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Abstract

This paper presents CORE, a conceptually simple, ef-
fective and communication-efficient model for multi-agent
cooperative perception. It addresses the task from a novel
perspective of cooperative reconstruction, based on two key
insights: 1) cooperating agents together provide a more
holistic observation of the environment, and 2) the holis-
tic observation can serve as valuable supervision to explic-
itly guide the model learning how to reconstruct the ideal
observation based on collaboration. CORE instantiates
the idea with three major components: a compressor for
each agent to create more compact feature representation
for efficient broadcasting, a lightweight attentive collab-
oration component for cross-agent message aggregation,
and a reconstruction module to reconstruct the observation
based on aggregated feature representations. This learning-
to-reconstruct idea is task-agnostic, and offers clear and
reasonable supervision to inspire more effective collabora-
tion, eventually promoting perception tasks. We validate
CORE on two large-scale multi-agent percetion dataset,
OPV2V and V2X-Sim, in two tasks, i.e., 3D object detec-
tion and semantic segmentation. Results demonstrate that
CORE achieves state-of-the-art performance, and is more
communication-efficient.

1. Introduction
Perception – identifying and interpreting sensory infor-

mation – is a crucial ability for intelligent agents to sense
the surrounding environment. Thanks to continued ad-
vances in deep learning, individual perception has demon-
strated remarkable achievements in a number of tasks, e.g.,
detection [26, 45, 19, 24], segmentation [23, 35, 44] and
tracking [36, 43]. Though being promising, it tends to suf-
fer from issues (e.g., occlusion) stemmed from limited line-
of-sight visibility of individual agents and is challenged
by safety concerns. A more compelling paradigm is co-
operative perception, i.e., a collection of agents to be-
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Figure 1: CORE addresses multi-agent perception from a
novel perspective of cooperative reconstruction. Take the
Lidar-based autonomous driving scenario as an example,
individual vehicles are confined to limited sensing capabili-
ties of onboard sensors, yielding partial observations of the
whole scene (i.e., raw BEVs). CORE takes a straightfor-
ward but remarkably effective step to address this: in ad-
dition to task-aware learning (e.g., object detection, seman-
tic segmentation), CORE explicitly learns to reconstruct the
complete scene (i.e., reconstructed BEVs) from incomplete
observations of cooperating agents. The reconstruction-
aware learning objective serves as a more sensible goal to
inspire more effective cooperation of connected agents, ul-
timately boosting perception performance.

have as a group by exchanging information with each other
so as to use their combined sensory experiences to per-
ceive. Along this direction, recent efforts have been made
to deliver datasets [40, 39, 15, 5] and cooperative solutions
[22, 21, 1, 5, 28, 31, 10, 2, 34, 38, 39].

All these solutions hold a consensus promise that mul-
tiple agents together provide a holistic observation to
the environment. But there is a practical challenge of
performance-bandwidth trade-off to be addressed. On this
account, some studies explore adaptive communication ar-
chitectures to reduce bandwidth requirements by dynami-
cally determining for each agent, e.g., whom to communi-
cate with [22], when to communicate [21], and what mes-
sage to communicate [10], while others focus more on the
design of multi-agent collaborative strategies, e.g., early
collaboration [3, 1] to aggregate raw observations of co-
operating agents, late collaboration [20, 33] to combine
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prediction results only, or the prevailing intermediate col-
laboration [2, 34, 28, 38, 39] to fuse intermediate feature
representations that are easy to compress. Although these
approaches find applications in myriad domains, from au-
tonomous driving [15], to automated warehouses [29], to
search and rescue [30], a key question remains unanswered:

what should the ideal sensory state of each agent look like
after information exchanging and aggregation?

Prior approaches rely on task-specific objectives to learn
how to communication or collaborative, which is sub-
optimal and potentially degrades generalization capabilities
of models to a broader array of perception tasks.

This paper advocates an approach from a novel perspec-
tive of cooperative reconstruction (see Fig. 1). Our main in-
sight is that, if multiple agents together indeed offer a more
complete observation of scene, by absorbing others’ infor-
mation, an agent will be able to reconstruct missing parts in
its partial raw observation. By learning to reconstruct, the
model is urged to learn more effective task-agnostic fea-
ture representations, and can offer a clearer explanation to
the ideal cooperative state (i.e., features) of the agent, that
is, from which we are able to reconstruct its complete ob-
servation. Moreover, this learning-to-reconstruct idea natu-
rally links to recent advancements in masked data modeling
[9, 7, 25], and enables our model to recover complete ob-
servation from even more corrupted inputs obtained, e.g., by
masking some proportion of raw observations. With this ca-
pability, agents will be allowed to exchange spatially sparse
features to reduce transmission overhead during inference.

The idea is realized with our CORE framework. Given
a collection of agents and their 2D bird’s eye view (BEV)
maps, CORE performs cooperative reconstruction with
three key modules: a compression module, a collabora-
tion module and a reconstruction module. 1) The compres-
sion module computes a compressed feature representation
of each BEV for efficient transmission. Unlike most prior
works [28, 16, 38] that only consider channel-wise com-
pression, the module imposes more significant compres-
sion by masking (sub-sampling) features along the spatial
dimension. 2) The collaboration module is a lightweight
attention module that encourages knowledge exchanging
across cooperating agents to enhance feature representa-
tions of each individual agent. 3) The reconstruction mod-
ule takes a decoder structure to recover complete scene ob-
servation from the enhanced feature representation. It is
learned in a supervised rather than self-supervised [9, 25,
7, 17] manner, because we can easily obtain the supervi-
sion by aggregating raw sensor data of all agents. Note that
the communication-costly raw data fusion only works in the
training phase, and the entire reconstruction module will
be discarded during inference. The reconstruction objective
provides an explicit guidance to multi-agent collaboration,
leading to ideal cooperative representations that will benefit

various perception tasks. For task-specific decoding (e.g.,
detection or segmentation), CORE applies conventional de-
coders in parallel with the reconstruction decoder.

To verify CORE, we conduct experiments in the au-
tonomous driving scenarios on the OPV2V [39] dataset.
Two popular tasks, i.e., 3D object detection and semantic
segmentation, are studied. Results show that CORE is gen-
eralizable across tasks, and delivers better trade-off between
perception accuracy and communication bandwidth.

2. Related Work
Cooperative Perception enables multiple agents to per-
ceive surrounding environment collaboratively by sharing
their observations and knowledge, which offers a great
potential for improving individual’s safety, resilience and
adaptability [14, 27, 8, 5, 16]. Recent years have witnessed
many related systems developed to support a broad range
of real-world applications, e.g., vehicle-to-vehicle (V2V)-
communication-aided autonomous driving [38, 39, 34, 2, 3,
5], multirobot warehouse automation system [18, 42] and
multiple unmanned aerial vehicles (UAVs) for search and
rescue [30]. As single-agent perception tasks, the progress
is largely driven by high-quality datasets, e.g., OPV2V [39],
DAIR-V2X [40], V2X-Sim 1.0 [16] and 2.0 [15].

Based on these datasets, many effective cooperative
perception methods are developed. One straightforward
solution, widely studed in early efforts [3, 1], is to di-
rectly transmit and fuse raw sensor data among cooper-
ating agents. Despite promising performance improve-
ments, the expensive communication bandwidth required
for transmitting high-dimensional data limits their deploy-
ment in practical situations. Recently, a new family of so-
lutions [2, 34, 22, 21, 16, 39, 10, 28], i.e., intermediate
fusion-based methods, which broadcasts the compact in-
termediate representation, has been extensively studied as
they are able to deliver a better trade-off between percep-
tion performance and network bandwidth. A mainstream
branch [22, 21, 39, 10, 28] of these methods is to employ
attention mechanisms to obtain fusion weights, while other
methods [34, 16, 46] model the relative relationships be-
tween different agents using graph neural networks. Apart
from performance, the robustness of system is also critical.
Some methods [14, 32, 27] address problems arising from
the communication process, for example, latency [14, 38],
localization error [32, 41], and communication interrup-
tion [27]. Some other approaches [17, 4] investigates self-
supervised learning mechanisms to improve the generaliza-
tion ability of collaboration models.

CORE is closely relevant with DiscoNet [16] in terms
that both methods rely on early collaboration to yield
holistic-view inputs and leverage them as valuable guid-
ance of network learning. However, CORE addresses the
problem based on a learning-to-reconstruction formulation
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Figure 2: Illustration of CORE in a three-agent cooperating scenario. Given raw BEV representations (i.e., I1, I2, I3)
of individual agents, CORE achieves cooperative perception via several components: a shared fENC for feature extraction, a
compressor fCOM for spatial- and channel-wise feature compression, a lightweight attentive collaborator fCOL for information
aggregation, a reconstruction decoder fREC to regress an ideal, complete BEV (i.e., Î1, Î2, Î3), and a task-specific decoder
fTASK for, e.g., object detection. CORE is trained jointly by the reconstruction LREC and task-specific LTASK losses.

rather than teacher-student knowledge distillation in [16].
In addition to yielding a simpler and more elegant model de-
sign, our formulation has two other advantages: first, by op-
timizing a reconstruction-aware objective, CORE achieves
better generalizibility as well as improved perception per-
formance, e.g., it outperforms [16] significantly by about
3% on the task of BEV semantic segmentation (see Ta-
ble 2); second, the reconstruction idea allows CORE to fur-
ther masking out spatial features to be transimitted, thereby
achieving more efficient communication against [16].

3. Methodology

The framework of CORE is illustrated in Fig. 2. We as-
sume a system of N agents simultaneously perceiving the
environment. Each agent is equipped with an onboard sen-
sor (e.g., RGB or thermal cameras, Lidar) to observe the
environment and obtain its local measurement in form of
modalities like RGB images or 3D point clouds. As con-
ventions [16, 28, 10], CORE explores perception in BEV
space, where agents transform their individual perception
information into BEV. Denote Ii ∈ Rh×w×c as the BEV
representation of the i-th agent with spatial size h×w and
channel number c. The agent encodes Ii into an interme-
diate feature representation by Ii = fENC(Ii) ∈RH×W×C .
Here, fENC is a feature encoder shared by all agents, and H ,
W , C denote feature height, width, channel, respectively.

CORE compresses the intermediate feature Ii of each
agent independently to a compact representation I↓

i =
fCOM(Ii) using a shared compressor fCOM (§3.1) and broad-

cast it along with its pose to other agents. Subsequently,
each agent i aggregates the received features to enhance
its representation Îi = fCOL(I

↓
i , {I

↓
j }j∈[N ]\{i})∈RH×W×C

based on an attentive collaboration component (§3.2). Un-
like existing methods that learn Îi in a task-specific man-
ner, CORE provides additional guidance to learn the ideal
state of Îi from which the BEV representation can be re-
constructed, denoted as Îi = fREC(Îi) ∈ Rh×w×c (§3.3).
Here fREC is a reconstruction decoder. Next, we elaborate
on details of the key modules.

3.1. Feature Compression and Sharing

The goal of feature compression is to reduce the commu-
nication bandwidth as much as possible while maintaining
perception performance. Previous approaches only com-
press features (e.g., Ii for agent i) along the channel dimen-
sion by, e.g., 1 × 1 convolutional autoencoder [34, 16, 38].
However, we argue that simply compressing the channel di-
mension does not lead to the maximal saving of the band-
width. To drive more effective reconstruction, CORE addi-
tionally performs spatial-wise sampling to features, which
can further alleviate the transmission burden. Concretely,
for channel-wise compression, we follow [38] to use a se-
ries of 1× 1 convolutional layers to progressively compress
Ii, and the compressed feature is with the shape (H,W,C ′)
and C ′ ≪ C. In our experiments, we follow prior stud-
ies [16, 39, 38] to set C ′ = 16. For spatial-wise sub-
sampling, a two-step scheme is taken: first, we sum up the
channel-compressed feature map along the channel dimen-
sion to obtain a 2D activation map Oi ∈ RH×W and se-
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Figure 3: Visualization of computations of Mj→i and
Mi→j in Eq. 1. Point cloud of the holistic scene and raw
BEVs of individual agents are shown for reference.

lect the top K% of the HW feature points with the high-
est activation values; second, we further sample R% of the
(HWK)% points following a uniform distribution, lead-
ing to a set of (HWKR)‱ feature points at final. These
features and their corresponding spatial coordinates in Ii
are messages that will be transmitted to connected agents
nearby. After other agents receiving the feature points, they
will reorganize them into an all-zero-initialized feature map
I↓
i ∈RH×W×C′

, and then project them back to (H,W,C)
using 1× 1 convolutions.

3.2. Attentive Collaboration

Multi-agent collaborative learning focuses on updating
each agent’s feature map by aggregating informative mes-
sages from its partners. Without loss of generality, we as-
sume the i-th agent as the ego agent, and we have its lo-
cal feature map I↓

i as well as the features received from
connected agents {I↓

j }Jj=1. Here J denotes the number of
agents connected to i. To ensure the sender and the receiver
are properly aligned before collaboration, we geometrically
warp the sender’s message I↓

j onto the receiver’s coordinate
to derive I↓

j→i=Γξ(I
↓
j ). Here Γξ is a differential transfor-

mation and sampling operator [38].
For multi-agent collaboration, we are inspired by [10]

and devise a lightweight attention-aware collaboration
scheme. Concretely, for each agent i, we transform its
feature I↓

i using a series of 1× 1 convolutions followed
by a softmax function to generate a confidence map Pi ∈
[0, 1]H×W . Each element in Pi represents the activation de-
gree at the corresponding spatial location, i.e., higher values
are more objective-sensitive. Pi conveys what information
agent i can offer to others. Moreover, we compute another
confidence map Ri ∈ [0, 1]H×W by Ri = 1 − Pi. In con-
trast to Pi, the spatial locations with higher values in Ri

indicate there is potentially information missing caused by
occlusions or limited visibility, hence, it reflects what infor-
mation agent i needs the most. Given the confidence maps,
for ego agent i and its partner agent j, we compute an atten-
tion map as follows (see Fig. 3):

Mj→i = Ri ⊙ Pj ∈ [0, 1]H×W , (1)

I j i

 I j i


I i
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Figure 4: Structure of attentive collaboration (Eq. 2).

where ⊙ is the Hadamard product. Here the attention map
Mj→i highlights the positions that agent i needs informa-
tion while agent j can meet i’s requirements. The attention
map allows us to perform more accurate and adaptive fea-
ture aggregation.

Furthermore, we update the feature I↓
i of ego agent i

based on the calibrated feature I↓
j→i from agent j and at-

tention mask Mj→i as follows:

Îj→i=DConvl×l(A)⊙V ⊙Mj→i+I
↓
i ∈ RH×W×C , (2)

where A and V are computed as:

A = W1[I
↓
i , I

↓
j→i] ∈ RH×W×2C , (3)

V = W2I
↓
j→i ∈ RH×W×C . (4)

Fig. 4 illustrates the structure of the attentive collabora-
tion scheme. Here Îj→i is the updated message of agent
i based on the information from agent j, DConvl×l indi-
cates depthwise convolution with kernel size l × l that gen-
erates an output with half the number of input channels. It
enhances the receptive field of features while reducing the
complexity and computational cost. ‘[·, ·]’ is a channel-wise
tensor concatenation operator, combining the message from
different agents. W1 and W2 are learnable linear weights
that allow cross-channel information interaction. The first
term in Eq. 2 computes the attention weight from agent j to
i, where the attention map Mj→i makes it more targeted. A
residual layer is introduced to avoid information loss in I↓

i .
For ego agent i, Eq. 2 is individually applied to each of

its connected agent. Its final feature is the average of up-
dated features from all agents, i.e., Îi = avgj({Îj→i}).

In this way, our attentive collaboration module can ef-
fectively capture spatial and channel-wise dependencies
among agents and learns to selectively attend to the most
informative messages from neighboring agents. By ex-
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Figure 5: Illustration of the creation of ideal BEVs {Ĩi}
based on point cloud aggregation. See §3.3 for details.

changing messages across all connected agents, the pro-
posed scheme enables each agent to refine its own repre-
sentation by taking into account the context of the whole
group and eventually improve the overall performance of
the group on the target task.

3.3. BEV Reconstruction

In §3.1 and §3.2, we reduce the bandwidth consumption
by compressing the intermediate representation along the
channel and spatial dimensions, and achieve efficient infor-
mation interaction across agents through attentive collabo-
ration. However, the detailed information contained in in-
termediate representations is inevitably lost due to compres-
sion. In addition, supervising collaborative learning solely
through task-specifc labels can lead to a high dependence
on downstream tasks, which hurts the generalization abil-
ity of the model. Our BEV reconstruction scheme allevi-
ates these issues by learning a deep convolutional decoder
to reconstruct the multi-view BEV representations from the
interacted messages.

To obtain proper supervisory signal, we aggregate raw
point clouds of individual agents to yield a holistic-view
point cloud and convert into BEV representations that will
serve as prediction targets of the reconstruction decoder. A
conceptual illustration is presented in Fig. 5. To be more
specific, let Si be the raw 3D point clouds collected from
the ego agent i. We first project point clouds from all
neighbor agents, {Sj}Jj=1, to the ego’s coordinate system:
{Sj→i}Jj=1 = Γξ({Sj}Jj=1). Next, we aggregate each
individual point cloud to produce a multi-view 3D scene:
S̃ = fSta({Sj→i}Jj=1,Si), where fSta(·, ·) is a stacking op-
erator. Now, all agents are situated within the same coor-
dinate system yet occupy distinct positions. Subsequently,
we project back to each local coordinate and crop it based
on perceptual range: S̃i = Γ−1

ξ (S̃). Finally, we convert S̃i

into its corresponding BEV representations Ĩi ∈ Rh×w×c.
Here, Ĩi has the same dimension as the original BEV feature
maps Ii, but offers a much broader viewpoint.

For each agent i, the reconstruction decoder takes the up-

dated feature Îi as input and reconstructs the corresponding
BEV feature as follows:

Îi=fREC(Îi)∈Rh×w×c. (5)

To encourage the reconstructed data to match the orig-
inal input data, we train our reconstruction decoder using
a reconstruction loss. Specifically, given the reconstructed
BEV features Îi w.r.t its supervision signal Ĩi, the recon-
struction loss is computed as the mean squared error (MSE)
between them:

LREC =

h∑
x=1

w∑
y=1

||Îi(x, y)− Ĩi(x, y)||22. (6)

By incorporating feature reconstruction into our
pipeline, we are able to effectively leverage the benefits
of collaboration without sacrificing the independence and
flexibility of each individual task.

3.4. Detailed Network Architecture

Network Architecture. The entire network is comprised of
three major components:

• Feature Extractor fENC. The feature extractor fENC
takes the BEV representation as input and encodes it into
intermediate features. Following [39], we implement it
through three 2D convolutional layers with kernel size of
3×3, and a batch normalization layer and a ReLU activa-
tion layer are employed after each layer.

• Reconstruction Decoder fREC. The reconstruction de-
coder fREC is used for generating high-quality BEV fea-
tures. It consists of three blocks, each of which is com-
posed of a 2×2 transposed convolutional layer and a 3×3
normal convolutional layer. Each layer is followed by a
batch normalization layer and a ReLU activation layer.

• Task-specific Decoder fTASK. We study two tasks: 3D
object detection and semantic segmentation. For detec-
tion, the decoder comprises three deconvolutional layers
followed by two sibling branches, i.e., class prediction
and bounding box regression. Following [39], the class
prediction branch produces the confidence score for each
anchor box, distinguishing between being an object or
background, while the regression output represents the
predefined anchor boxes’ attributes, including their loca-
tion, size, and orientation. For segmentation, the decoder
consists of three deconvolutional layers for upsampling
and a 3× 3 convolutional layer for generating the final
semantic segmentation map.

Loss Function. CORE is optimized by minimizing the fol-
lowing loss function:

L = LTASK + λLREC, (7)
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where the first term LTASK is a task-specific loss. For de-
tection, we follow conventions [16, 39] to use focal loss as
the classification loss and smooth l1 loss for bounding box
regression. For segmentation, we use cross-entropy loss
as [28]. The second one is our reconstruction loss LREC
(Eq. 6) for supervising the output of reconstruction decoder.
The coefficient λ balances the two loss terms.

4. Experiment
For comprehensive evaluation, we validate CORE on

two popular cooperative perception tasks, i.e., 3D object de-
tection and BEV semantic segmentation.

4.1. Experimental Setup

Datasets. We use two popular datasets for evaluation.
OPV2V [39] is a large-scale public dataset collected to-
gether by the co-simulating framework OpenCDA [37] and
the CARLA [6] simulator for vehicle-to-vehicle collabo-
rative perception. In total, the dataset contains 11,464
frames of LiDAR point clouds and RGB images. OPV2V
can be further split into two subsets: a default CARLA
towns and a Culver City digital town. The default CARLA
towns subset includes 10,914 frames (6,764/1,980/2,170
for train/val/test splits). This subset provides a di-
verse range of scenarios with different levels of complex-
ity, which can be used to train and evaluate collaborative
perception models. The Culver City subset includes 550
frames and is designed to evaluate the generalization ability
of the models. This subset represents a realistic imitation
of a real-world city, with a variety of objects and structures
that can challenge the perception capabilities of the mod-
els. V2X-Sim [15] is a collaborative perception dataset for
vehicle-to-everything communication, co-simulated using
SUMO [12] and CARLA [6]. It is collected from CARLA
towns and comprises a total of 10,000 frames of LiDAR
point clouds (8,000/1,000/1,000 for train/val/test
splits). This dataset provides a diverse range of scenar-
ios with varying complexities, enabling the development
and evaluation of vehicle-to-everything communication-
enabled perception models.
Training. During the training phase, a set of agents that
can establish communication with each other is randomly
selected from the scenario, with each agent is assigned a
communication range of 70 m. We limit the range of point
clouds to [−140.8, 140.8] × [−40, 40] × [−3, 1] along the
x, y, and z-axis for the 3D object detection task, and to
[−51.2, 51.2] × [−51.2, 51.2] × [−3, 1] for the BEV se-
mantic segmentation task. As the voxel resolution is set
to 0.4 m, we can get the BEV map with a resolution of
200×704×128 and 256×256×128, respectively. We apply
several data augmentation techniques to the training data,
including random flipping, scaling in range of [0.95, 1.05],
and rotation from [−45◦, 45◦]. We train our CORE using

Default Culver
Method Backbone

AP@0.5AP@0.7AP@0.5AP@0.7

No Collaboration

VoxelNet [45]

68.8 52.6 60.5 43.1
Early Collaboration 89.9 85.8 87.7 78.4
Late Collaboration 80.1 73.8 72.2 58.8

Cooper[3] 85.2 75.8 81.5 67.7
F-Cooper[2] 87.6 78.7 84.9 72.3
AttFuse[39] 90.9 85.2 84.3 74.7

CORE 90.9 88.3 87.8 82.6
No Collaboration

PointPillar [13]

67.9 60.2 55.7 47.1
Early Collaboration 89.3 83.5 86.1 75.9
Late Collaboration 85.8 78.1 79.9 66.8

V2VNet[34] 89.7 82.2 86.8 73.3
Cooper[3] 89.1 80.0 82.9 69.6

F-Cooper[2] 88.7 79.1 84.5 72.9
AttFuse[39] 89.9 81.1 85.4 73.6

CoBEVT[28] 91.4 86.2 85.9 77.3
CORE 90.9 85.8 87.7 78.1

Table 1: Quantitative results for the task of 3D object de-
tection on OPV2V [39] test.

Method Backbone Vehicle Road Lane Avg.

No Collaboration

VoxelNet [45]

35.4 55.5 40.3 43.7
Early Collaboration 53.5 60.6 44.1 52.7
Late Collaboration 44.6 59.6 42.5 48.9

F-Cooper[2] 53.9 61.0 46.8 53.9
DiscoNet[16] 54.1 61.1 46.6 53.9

AttFuse[39] 54.6 61.3 47.1 54.3
V2VNet[34] 58.4 60.7 45.9 55.0

CORE 60.8 62.0 47.7 56.8

Table 2: Quantitative results for the task of BEV semantic
segmentation on OPV2V [39] test.

Object Detection Segmentation
Method

AP@0.5 AP@0.7 Vehicle mIoU

No Collaboration 49.9 44.2 45.9 36.6
Early Collaboration 70.4 67.0 64.1 42.3

When2com[21] 44.0 39.9 48.4 34.5
Who2com[22] 44.0 39.9 48.4 34.3

V2VNet[34] 68.4 62.8 58.4 41.1
DiscoNet[16] 69.0 63.4 56.7 40.8

CORE 70.0 64.8 58.3 40.5

Table 3: Quantitative results for the task of object detec-
tion and segmentation on V2X-Sim [15] test.

Adam [11] optimizer with a learning rate of 0.002 and a
batch size of 1. We also employ early stopping based on the
validation loss to prevent overfitting. The hyperparameters
λ, R and K are empirically set to 1, 90 and 90, respectively.
Inference. At the inference stage, we adopt a fixed group
of agents to evaluate the model for fair comparison. We ap-
ply a confidence score threshold of 0.25 and non-maximum
suppression (NMS) with an IoU threshold of 0.15 to filter
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Figure 6: Qualitative object detection results on OPV2V [39]. CORE is compared with No collaboration, AttFuse [39] and
CoBEVT [28] on two regions with sparse observations and occlusions.

GT V2VNet COREDiscoNet AttFuseScene

ego agent

Figure 7: Qualitative segmentation results on OPV2V [39]. CORE is compared with DiscoNet [16], AttFuse [39] and
V2VNet [34].

out overlapping detections.
Baselines. For comparison, we build two baseline models.
No Collaboration refers to a single-agent perception sys-
tem using only individual sensor data without any informa-
tion from other agents. Early Collaboration directly aggre-
gates raw sensor data from multiple agents at an early stage
of the perception pipeline. Late Collaboration collects the
prediction results of multiple agents and combines them to
deliver the final results using NMS. In addition, CORE is
compared with existing state-of-the-art algorithms, includ-
ing Cooper [3], F-Cooper [2], V2VNet [34], DiscoNet [16],
AttFuse[39], and CoBEVT [28].
Evaluation Metrics. For 3D object detection, we adopt
standard evaluation metrics as [16, 39]: average precision
(AP) at intersection-over-union (IoU) thresholds of 0.5 and
0.7. For BEV semantic segmentation, we follow [28] to
report IoU scores for categories of vehicle, road, and lane.
Reproducibility. We implemented CORE using PyTorch
and trained it on an NVIDIA RTX 3090Ti GPU with a
24GB RAM. Testing is conducted on the same machine.

4.2. Quantitative Result

OPV2V. Table 1 reports the overall detection results of
CORE against existing approaches in terms of AP@0.5
and AP@0.7 on OPV2V [39]. For comprehensive eval-
uation, we evaluate methods using two different types of

3D perception backbones, i.e., a voxel-based method Voxel-
Net [45] and a point-based method PointPillar [13]. Regard-
ing VoxelNet-based methods, the table shows that CORE
yields state-of-the-art performance across all the metrics
on both subsets and surpasses the previous state-of-the-art
method, AttFuse [39], by a significant margin of, e.g., 3.5%
and 7.9% in terms of AP@0.5 and 0.7 on Culver City.
Among methods based on PointPillar backbone, CORE
consistently outperforms AttFuse [39] across all the met-
rics. Compared with a more recent method CoBEVT [28],
CORE outperforms it by solid margins of 1.8%/0.8% in
terms of AP@0.5/0.7 on Culver City. Though [28] is bet-
ter than CORE on Default subset, the gap is indeed minor
(< 0.5%). In summary, these results suggest that CORE
is very robust to backbones, and outperforms current state-
of-the-art methods in terms of AP@0.5 and AP@0.7, espe-
cially on the Culver City subset.

Table 2 presents BEV semantic segmentation results on
OPV2V [39]. For fair comparison, we use the same back-
bone (i.e., VoxelNet) and segmentation head for all meth-
ods. The table shows that our proposed method CORE out-
performs all other methods by a significant margin, achiev-
ing an average IoU score of 56.8%, clearly outperform-
ing the second-best method V2VNet [34] with an average
score of 55.0%. CORE consistently achieves the best per-
formance for all three categories, demonstrating its ability
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Figure 8: Visualization of reconstructed BEV features.

to handle different segmentation targets. Furthermore, our
proposed method shows a significant improvement over the
baselines with No Collaboration and Late Collaboration. It
improves the No Collaboration baseline by 13.1% and the
Late Collaboration baseline by 7.9%. These results demon-
strate the effectiveness of CORE in improving the perfor-
mance of BEV semantic segmentation through collabora-
tive learning. The segmentation results further confirms the
perception superiority of CORE, and further demonstrates
its strong generalization ability.
V2X-Sim. Table 3 presents the quantitative results on V2X-
Sim [15]. As observed, for object detection, CORE achieves
APs of 70.0% and 64.8% at 0.5 and 0.7 IoU thresholds,
which are the highest among all methods. For vehicle seg-
mentation, CORE reaches a 58.3% score, higher than most
previous works, except for V2VNet [34] which has 58.4%.
In terms of mIoU, V2VNet [34] achieves the best perfor-
mance at 41.1%, while CORE is competitive at 40.5%. De-
spite this, CORE still significantly outperforms other no-
table models such as When2com [21], Who2com [22], and
DiscoNet [16]. More importantly, the performance gap be-
tween CORE and the Early Collaboration is significantly
reduced compared to previous methods.

4.3. Qualitative Result

We present qualitative results to visually illustrate the
effectiveness of CORE in handling challenging scenarios.
As depicted in Fig. 6, our algorithm, CORE, can suc-
cessfully detect multiple objects in cluttered, sparse point
clouds, and occluded environments, and show better results
in comparison with strong baselines like AttFuse [39] and
CoBEVT [28]. To further validate the generalization capa-
bility of CORE, we conducted experiments to evaluate the
performance of CORE on BEV semantic segmentation, as
shown in Fig. 7. We demonstrate that CORE achieves high-
quality segmentation results even in complex scenarios such
as crowded and dynamic environments. These results are
consistent with our quantitative evaluations, positioning it

Colla. Recon. Object Detection Segmantation
(§3.2) (§3.3) AP@0.5 AP@0.7 Vehicle

90.9 / 84.3 85.2 / 74.7 54.6
✓ 90.8 / 84.4 86.1 / 77.1 56.8
✓ ✓ 91.1 / 87.2 86.9 / 78.7 58.3

Table 4: Analysis of key components. ‘Colla.’ and ‘Re-
con.’ indicate the attention collaboration module and BEV
reconstruction module, respectively.

Spatial Compre- Default Culver Transmitted
Method

ssion Ratio AP@0.7AP@0.7Data Size (KB)

DiscoNet [16] 1.0 87.6 81.8 144.2
1.0 88.6 82.8 144.2

0.8 (default) 88.3 82.6 115.3
0.6 87.5 82.0 86.5
0.4 87.1 81.5 57.7
0.2 83.0 77.6 28.8

CORE

0.1 78.3 74.0 14.4

Table 5: Analysis of spatial-wise feature compression.
Here compression ratio is defined as the ratio between un-
compressed data size and total data size. In our method, the
spatial compression ratio can be calculated as R%×K%.

as a promising solution for various real-world applications.
In addition, we present a visualization of the recon-

structed BEV features in Fig. 8 to confirm the high fidelity
achieved in capturing the details of the supervisory BEV.
As seen, the reconstructed BEV (right) closely resemble the
supervisory BEV (left), confirming the effectiveness of the
reconstruction process.

4.4. Ablation Study

Key Component Analysis. Table 4 shows the contribu-
tion of individual components in our CORE framework for
both detection and segmentation tasks. By adding the atten-
tive collaboration (i.e., ‘Colla.’) module alone, we observe
an improvement in AP@0.7 and IoU scores, with a slight
impact on AP@0.5 compared to the base case. The addi-
tion of the BEV reconstruction (i.e., ‘Recon.’) module on
top of the collaboration module leads to further improve-
ment across all metrics, particularly in Culver City, where
we see a significant increase of 2.8% in AP@0.5 and 1.6%
in AP@0.7. These results highlight the effectiveness of the
reconstruction module in enhancing the performance of our
CORE framework. Moreover, incorporating the reconstruc-
tion module also leads to a significant gain in segmenta-
tion performance, with a 1.5% increase in IoU compared
to the baseline with collaboration. These findings demon-
strate the importance of both collaboration and reconstruc-
tion modules in achieving state-of-the-art performance on
multi-agent perception tasks.
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Figure 9: Hyperparameter analysis of K and R.

Default Culver City
Method

AP@0.5 AP@0.7 AP@0.5 AP@0.7

Grid-based 90.2 88.3 87.0 81.6
CNN-based 90.9 88.3 87.8 82.6

Table 6: Comparison of two different ways for supervisory
BEV generation.

λ Default Culver City
(Eq. 7) AP@0.5 AP@0.7 AP@0.5 AP@0.7

0.1 90.7 85.5 84.2 75.4
0.2 90.8 86.0 84.7 76.1
0.4 90.5 85.9 85.3 76.8
0.6 90.9 86.2 86.5 78.0
0.8 90.8 86.6 86.9 78.1
1.0 91.1 86.9 87.2 78.7
2.0 89.8 83.0 85.5 77.8

Table 7: Hyperparameter analysis of λ in Eq. 7.

Spatial-wise Feature Compression. Furthermore, we an-
alyze the effect of feature compression in CORE. Unlike
most existing methods (e.g., DiscoNet [16]) only exploit
channel-wise compression, CORE additionally carries out
spatial-wise feature compression. Table 5 provides detec-
tion performance and transmitted data size under varied
spatial compression ratio (we do not discuss channel-wise
compression since it is same to most existing studies.) It
is not surprised to see that performance progressively de-
grades as spatial compress ratio increases from 1.0 to 0.1.
But it is favorable that CORE is able to deliver very promis-
ing performance even with a large compression ratio of 0.4.
Moreover, CORE with a ratio of 0.6 can achieve compa-
rable performance as DiscoNet [16] with no compression.
For a better trade-off between perception performance and
communication efficiency, we set the spatial compression
ratio to 0.8 by default.
Hyperparameters R and K. Next, we study the impacts of
hyperparameters R and K (§3.1), which jointly determine
the spatial compression ratio. We vary their values from

10% to 90%, and show the object detection results (AP@0.7
in subsets of Default and Culver City) in Figure 9. As ex-
pected, CORE tends to perform worse as R or K becomes
smaller. However, we observe that CORE is generally ro-
bust to these hyperparameters, as even with a compression
ratio as low as 10%, the performance degradation is mod-
erate. These results demonstrate the potential of our CORE
to be applied to a wide range of scenarios, where different
levels of compression ratios may be required due to varying
bandwidth and storage constraints.

Supervisory BEV Generation. Table 6 presents the com-
parison results of generating supervisory BEV using two
methods: CNN-based or grid-based projection. The former
adopts existing 3D detectors (e.g., VoxelNet, PointPillar) to
generate BEV features. Grid-based projection directly maps
points to a two-dimensional grid, where each grid cell repre-
sents a region, and the presence or absence of points is used
to indicate whether that region contains point cloud data.
As seen, both methods can generate promising supervisory
BEV, but the CNN-based projection appears to have a slight
advantage, especially in more complex environments (i.e.,
Culver City). This indicates that the features extracted by
the CNN-based method encode richer point cloud structural
information, resulting in a more semantically meaningful
BEV representation, while the grid-based method may suf-
fer some loss during the BEV generation process.

Hyperparameter λ. Table 7 measures the effects of the
hyperparameter λ in Eq. 7. As can be seen, the optimal
performance is achieved at λ = 1, and we observe a slight
degradation in performance when λ is either increased or
decreased from this optimal value. However, CORE ex-
hibits robustness to variations in λ, as evidenced by the rel-
atively stable results across different values.

5. Conclusion

This paper has introduced CORE to address coopera-
tive perception in multi-agent scenarios. By solving the
task from a cooperative reconstruction view, CORE is able
to learn more effective multi-agent collaboration, which is
beneficial to specific perception tasks. In addition, coopera-
tive reconstruction naturally links to the idea of masked data
modeling, inspiring us to mask spatial features to further
reduce transmitted data volume. CORE demonstrates su-
perior performance-bandwidth trade-off on standard bench-
marks, i.e., OPV2V and V2X-Sim, in both 3D object detec-
tion and BEV semantic segmentation tasks.
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