distribution of the training data changes
over time and it differs not only from the joint distribution
of all tasks (as in offline CL) but also from the distribution
of the task they belong to. Therefore, online CL commonly
causes an even more severe distribution shift, which further
intensifies catastrophic forgetting. To alleviate this prob-
lem, rehearsal-based algorithms [35, 48] employed a small
memory buffer to store examples of previous tasks so as to
approximate the joint distribution of all seen training data,
then collectively trained the model on the memory buffer
with the current task. Along this line, DER++ [7] utilized
an additional knowledge distillation to further reply logits
of old task samples, and RAR [46] used random augmen-
tation to address the overfitting problem of the small mem-
ory buffer. In another vein, a wide range of works attribute
catastrophic forgetting to task-recency bias [30], i.e., the
classifiers tend to classify samples into currently received
classes. They in turn proposed to improve the original linear
classifier [1, 20, 44] or directly replace the classifier with the
nearest classifier [30, 35] to mitigate the adverse effects of
class imbalance between currently received classes and re-
played classes. Despite the promising performance, almost
all of these methods implicitly view task-recency bias as a
label distribution shift and tackle it from the perspective of
class imbalance problem, which makes these methods sub-
optimal in practice [8].

In fact, the target of online CL is to accomplish a stable
consolidation of knowledge for all learned tasks, by training
a classifier to fit the posterior probability P(Y |X), where X
and Y represent stochastic variables of the input data and
the corresponding label, respectively. According to Bayes’s
rule P(Y |X) ∝ P(X|Y)P(Y), the posterior probability de-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

19082

Task 1 Task 2 Task 3 Task 4 Task 5
20
30
40
50
60
70
80
90

Ac
cu

ra
cy

 o
f

Ta
sk

 1 {frog, horse}

{ship, truck}{ship, truck}

{frog, horse}

Figure 1: Comparing the accuracy change of the categories
learned in 1st task. For the 4th and 5th tasks, the red cor-
responds to learning from {ship, truck} to {frog, horse},
and the blue corresponds to learning from {frog, horse}
to {ship, truck}.

pends on both the prior probability P(Y) and the likelihood
P(X|Y). It can be seen that any shift from P(Y) or P(X|Y)
will lead to distribution change in P(Y |X). On the one
hand, as aforementioned, the label distribution P(Y) shifts
leading to severe forgetting when a new task comes in. On
the other hand, P(X|Y) can also suffer from catastrophic
shifts (dubbed feature distribution shift for simplicity) due
to the time-varying data streams. To illustrate this, we con-
duct a toy experiment with Experience Replay (ER) [34] on
CIFAR-10 [24], where we manipulate the incoming cate-
gories of the 4th task (represented by the red and blue lines,
respectively), and keep tracking the accuracy of the cate-
gories of the 1st task as shown in Fig.1. Notably, P(X|Y)
of the two lines are totally different, while their label dis-
tribution P(Y) maintains the same tendency. This disparity
leads to a catastrophic change in the performance of cate-
gories learning in the 1st task. This validates the existence
of feature distribution shifts and poses a challenging prob-
lem for online CL: how to accomplish a stable consolidation
of past knowledge under these distribution shifts.

To tackle this challenge, based on rehearsal-based meth-
ods, this paper proposes a bi-level learning framework to
adapt the posterior distribution shift during each training
step directly. Specifically, we introduce a nonlinear trans-
formation module, Continual Bias Adaptor (CBA), to dy-
namically capture the catastrophic distribution change for
posterior probability P(Y |X). Simultaneously, the origi-
nal classifier is adjusted to fit an implicit posterior proba-
bility which tends to be a stable consolidation of previously
learned knowledge across different tasks. Intrinsically, the
proposed method implicitly aligns the distribution between
training and memory buffer data at each iteration. During
the testing stage, the CBA module can be simply removed
and the original classifier can achieve a good performance
on all seen tasks. To summarize, our main contributions are
three-fold:

• We propose a bi-level learning framework to model

the posterior distribution shift in an online manner.
We theoretically investigate the proposed method from
gradient alignment and reveal the reason why it can ef-
fectively alleviate catastrophic distribution shifts.

• We propose a CBA module that can plug in most of
the rehearsal-based methods during training, and be
removed in the test stage so that it involves no com-
putation cost and memory overhead in inference.

• We evaluate the performance based on four rehearsal-
based baselines with extensive experiments over vari-
ous benchmarks. We show that the proposed method
can effectively consolidate previously learned knowl-
edge. This is also demonstrated by task-blurry online
CL and offline CL settings.

2. Related Work
Continual learning settings. Based on different task
construction manners, continual learning mainly falls into
three categories [40, 48]: Task-incremental learning (Task-
IL), Domain-incremental learning (Domain-IL), and Class-
incremental learning (Class-IL). Specifically, Task-IL as-
sumes the task identity is provided, which means the model
can use the task index in both the training and testing
stage. Domain-IL focuses on the concept drift where the
domain of each task is changing but with the same label
space [17, 29, 39]. This paper concentrates on the more
challenging Class-IL, where the task indices are absent dur-
ing testing [7, 22, 35, 49].

From the training perspective, CL can be divided into
offline and online CL. Offline CL could preserve all samples
of the current task, permitting repeated training on them [4,
7, 9, 11, 35]. As for online CL, samples of each task cannot
be stored and each sample can only be seen once, except
for those examples saved in the memory buffer [23, 28]. In
this paper, we mainly focus on online CL, which is more
demanding and realistic than offline CL.

Rehearsal-based methods in online CL: The objective
of online CL is to learn models with a stronger ability
to quickly fit new tasks while retaining knowledge of old
tasks [8, 13, 23, 41, 45]. Experience replay (ER), the most
commonly used baseline, trains the new incoming sam-
ples together with old samples stored in the memory buffer.
Its variants attempt to combine replay strategies with other
techniques, such as knowledge distillation and random aug-
mentation. For example, DER++ [7] utilized the knowl-
edge distillation technique to further replay logits of mem-
ory buffer data. RAR [46] adopted random augmentation
to alleviate the overfitting of the tiny memory buffer, and
CLSER [4] constructed a plastic model and a stable model
for recent and structural knowledge distillation. Different
from these methods, some studies emphasize maximizing

19083

the utility and benefits of the memory buffer samples. In-
stead of randomly sampling, GSS [3] selected the samples
stored in the memory buffer according to the cosine sim-
ilarity of gradients. MIR [2] chose maximally interfering
samples whose prediction will be most negatively impacted
by the foreseen parameters update. OCS [45] picked the
most representative data of the current task while minimiz-
ing interference to previous tasks. Unlike these methods,
our method focuses on alleviating distribution shifts and can
plug in most current rehearsal-based approaches.

Task-recency bias in online CL: Task-recency bias [20,
48] in online CL means that classifiers tend to mistak-
enly classify previously learned classes as newly encoun-
tered ones. A popular perspective is that the linear classi-
fier is particularly susceptible to task-recency bias. To ad-
dress this, iCaRL [35] proposed to replace the linear clas-
sifier with nearest class mean (NCM) classifiers. Simi-
larly, SCR [30] and Co2L [10] employed the NCM clas-
sifier where the feature extractor is learned from contrastive
learning. A wide range of works tackles the task-recency
bias as a class imbalance problem [1, 9, 20, 44, 47]. For
example, LUCIR [20] added weight normalization on the
linear classifier. BiC [44] proposed a bias correction layer
turned on a held-out validation set. SS-IL [1] separated the
softmax to mitigate the imbalanced penalization of the old
class outputs. On the flip side, ER-ACE [8] pointed out
that task-recency bias can also arise from feature interfer-
ence and designed an asymmetric loss to address this prob-
lem. Different from these methods, our proposed method
relaxes the assumption on label/feature distribution shift
by directly modeling the posterior distribution shift. Be-
sides, some methods addressing class imbalance may po-
tentially be explored for tackling task-recency bias in online
CL [25, 31, 42, 43]. However, many of these approaches
face challenges in generalization to CL due to unstable data
distribution.

3. Method

3.1. Preliminaries

Suppose we have N sequential tasks {τ1, τ2, · · · , τN},
each task τi = {(xi

j , y
i
j)}

Ni
j=0, where Ni is the total num-

ber of training samples in τi. In online CL, the classifi-
cation model fθ can only train single-pass on samples of
each task τi (i.e., train with one epoch), and the previously
seen batches are not accessible. Let τt represent the cur-
rent learning task, M denotes the tiny memory buffer which
stores the samples of previous tasks {τ1, · · · , τt−1}. The
most representative rehearsal-based method Experience Re-
play (ER) [34, 37] jointly trains current task τt with exam-
ples sampled from the buffer M, and its training objective

function L is:

Ltrn
(
Btrn; fθ

)
=

1

|Btrn|
∑

x,y∈Btrn

L(fθ(x), y), (1)

where the training batch Btrn = Bt ∪ Bbuf consists of a
batch of incoming new samples Bt ⊂ τt and a batch sam-
pling from the memory buffer Bbuf ⊂ M, and L denotes
the cross-entropy loss.

Note that the memory buffer M is updated by reservoir
sampling after training each batch Bt, which means M not
only includes samples of previous tasks but also contains
the samples of the current task τt. Therefore, the memory
buffer M is a relatively balanced set containing samples of
all seen tasks.

3.2. Framework Formulation

Our focus in this work is to alleviate catastrophic for-
getting of rehearsal-based models under a challenging on-
line CL setting. As aforementioned, current rehearsal-
based models commonly suffer from catastrophic distribu-
tion changes due to time-varying data streams. To address
the problem, we relax the assumption on the label or feature
distribution shift in comparison to prior methods and pro-
pose to directly model the catastrophic distribution change
for posterior probability P(Y |X), making the original fθ
learn a stable consolidation of knowledge for all past tasks.

The main methodology is to design a Continual Bias
Adaptor (CBA) gω that: 1) dynamically augments the clas-
sifier network fθ to produce more diverse posterior dis-
tributions by only tuning the parameters of gω (ω can be
viewed as hyper-parameters) to adapt to catastrophic pos-
terior change; 2) makes the original classifier fθ fit an im-
plicit posterior that tends to achieve a stable consolidation
of knowledge of previously learned tasks. For a training
example xtrn, its posterior probability is adjusted by the
augmented classifier network Fθ,ω = gω ◦ fθ in an online
manner, which can be formulated as

ỹtrn = Fθ,ω(x
trn) = gω ◦ fθ(xtrn), (2)

where ◦ is function composition operator, and gω is de-
signed as a light-weight network. Thus, the augmented clas-
sifier network Fθ,ω is firstly updated to learn new knowl-
edge from the training data Btrn = Bt ∪ Bbuf that mini-
mizes the rehearsal-based empirical risk, i.e.,

θ∗(ω) = argmin
θ

Ltrn
(
Btrn;Fθ,ω

)
, (3)

where ω is actually a hyper-parameter of the optimal θ∗.
Note that the training loss function Ltrn can be adopted by
different rehearsal-based loss functions like ER and its vari-
ants such as DER++, and CLSER. Here we take the ER
formulation as an example for simplicity.

19084

iteration step 𝑘𝑘 𝑘𝑘 + 1𝑘𝑘 − 1

𝑓𝑓𝜃𝜃𝑘𝑘𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡 �𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡

𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏 �𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏

Inner Update

𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝛼𝛼 ⋅ 𝛻𝛻𝜃𝜃𝑘𝑘ℒ
𝑡𝑡𝑡𝑡𝑡𝑡

Outer Update

�𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝜔𝜔𝑘𝑘 ℒ𝑡𝑡𝑡𝑡𝑡𝑡

ℒ𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓𝜃𝜃𝑘𝑘+1 𝜔𝜔 𝜔𝜔𝑘𝑘+1 = 𝜔𝜔𝑘𝑘 − 𝛽𝛽 ⋅ 𝛻𝛻𝜔𝜔𝑘𝑘ℒ𝑏𝑏𝑏𝑏𝑏𝑏

𝜃𝜃𝑘𝑘 ,𝜔𝜔𝑘𝑘 𝜃𝜃𝑘𝑘+1,𝜔𝜔𝑘𝑘+1

forward

backward

Figure 2: Method overview. At the iteration step k, for the inner loop, the forward process computes the training loss in
Eq. (3) and the backward process updates the classification model parameter θ(ω) by Eq. (5). And for the outer loop, the
forward process computes the loss in Eq. (4) and the backward process updates the CBA parameter ω by Eq. (6)

On the other hand, our ultimate objective is to protect the
original classifier network fθ from catastrophic distribution
shift, while accomplishing a stable consolidation of knowl-
edge across different tasks. To this end, we further keep
tracking the performance of the classifier network to prevent
catastrophic forgetting, which requires that fθ∗(ω) returned
by minimizing the rehearsal-based empirical risk Eq. (3),
should maximize the performance of previously seen data.
Since accessing all of this historical data is unfeasible, it
can be approximated by the empirical risk over the memory
buffer data, i.e.,

ω∗ ≜ argmin
ω

Lbuf
(
Bbuf ; fθ∗(ω)

)
,

= argmin
ω

1

|Bbuf |
∑

x,y∈Bbuf

L
(
fθ∗(ω)(x), y

)
.

(4)

This formulation attempts to find the optimal parame-
ters such that the classifier network returned by optimiz-
ing Eq. (3), should also have a good performance on the
memory buffer data which acts as a stable consolidation of
knowledge from the learned tasks.

In fact, Eq. (3) and Eq. (4) formulate a bi-level learning
framework. In the inner loop Eq. (3), the augmented classi-
fier network Fθ,ω is updated to learn new knowledge and re-
hearse old knowledge from Btrn. In the outer loop Eq. (4),
the parameters of gω are updated from Bbuf to consolidate
the previously learned knowledge, which has been updated
in the inner loop, against catastrophic posterior change.

We herein detail the proposed CBA module and bi-level
optimization algorithm in the following aspects:

Continual Bias Adaptor: The proposed CBA module gω
is designed to be a nonlinear transformation that takes the
outputs (logits) of the original classifier network fθ as its

inputs. As such, the original classifier network fθ is aug-
mented by cascading the CBA module after its classification
layer, as shown in Fig. 2. To capture catastrophic distri-
bution change during continual learning, we parameterize
gω as a multi-layer perceptron (MLP) network with a sin-
gle hidden layer containing 256 nodes. Each hidden node is
equipped with a ReLU [32] activation function, and the out-
put employs the Softmax activation function to guarantee a
posterior probability output. Albeit simple, this network is
known as a universal approximator, capable of fitting al-
most any continuous function [18] and thus can fit various
posterior distribution changes. Additionally, we introduce a
skip-layer connection within the CBA module, connecting
the outputs of fθ to the MLP outputs, which aids the model
convergence and facilitates the gradient backward propaga-
tion, which has been verified in previous works [19, 21].

Note that the proposed CBA module is only used in the
training stage. In the test stage, the test sample xtst is pre-
dicted by fθ, that is ŷtst = fθ(x

tst). This indicates that our
method does not introduce any calculation overhead in the
test stage. As a result, our method can be inferred at any
time in the learning process of online CL [23].

The learning of CBA. The Eq. (3) and Eq. (4) in the
bi-level optimization are nested with each other. Con-
cretely, the solution θ∗(ω) of Eq. (3) depends on the hyper-
parameter ω and the optimum solution is obtained at ω∗.
However, the required optimum ω∗ is solved by Eq. (4)
which relies on the best θ∗(ω). Indeed, there is generally
no closed-form solution to the bi-level optimization frame-
work [6] and we approximately update the θ and ω using a
gradient-optimization-based method following [36, 38].

(1) Update θ. Given the CBA parameter ωk at iteration
step k, the CBA parameter ωk is fixed and we formulate

19085

Algorithm 1 Training of CBA in Online CL
Input: new incoming sample batch Bt, memory buffer M
Output: classifier network parameter θ, continual bias
adaptor (CBA) parameter ω

1: Initialize all network parameters as {θ0, ω0}.
2: while Bt ̸= ∅ do

Inner-loop optimization:
3: Btrn = Bt∪Bbuf ,Bbuf ⊂ M # Inner training data
4: Compute the inner-loop loss Ltrn by Eq. (3)
5: Update classifier network parameters θ by Eq. (5)

Outer-loop optimization:
6: Bbuf ⊂ M # Outer training data
7: Compute the outer-loop loss Lbuf by Eq. (4)
8: Update CBA parameters ω by Eq. (6)

a one-step stochastic gradient descent (SGD) to update the
classifier network parameter θk in Eq. (3), which can be
represented as

θk+1(ω) = θk − α · ∇θLtrn
(
Btrn;Fθk,ωk

)
, (5)

where α is the inner-loop learning rate.
(2) Update ω. After the one-step updating of θk, we

have obtained θk+1(ω) which is a function of ω. Then we
can optimize the ω in Eq. (4) based on the updated θk+1(ω)
as following:

ωk+1 = ωk − β · ∇ωLbuf
(
Bbuf ; fθk+1(ω)

)
, (6)

where β is the outer-loop learning rate. Note that ∇ωLbuf

in Eq. (6) introduces a second-order derivative, which can
be easily implemented by the automatic differentiation sys-
tem like Pytorch [33], and the detailed calculation can be
found in Appendix A. To alleviate the calculation burden
of this derivation, we assume that ω is only correlated with
the parameters of the linear classification layer. This al-
lows us to only unroll the second-order derivation of the
linear classification layer in Eq. (6). As the linear classifica-
tion layer involves a small number of parameters compared
to the whole classifier network, our proposed algorithm is
more efficient than other bi-level optimization algorithms
[15, 26, 36, 38]. A comprehensive discussion concerning
computation and GPU memory utilization of our method is
presented in Appendix D.4. The complete training process
is detailed in Alg. 1 and more intrinsic discussion can be
found in the subsequent paragraph.

3.3. Theoretical Analysis

In this section, we theoretically analyze the proposed
CBA model and the bi-level optimization procedure. The
following theorem claims that our algorithm inherently es-
tablishes gradient alignment between the loss on the corre-
sponding training set Btrn and the memory buffer Bbuf .

Theorem 1. Assume that the outer-loop loss Lbuf (·; fθ) is
η gradient Lipschitz continuous, then the bi-level optimiza-
tion Eq. (3) and Eq. (4) potentially guarantees an alignment
between the gradient of the outer-loop loss and the inner-
loop loss with respect to the classification model parameter
θ, that is,〈

∂Lbuf
(
Bbuf ; fθk(ω)

)
∂θk

,
∂Ltrn

(
Btrn;Fθk,ω

)
∂θk

〉

≥ αη

2

∥∥∥∥∥∂Ltrn
(
Btrn;Fθk,ω

)
∂θk

∥∥∥∥∥
2

2

,

(7)

where α > 0 is the inner-loop learning rate and η > 0 is
the Lipschitz constant.

The detailed proof of Theorem 1 is shown in Appendix
B. Furthermore, this theorem reveals two insights into our
algorithm. On the one hand, this theorem explains why the
CBA module adaptively assimilates the task-recency bias.
We hope the angle between the gradient w.r.t the classifier
network parameter θ on the training set with CBA and the
gradient on the memory buffer without CBA is as small as
possible. This means that the classifier network is expected
to perform well on a balanced test set without the help of
CBA, and the CBA only works during training to absorb
the bias. On the other hand, Theorem 1 also shows why our
method can mitigate forgetting effectively. From Eq. (7),
our method is potentially close to some previous gradient-
alignment-based CL works [12, 27], which have already
verified that the gradient alignment between the training set
and the memory buffer aids the model in avoid forgetting.
Unfortunately, they do not take into account the negative
impact of recency bias on the model. Intuitively, our pro-
posed method achieves more accurate gradient alignment
because CBA can prevent bias from disturbing the gradient
of the training set.

4. Experiments
To validate the effectiveness of the proposed method, we

compare our CBA to the state-of-the-art approaches on var-
ious datasets under online CL, blurry tasks, and offline CL
settings. Moreover, for better comprehension of CBA, we
also conduct extensive ablation experiments to analyze dif-
ferent components of our approach.

4.1. Experimental Settings

Experimental datasets. Following [7], we choose three
common datasets in CL, the Split CIFAR-10 and the longer
task sequence Split CIFAR-100 and Split Tiny-ImageNet.
Concretely, Split CIFAR-10 contains five binary classifi-
cation tasks, which are constructed by evenly splitting ten
classes of CIFAR-10 [24]. Split CIFAR-100 and Split Tiny-
ImageNet both include ten disjoint tasks, each of which has

19086

Method
Split CIFAR-10 Split CIFAR-100 Split Tiny-ImageNet

M = 0.2k M = 0.5k M = 2k M = 5k M = 2k M = 5k
ACC ↑ FM ↓ ACC ↑ FM ↓ ACC ↑ FM ↓ ACC ↑ FM ↓ ACC ↑ FM ↓ ACC ↑ FM ↓

iCaRL [35] 40.99 26.84 44.50 24.87 9.13 7.79 9.13 8.14 4.03 4.93 4.03 5.15
LUCIR [20] 23.59 35.59 24.63 31.89 8.28 16.07 12.31 14.02 4.47 20.40 5.29 20.28

BiC [44] 27.71 66.45 35.47 47.92 16.32 36.70 20.89 32.33 5.43 40.14 7.50 38.52
ER-ACE [8] 41.49 20.84 46.35 18.98 24.95 7.67 26.54 7.25 17.89 7.04 19.04 6.90

SS-IL [1] 37.92 15.64 41.22 11.46 24.90 9.85 25.60 10.23 17.91 7.93 18.53 8.26
ER 35.21 50.28 42.32 40.80 20.84 35.88 22.73 33.92 14.39 32.59 17.02 31.02

ER-CBA (ours) 37.27 41.39 45.41 29.36 25.67 10.21 27.59 8.74 18.06 13.16 20.20 10.16
Gains + 2.06 - 8.89 + 3.09 -11.44 + 4.83 -25.67 + 4.86 -25.18 + 3.67 -19.43 + 3.18 -20.86

DER++ [7] 40.17 41.84 43.44 40.63 16.87 44.46 17.61 44.53 11.81 39.88 12.31 39.93
DER-CBA (ours) 45.14 23.39 48.44 16.75 26.10 13.01 26.47 12.88 17.91 12.34 19.90 12.06

Gains + 4.97 -18.45 + 5.00 -23.88 + 9.23 -31.45 + 8.86 -31.65 + 6.10 -27.54 + 7.59 -27.87
RAR [46] 40.25 40.43 45.57 36.16 14.64 45.54 14.57 47.02 10.28 40.07 10.39 40.56

RAR-CBA (ours) 43.28 20.10 48.45 17.42 23.87 13.10 24.19 14.00 16.70 11.48 17.29 12.56
Gains + 3.03 -20.33 + 2.88 -18.74 + 9.23 -32.44 + 9.62 -33.02 + 6.42 -38.59 + 6.90 -28.00

CLSER [4] 42.01 42.33 44.48 36.83 22.48 34.80 23.18 34.35 15.34 32.48 17.28 31.79
CLSER-CBA (ours) 44.31 27.55 49.63 19.99 26.90 9.41 29.09 8.05 19.31 12.80 21.62 9.67

Gains + 2.30 -14.78 + 5.15 -16.84 + 4.42 -25.39 + 5.91 -26.30 + 3.97 -19.68 + 4.34 -22.12

Table 1: Main results (ACC, higher is better, and FM, lower is better) on the three datasets with different memory buffer
sizes. Our method applied on 4 baselines is shown with gray cells. Bold means the best results in all comparison methods
and the gains of our method comparing the corresponding baselines are shown in red color.

Split CIFAR10
(M = 0.5k)

Method a1,5 a2,5 a3,5 a4,5 a5,5 ACC
ER 28.27 26.12 31.95 46.81 78.48 42.32

ER-CBA (ours) 44.29 30.40 37.41 48.74 66.23 45.41

Split CIFAR100
(M = 5k)

Method a1,10 a2,10 a3,10 a4,10 a5,10 a6,10 a7,10 a8,10 a9,10 a10,10 ACC
ER 19.26 19.21 22.84 13.35 17.01 20.58 21.91 14.92 14.20 64.01 22.72

ER-CBA (ours) 25.92 22.35 34.82 27.81 28.44 35.77 32.83 30.04 17.83 20.05 27.58

Split Tiny-ImageNet
(M = 5k)

Method a1,10 a2,10 a3,10 a4,10 a5,10 a6,10 a7,10 a8,10 a9,10 a10,10 ACC
ER 14.38 14.44 15.39 18.29 15.53 13.14 11.25 11.87 4.80 51.15 17.02

ER-CBA (ours) 21.58 18.84 24.44 25.30 20.79 18.26 18.83 18.89 11.33 23.75 20.20

Table 2: Each task accuracy after the final task training at,T (t = 1, · · · , T) of ER and our ER-CBA on the three datasets. For
Split CIFAR-10, task 5 is the new task, while task 10 is the incoming new task for Split CIFAR-100 and Split Tiny-ImageNet.

10 and 20 classes, respectively (see Appendix C for details
of the three datasets).

Evaluation metrics. To comprehensively evaluate all com-
parison methods, we consider the following metrics:

• Average Accuracy (ACC ↑): calculate the average ac-
curacy of the model trained on all tasks, i.e. ACC =
1/T

∑T
t=1 at,T , where ai,j represents the accuracy of

the task i after training on the task j.

• Forgetting Measure (FM ↓): average of the decreas-
ing from the best accuracy to the final accuracy, i.e.
FM = 1/T

∑T
t=1 a

∗
t − at,T , where the a∗t is the best

accuracy of task t in the whole training process.

• Area Under the Curve of Accuracy (ACCAUC ↑):
this metric is the area under the curve of the accu-

racy [23], i.e., ACCAUC =
∑

i ā(i · △n) · △n, where
ā(i) represent the average accuracy when the model
training at step i, and △n is the interval training step
which is 5 for faster evaluation in our experiments.

Implementation details. We adopt the commonly used
ResNet-18 as our backbone [4, 7, 44], and train all meth-
ods using the Stochastic Gradient Descent (SGD) optimizer.
For our CBA, we set the learning rate as 0.001 for Split
CIFAR-10, and 0.01 for Split CIFAR-100 and Split Tiny-
ImageNet. To verify our method consistently outperforms
other baselines, each reported result in the online CL set-
ting is an average of 10 repeated runs, and each result in
the offline is an average of 5 runs. More details about the
baselines and implementation are listed in Appendix C.

19087

0 1 2 3 4 5 6 7 8 9
Task Index

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ed

 T
as

k
D

is
tri

bu
tio

n

ER
ER-CBA

(a) Prediction Task Distribution of ER and ER-CBA.

Prediction

Gr
ou

nd
 Tr

ut
h

(b) Confusion Matrix of ER.

Prediction

Gr
ou

nd
 Tr

ut
h

0.0

0.2

0.4

0.6

0.8

1.0

(c) Confusion Matrix of ER-CBA.

Figure 3: (a): The prediction distribution of each task on Split CIFAR-100 with buffer size M = 5k. (b) and (c): The
normalized confusion matrix of ER and ER-CBA, respectively.

Task 1 Task 2 Task 3 Task 4 Task 5

30

40

50

60

70

80

90

Ac
cu

ra
cy

80.28
81.30

55.80
58.36

42.45
44.64

38.20
40.77

33.15
35.44

ER
ER-CBA

Figure 4: The average accuracy in the whole training pro-
cess. The ACCAUC in each stage is shown in the figure,
where the 1st row is the ACCAUC of the baseline ER and
the 2nd row is that of our method ER-CBA.

4.2. Comparison on Disjoint Scenario

CBA enhanced current rehearsal-based methods. We
first investigate the performance of CBA by plugging it into
ER, DER, RAR, and CLSER. These four baselines adopt
different replay strategies without the correction of the dis-
tribution shift. Table 1 shows that our proposed CBA im-
proves the ACC of all these four rehearsal-based methods
by up to 9.23% on these three widely used disjoint CL
benchmarks. It can also be observed that the Forgetting
Measure is reduced by up to 33.02%, indicating the CBA
can significantly alleviate catastrophic forgetting. Addition-
ally, our method achieves consistent improvement for the
comparison methods under different memory buffer sizes,
which verifies that our method has strong generalizability.
Further results can be found in Appendix D.

To investigate the changing of average accuracy through-
out the training process, we display the accuracy of the
baseline ER and our ER-CBA in Fig. 4, which is evaluated
on Split CIFAR-10 (M = 0.2k). As we can see, our method
can surpass the baseline within just a few training iteration

steps. In this figure, ACCAUC of each task is also calcu-
lated, revealing a consistent improvement by our method
over the baseline ER. Moreover, our method maintains ro-
bust performance improvement even when constrained by
small memory buffer sizes for each dataset, and further re-
sults are shown in Appendix D.

Analysis of other baselines Note that LUCIR employs a
weight normalization prior, and BiC designs an additional
linear layer, both attempting to rectify the distribution shift
from a class imbalance view. However, they oversimpli-
fied the distribution shift issue, leading to suboptimal per-
formance across these three benchmarks. iCaRL fails on
the larger datasets Split CIFAR-100/Tiny-ImageNet, sug-
gesting that the NCM classifier relies on accurate and well-
separate class means, which is difficult to obtain in online
CL on large datasets. Because of the worse accuracy of
iCaRL on these two larger datasets, the lower FM in Ta-
ble 1 does not make any sense. As for ER-ACE and SS-IL,
although they exhibit decent ACC performance, they over-
suppress the accuracy of new classes during training, which
caused the lower FM metric.

4.3. Comparison on Blurry Scenario

Following [3, 5], we adopt the Blurry-K online CL set-
ting. It simulates a practical situation where task boundaries
are unclear, causing class overlaps across all tasks. Specif-
ically, a fraction (K%) of the training data from one task
may appear in other tasks. Here we set K = 10 as an il-
lustration, and the comparative results are summarized in
Table 3.

It can be observed from Table 3 that our CBA module
can vastly improve the performance of the corresponding
baselines. For example, the ACC of CLSER-CBA is higher
than the baseline CLSER by about 3.19% and 5.17% with
memory buffer sizes M =0.2k and 0.5k, respectively. And
the FM of CLSER-CBA is lower than it of CLSER by about
8.46% and 14.97% with M = 0.2k and 0.5k, respectively.

19088

Method
Split CIFAR-10

M = 0.2k M = 0.5k
ACC ↑ FM ↓ ACC ↑ FM ↓

ER 44.15 40.33 50.37 30.29
ER-CBA (ours) 48.42 30.60 52.26 20.72

Gains + 4.27 - 9.73 + 1.89 - 9.57
DER++ [7] 49.25 31.50 51.81 33.28

DER-CBA (ours) 51.38 23.75 52.11 17.13
Gains + 2.13 - 7.75 + 0.30 -16.15

RAR [46] 47.20 37.62 48.46 37.78
RAR-CBA (ours) 51.69 18.66 52.25 12.35

Gains + 4.49 -18.96 + 3.79 -25.43
CLSER [4] 47.57 35.77 49.52 33.54

CLSER-CBA (ours) 50.76 27.31 54.69 18.57
Gains + 3.19 - 8.45 + 5.17 -14.97

Table 3: ACC and FM of our method applied on 4 baselines
under the ‘Blurry-10’ settings on Split CIFAR-10.

It shows that the proposed CBA module can be flexibly
adapted to the classifier network without being perturbed
by ambiguous task boundaries seriously, which also verifies
the strength of our method.

4.4. Comparison under the Offline CL

To further verify the effectiveness and strength of our
method, we extend our method to the offline CL setting,
where each task can be trained over multiple epochs. As
depicted in Table 4, these baselines perform better in the
offline CL compared to the online context. Nevertheless,
our method can also improve the corresponding baselines
by correcting the distribution shift online. It is worth noting
that CBA improves the ER significantly and makes it com-
parable with the other three baselines, which further illus-
trates the negative impact of task-recency bias on CL model
performance and the strength of our method.

4.5. Discussion and Ablation Study.

To better understand the CBA, we conduct experiments
and analyze the results to answer the following questions.

Question 1: Does CBA help the model adapt to distri-
bution shift? To ascertain this, it is essential to investigate
how the accuracy of each task changes after training on the
final task, i.e., at,T (t = 1, · · · , T). In Table 2, we exhibit
at,T and ACC of the baseline ER and ER-CBA on Split
CIFAR-10 (M = 0.5k), Split CIFAR-100 (M = 5k), and
Split Tiny-ImageNet (M = 5k), respectively. It shows that
the CBA module can significantly improve the performance
of previous tasks and reduce forgetting of the model. Ad-
ditionally, our CBA can effectively trade off the accuracy
of old and new tasks, which indicates that CBA can pre-
vent the model from being disturbed by distribution shifts
(caused by incoming new tasks).

Method
Split CIFAR-10

M = 0.2k M = 0.5k
ACC ↑ FM ↓ ACC ↑ FM ↓

ER 55.80 47.77 66.06 33.02
ER-CBA (ours) 64.12 31.40 72.86 20.63

Gains + 8.32 -16.37 + 6.80 -12.39
DER++ [7] 63.33 35.83 72.78 23.40

DER-CBA (ours) 65.64 31.78 74.37 20.06
Gains + 2.31 - 4.05 + 1.59 - 3.34

RAR [46] 60.57 39.44 69.73 26.99
RAR-CBA (ours) 63.49 32.79 71.55 23.21

Gains + 2.92 - 6.65 + 1.82 - 3.78
CLSER [4] 65.73 30.32 73.45 19.45

CLSER-CBA (ours) 67.40 27.16 74.51 18.75
Gains + 1.67 - 3.16 + 1.06 - 0.70

Table 4: ACC and FM of our method applied on 4 baselines
under the offline CL settings on Split CIFAR-10.

Method Details
Split CIFAR-10

M = 0.2k M = 0.5k
ACC ↑ FM ↓ ACC ↑ FM ↓

ER - 35.21 50.28 42.32 40.80
ER-CBA Ltrn 31.95 51.76 36.66 44.55
ER-CBA Ltrn + Lbuf 33.35 52.98 44.58 35.95
ER-CBA 64 hidden units 33.50 44.44 37.48 37.82
ER-CBA 1024 hidden units 38.46 42.73 46.85 24.86
ER-CBA 4 layers MLP 37.57 41.81 45.23 27.91
ER-CBA ours 37.27 41.39 45.41 29.36

Table 5: The results of ablation study.

Question 2: How does the predictive distribution with
and without the CBA module compare? To investigate
this question, we calculate the prediction distribution of
each task after training on the final task of Split CIFAR-100
(M = 5k) in Fig. 3 (a), and show the corresponding con-
fusion matrix of ER and ER-CBA in Fig. 3 (b) and (c), re-
spectively. Obviously, the baseline ER tends to predict test
samples as new classes with high probability, which leads
to significantly higher accuracy for new tasks than old tasks
within ER. In contrast, our method can suppress the pre-
diction probability of new tasks and automatically adapt to
the changing distribution. Therefore, our method treats test
samples from all seen classes more equally and achieves
better overall performance, which reveals how CBA helps
the model deal with the data distribution shift problem.

Question 3: How effective are the various components
of the proposed model? We conduct a comprehensive ab-
lation study to investigate the contribution of each key com-
ponent of the proposed algorithm and the results on Split
CIFAR-10 are shown in Table 5. Firstly, we verify the ef-
fectiveness of the bi-level optimization part. We replace the
bi-level optimization procedure with an end-to-end training

19089

parallel, that is, optimize the parameters θ of the classifica-
tion model and the CBA parameter ω together. The bi-level
optimization and the end-to-end training correspond to 1)
have the rehearsal training loss Eq. (3) only; 2) sum the
inner-loop training loss Eq. (3) and the outer-loop training
loss Eq. (4). It can be noted that the end-to-end training can-
not help the model alleviate the distribution shift and even
hurt the performance of baseline ER (the 2nd and 3rd rows
in Table 5), which demonstrate that the bi-level optimiza-
tion is essential for our model training.

We also explore the effect of different MLP architectures
in the CBA module where we use a two-layer MLP with
256 hidden units. Specifically, we test the performance of
1) a two-layer MLP with 64 and 1024 hidden units; 2) a
four-layer MLP with 256 hidden units. As shown in the 4-
6th rows of Table 5, the representation ability of the MLP
with only 64 hidden units is not enough to fit the bias,
which leads to lower performance than the baseline. And
the MLP with 1024 hidden units performs even better than
256 hidden units, suggesting that the stronger CBA archi-
tecture might perform better even though it will introduce
more parameters and slow down the training process. Since
the performance of the complicated four-layer MLP with
256 hidden units is almost the same as the two-layer MLP,
we choose the two-layer MLP with 256 hidden units as the
base architecture of our CBA.

5. Conclusion

In this paper, we tackle online CL from the perspective of
modeling the posterior distribution shift arising from time-
varying data streams. We propose a Continual Bias Adaptor
(CBA) module, which aims to augment the original clas-
sifier network to adapt to catastrophic distribution change
during training, such that the classifier network is capable
of learning a stable consolidation of the previously learned
knowledge across all tasks. In the inference stage, CBA
can be removed and requires no additional calculation bur-
den or memory overhead. The effectiveness of the proposed
method is demonstrated both theoretically and empirically.
In theory, we explain the reason why our method can signifi-
cantly alleviate catastrophic forgetting in online CL. Empir-
ical results show that the proposed algorithm can be applied
to many rehearsal-based baselines and consistently improve
their performance, which verifies that our method can effec-
tively consolidate the learned knowledge.

Acknowledgement

This research was supported by the National Key R&D
Program of China (2020YFA0713900), the China NSFC
projects under contracts 61906144, 61721002, 12226004,
and the Macao Science and Technology Development Fund
under Grant 061/2020/A2.

References
[1] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang,

Hyojun Kim, and Taesup Moon. Ss-il: Separated softmax
for incremental learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 844–
853, 2021.

[2] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-
rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-
Caccia. Online continual learning with maximal interfered
retrieval. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, pages 11849–
11860. Curran Associates, Inc., 2019.

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. Advances in Neural Information Processing Sys-
tems, 32, 2019.

[4] Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learn-
ing fast, learning slow: A general continual learning method
based on complementary learning system. In International
Conference on Learning Representations, 2022.

[5] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha,
and Jonghyun Choi. Rainbow memory: Continual learn-
ing with a memory of diverse samples. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8218–8227, 2021.

[6] Jonathan F Bard. Practical Bilevel Optimization: Algorithms
and Applications, volume 30. Springer Science & Business
Media, 2013.

[7] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for general
continual learning: a strong, simple baseline. In Advances in
Neural Information Processing Systems, volume 33, pages
15920–15930, 2020.

[8] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuyte-
laars, Joelle Pineau, and Eugene Belilovsky. New insights
on reducing abrupt representation change in online continual
learning. arXiv preprint arXiv:2104.05025, 2021.

[9] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,
Cordelia Schmid, and Karteek Alahari. End-to-end incre-
mental learning. In Proceedings of the European Conference
on Computer Vision, pages 233–248, 2018.

[10] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Con-
trastive continual learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9516–
9525, 2021.

[11] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-
than, and Philip HS Torr. Riemannian walk for incremen-
tal learning: Understanding forgetting and intransigence. In
Proceedings of the European Conference on Computer Vi-
sion, pages 532–547, 2018.

[12] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. arXiv preprint arXiv:1812.00420, 2018.

[13] Aristotelis Chrysakis and Marie-Francine Moens. Online
continual learning from imbalanced data. In International

19090

Conference on Machine Learning, pages 1952–1961. PMLR,
2020.

[14] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying for-
getting in classification tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(7):3366–3385, 2021.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning, pages
1126–1135. PMLR, 2017.

[16] Robert M French. Catastrophic forgetting in connectionist
networks. Trends in Cognitive Sciences, 3(4):128–135, 1999.

[17] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pech-
enizkiy, and Abdelhamid Bouchachia. A survey on concept
drift adaptation. ACM Computing Surveys (CSUR), 46(4):1–
37, 2014.

[18] Simon Haykin. Neural networks: a comprehensive founda-
tion. Prentice Hall PTR, 1998.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[20] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 831–839,
2019.

[21] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Gir-
shick, Trevor Darrell, and Kurt Keutzer. Densenet: Im-
plementing efficient convnet descriptor pyramids. arXiv
preprint arXiv:1404.1869, 2014.

[22] Minsoo Kang, Jaeyoo Park, and Bohyung Han. Class-
incremental learning by knowledge distillation with adaptive
feature consolidation. In Proceedings of the IEEE/CVF con-
ference on Computer Vision and Pattern Recognition, pages
16071–16080, 2022.

[23] Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun
Choi. Online continual learning on class incremental blurry
task configuration with anytime inference. In International
Conference on Learning Representations, 2022.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

[25] Mingchen Li, Xuechen Zhang, Christos Thrampoulidis, Ji-
asi Chen, and Samet Oymak. Autobalance: Optimized loss
functions for imbalanced data. Advances in Neural Informa-
tion Processing Systems, 34:3163–3177, 2021.

[26] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019.

[27] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. Advances in Neural
Information Processing Systems, 30, 2017.

[28] Viktor Losing, Barbara Hammer, and Heiko Wersing. Incre-
mental on-line learning: A review and comparison of state of
the art algorithms. Neurocomputing, 275:1261–1274, 2018.

[29] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and
Guangquan Zhang. Learning under concept drift: A review.
IEEE Transactions on Knowledge and Data Engineering,
31(12):2346–2363, 2018.

[30] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner.
Supervised contrastive replay: Revisiting the nearest class
mean classifier in online class-incremental continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3589–3599,
2021.

[31] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh
Rawat, Himanshu Jain, Andreas Veit, and Sanjiv Kumar.
Long-tail learning via logit adjustment. arXiv preprint
arXiv:2007.07314, 2020.

[32] Vinod Nair and Geoffrey E Hinton. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning, pages
807–814, 2010.

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[34] Roger Ratcliff. Connectionist models of recognition mem-
ory: constraints imposed by learning and forgetting func-
tions. Psychological review, 97(2):285, 1990.

[35] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2001–2010,
2017.

[36] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urta-
sun. Learning to reweight examples for robust deep learning.
In International Conference on Machine Learning, pages
4334–4343. PMLR, 2018.

[37] Anthony Robins. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 7(2):123–146, 1995.

[38] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou,
Zongben Xu, and Deyu Meng. Meta-weight-net: Learning
an explicit mapping for sample weighting. Advances in Neu-
ral Information Processing Systems, 32, 2019.

[39] Christian Simon, Masoud Faraki, Yi-Hsuan Tsai, Xiang Yu,
Samuel Schulter, Yumin Suh, Mehrtash Harandi, and Man-
mohan Chandraker. On generalizing beyond domains in
cross-domain continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9265–9274, 2022.

[40] Gido M Van de Ven and Andreas S Tolias. Three scenar-
ios for continual learning. arXiv preprint arXiv:1904.07734,
2019.

[41] Quanziang Wang, Renzhen Wang, Yuexiang Li, Dong Wei,
Kai Ma, Yefeng Zheng, and Deyu Meng. Relational expe-
rience replay: Continual learning by adaptively tuning task-
wise relationship. arXiv preprint arXiv:2112.15402, 2021.

[42] Renzhen Wang, Kaiqin Hu, Yanwen Zhu, Jun Shu, Qian
Zhao, and Deyu Meng. Meta feature modulator for long-
tailed recognition. arXiv preprint arXiv:2008.03428, 2020.

[43] Renzhen Wang, Xixi Jia, Quanziang Wang, Yichen Wu, and
Deyu Meng. Imbalanced semi-supervised learning with bias

19091

adaptive classifier. In The Eleventh International Conference
on Learning Representations, 2022.

[44] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
374–382, 2019.

[45] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju
Hwang. Online coreset selection for rehearsal-based contin-
ual learning. In International Conference on Learning Rep-
resentations, 2022.

[46] Yaqian Zhang, Bernhard Pfahringer, Eibe Frank, Albert
Bifet, Nick Jin Sean Lim, and Alvin Jia. A simple but strong
baseline for online continual learning: Repeated augmented
rehearsal. In Advances in Neural Information Processing
Systems, 2022.

[47] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13208–13217, 2020.

[48] Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-
Chuan Zhan, and Ziwei Liu. Deep class-incremental learn-
ing: A survey. arXiv preprint arXiv:2302.03648, 2023.

[49] Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-lin Liu.
Class-incremental learning via dual augmentation. Advances
in Neural Information Processing Systems, 34:14306–14318,
2021.

19092

