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Abstract
Explaining deep models in a human-understandable way

has been explored by many works that mostly explain why
an input causes a corresponding prediction (i.e., Why P?).
However, seldom they could handle those more complex
causal questions like “Why P rather than Q?” and “Why
one is P, while another is Q?”, which would better help
humans understand the behavior of deep models. Consid-
ering the insufficient study on such complex causal ques-
tions, we make the first attempt to explain different causal
questions by contrastive explanations in a unified frame-
work, i.e., Counterfactual Contrastive Explanation (CCE),
which visually and intuitively explains the aforementioned
questions via a novel positive-negative saliency-based ex-
planation scheme. More specifically, we propose a content-
aware counterfactual perturbing algorithm to stimulate
contrastive examples, from which a pair of positive and
negative saliency maps could be derived to contrastively
explain why P (positive class) rather than Q (negative
class). Beyond existing works, our counterfactual perturba-
tion meets the principles of validity, sparsity, and data dis-
tribution closeness at the same time. In addition, by slightly
adjusting the objective of perturbation, our framework can
adapt to different causal questions. Extensive experimen-
tal evaluation demonstrates the effectiveness and superior
performance of the proposed CCE on different benchmark
metrics for interpretability, including Sanity Check, Class
Deviation Score and Insertion-Deletion tests. A user study
is conducted and the results show that user confidence is in-
creasing significantly when presented with CCE compared
to standard saliency map baselines.

1. Introduction
Deep neural networks (DNNs) have achieved break-

through performance in various computer vision tasks, e.g.,

∗Zhibo Wang is the corresponding author.

image classification [19, 34], object detection [28, 29], se-

mantic segmentation [23], etc. However, the “black-box”

nature of DNNs, i.e., massive unexplainable parameters and

lack of intuitive understanding in prediction, has been draw-

ing chaos in the human-understandable analysis of their be-

havior. Since human-understandable explanations of DNNs

would significantly facilitate the causal analysis, e.g., what

causes misclassification or bias, it is rising increasing de-

mand for related research. One of the popular approaches

to interpreting deep learning models is to display visual ex-

planations in the form of saliency maps [6, 32, 33, 36].

Most saliency-based approaches highlight the most infor-

mative areas by assigning weights to image regions con-

cerning their contributions to the final prediction, revealing

their causal relationship.

However, in the field of social science, Miller [26] sys-

tematically surveyed explanation methods and pointed out

that most explanations are contrastive. That is, people not

only want to know “Why P?”, where P refers to the given

conclusion, but also have great interest in “Why P, rather

than Q?”, in which Q is often implicit from the context.

Van Bouwel and Weber [40] defined the latter question as

P-contrast referring to differences that occur on properties

within an object, and formally state it as “Why does object a
have property P, rather than property Q?” Saliency maps ef-

ficiently answer the question “Why P?” by highlighting the

most informative regions, but it does not take the P-contrast

question into account. For example, when an application

for a loan is denied by the bank, the applicant would be left

wondering not only why was the loan denied, but also how

to pass the application. The saliency maps might only point

out that the income is the main reason for denial but fail to

state the difference between approval and denial.

For structured data such as tabular data, counterfactual

explanation [42, 7] is a popular method to answer P-contrast

question. A counterfactual explanation modifies the input
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Why hummingbird? Why nightingale? Why hummingbird, rather than nightingale?

GradCAM Counterfactual
Contrastive 
Explanation

Because those highlight regions are important when the
picture is classified as a hummingbird (nightingale).

Because when classified as a hummingbird the positive regions
are in dominant, but when classified as a nightingale the
negative regions are in dominant.

CCE Positive Heatmap CCE Negative HeatmapHeatmap for hummingbird Heatmap for nightingale

Figure 1: Comparison between GradCAM and our proposed Counterfactual Contrastive Explanation (CCE), i.e., non-

contrastive vs. contrastive explanations.

appropriately to change the output of the model from P to

Q. For the previous example, a potential counterfactual ex-

planation could be: “The loan was denied as your income

was $20,000, you would have been offered a loan if your in-

come had increased to $25,000.” These approaches empha-

size the counterfactual example itself as the explanation and

ignore the importance of considering the model’s decision

changes in a contrasting perspective. For users, “increas-

ing income by $500” is a more accurate explanation, which

can be easily converted in tabular data. Several previous

studies [4, 5, 12, 44, 16] have proposed methods to answer

P-contrast question, they use GAN to generate counterfac-

tuals as explanations directly or find additional images as

counterfactuals to show contrast. However, for unstructured

data such as images, the difference between counterfactual

and original sample is not intuitive, and the correlation be-

tween counterfactual and model decision is lower than that

of tabular data.

Besides P-contrast question, Van Bouwel and Weber [40]

also defined O-contrast question, that is “Why does object

a have property P, while another object b has property Q?”,

which note differences occur on properties between objects

themselves. In deep learning, this question is highly rel-

evant to the adversarial example [39], that carefully con-

structed perturbations are added to input and aimed to maxi-

mize the change of the model’s decision. Typically, saliency

maps explain an adversarial example and its benign coun-

terpart by highlighting different regions. However, Zhang et

al. [47] proposed an attack method that changes the model

decision while keeping the saliency maps unchanged. This

study reveals that the existing explanation approaches are

not fully aligned with the model decisions and cannot pro-

vide convincing explanations for the phenomenon of ad-

versarial examples. We argue that to interpret the adver-

sarial example phenomenon, it is essential to answer the

O-contrast question “Why is the original input assigned to

class P, while the adversarial example is considered to be

class Q?”, which is not considered in existing explanation

approaches.

Therefore, we propose a novel visual explanation

method, i.e., Counterfactual Contrastive Explanation

(CCE), which gives the first attempt to answer “Why P?”,

P-contrast, and O-contrast questions in a unified framework

for image classification task. As illustrated in Fig. 1, our

method contrastively explains why the image is classified

as a hummingbird rather than a nightingale, while the tra-

ditional way naı̈vely explains the two categories in sepa-

rate and overlapped saliency maps that are difficult to tackle

contrastive questions. The core of contrastive explanation is

to identify suitable contrastive objects, such that we could

contrastively reason what results in different predictions.

Correspondingly, we propose to counterfactually synthesize

such contrastive objects. Ideally, a counterfactual example

should minimally change the features but maximally dif-

fer the predictions [42]. Towards this end, we generate

sparse and content-aware counterfactual perturbations that

are overlayed onto the original image to change the model

confidence in the target label while preserving the confi-

dence in the rest classes. Intuitively, comparing such coun-

terfactual examples with their original inputs is supposed to

generate visual contrastive explanations. To better visual-

ize dominant features in a contrastive manner, we propose

gradient-aware feature maps that utilize class-specific gra-

dients to achieve decoupled saliency maps based on origi-

nal and counterfactual examples. More specifically, we dis-

entangle feature representations of DNNs into positive and

negative saliency maps, which contrastively visualize what

features dominate corresponding predictions. We summa-

rize our contributions as below:

• To the best of our knowledge, we give the first attempt

to explain three types of causal questions “Why P?”,

“Why P rather than Q?”, and “Why a is P while b is

Q?” in a unified framework, which drastically boosts

generalization capacity as compared to existing works.

• We propose a positive-negative saliency scheme to

provide visual contrastive explanations, which can in-

tuitively answer the aforementioned causal questions

by comparing original and counterfactual examples.

• We propose a counterfactual perturbing algorithm for
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images to generate counterfactual examples that si-

multaneously satisfy the principles of validity, spar-

sity, and data distribution closeness by constraining the

changes of logits.

• Extensive experimental results demonstrate that

the proposed counterfactual contrastive explanations

(CCE), outperform existing works in multiple inter-

pretability metrics including Sanity Check [3], Class

Deviation Score and Insertion-Deletion tests [30]. Fur-

ther, we conducted a user study demonstrating the ef-

fectiveness of CCE in helping users gain a deeper un-

derstanding of model’s prediction.

2. Related Works
Numerous methods have been proposed to explain model

decisions by highlighting the important regions that are re-

sponsible for the predictions, which can be categorized as

feature attribution-based explanation methods and visual

counterfactual-based explanation methods.

2.1. Feature Attribution-based Explanations

Feature attribution-based explanation methods can be

further categorized as perturbation-based, propagation-

based and activation-based methods. (1) Perturbation-based

methods [41, 15] generally occlude the input image using

different types of perturbations and then record the corre-

sponding change of the class score, thus determining the

regions that are important to a certain class. These meth-

ods can generate heatmaps straightforwardly but are inef-

ficient. (2) Propagation-based methods [33, 36, 38] use

gradients (back-propagated from the model output to the

input) to visualize relevant regions (i.e., saliency maps)

for a given class. However, such gradient-based saliency

maps are usually visually noisy. (3) Activation-based meth-

ods [32, 6, 43, 18] highlight the key regions by resorting to

the activation of feature maps, in which the GradCAM [32]

is the most widely used method which visualizes CNNs by

weighting the feature maps with gradients.

2.2. Visual Counterfactual-based Explanations

Visual counterfactual-based explanation methods con-

struct counterfactual examples to change the model output

and then locate the important regions for the model by com-

paring the difference between counterfactual and original

examples. Chang et al. [5] employed a generative model

to find the smallest region in the image that can change the

classifier’s prediction and then obtain the resultant saliency

map. Similarly, Dhurandhar et al. [8] proposed an op-

timization objective to search for minimal pixels that are

sufficiently present or necessarily absent to produce a con-

trastive explanation. Hendricks et al. [14] utilized a recur-

rent neural network to generate several candidate counter-

factual explanations, and select the most class-specific one

to be the counterfactual image while being the most rele-

vant to the original input image. Elliott et al. [9] proposed

the Perceptual Perturbations(PPE) as Explanations to gen-

erate explainable adversarial examples to work as counter-

factual explanations by adding extra visual similarity con-

straints.However, we argue that the counterfactual examples

that only consider visual constraints would involve extra un-

expected semantic priors, violating the minimization prin-

ciple of counterfactual explanations. CE[24] and SCOUT

[44] are newest counterfactual-based explanation methods

but none of them is aimed at O-contrast question.

3. Counterfactual Contrastive Explanations
In this paper, we propose the Counterfactual Contrastive

Explanation (CCE) to provide a visual explanation for three

types of causal questions which can be redefined as follows:

1) “Why P”, i.e.,“Why is image a labeled as class P, rather

than not-P?”. 2) P-contrast question, i.e., “Why is image

a labeled as class P, rather than Q?”. 3) O-contrast ques-

tion, i.e.,“Why is image a labeled as class P, while image

b is labeled as class Q?”. This section will first overview

the proposed CCE, and then detail the generation of coun-

terfactual examples and the designed flow of explanation.

Finally, we will further describe how to use our framework

to explain different causal questions.

The flow of CCE is shown in Fig. 2, which mainly con-

sists of three steps: 1) Sparse Counterfactual Example Gen-

eration, 2) Weighted Class Activation Feature Maps, and

3) Contrastive Saliency Map Generation. This framework

takes the original input as the side to be interpreted and the

corresponding counterfactual example as the other for com-

parison, and finally outputs contrast saliency maps to con-

trastively explain the question. First, we generate different

types of counterfactual example for contrast to the original

example according to the question. Then, we calculate the

model’s feature representations on the original and counter-

factual examples based on gradient-weighted feature maps

to determine those dominant features in the model decision.

Finally, we compare the feature representation differences

and derive positive and negative saliency maps to answer

the questions.

To accomplish different types of causal questions, we

propose to design corresponding types of counterfactual ex-

amples. For the “Why P” question, the optimization ob-

jective of the counterfactual example is solely to decrease

the probability of class P, which is expected to locate those

P-specific features. Then, for the P-contrast question, the

counterfactual example should be generated by increasing

the probability of class Q while maintaining the probability

distribution of the other classes, which can help determine

those Q-specific features. When it comes to the O-contrast

question, we can decompose it into a combination of two
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Figure 2: Overview of the proposed Counterfactual Contrastive Explanation (CCE).

P-contrast questions, that is“Why is a labeled as class P,

rather than Q” and “Why is b labeled as class Q, rather

than P?”. The counterfactual example can be regarded as

a bridge between original inputs and adversarial examples,

and the explanation of the O-contrast question also can pro-

vide a more comprehensive explanation about the existence

phenomenon of adversarial examples.

3.1. Sparse Counterfactual Example Generation

To achieve a contrastive explanation, we initially need

to generate reasonable counterfactual examples that serve

as contrasts to the original sample. Existing work focused

only on the probability change of the target class when gen-

erating counterfactuals, which may lead to drastic changes

in the probability of non-target classes. To address this is-

sue, we explicitly regulate both the probability change of

the target and non-target classes, and thus make the gener-

ated counterfactual examples cross the correct classification

boundaries.

Given an input image x0 ∈ R
H×W×3 and a deep neu-

ral network F whose logit output is denoted as Z (x0), and

maxZ (x0) = Zm (x0) when image x0 is correctly classi-

fied to class M . We aim to find a perturbation δ to construct

counterfactual example xc, where xc = x0 + δ. We will

generate two different types of counterfactual examples ac-

cording to the questions that we need to answer.

For the “Why P?” question where P is an arbitrary class,

the counterfactual example minimize the logit for class P

and maintain logits for other classes
¬
p unchanged. Then,

the proposed objective function can be written as follows:

argmin
xc

Zp(xc)
2 + γDmse

(
Z¬

p
(x0) ,Z¬

p
(xc)

)
,

s.t. ‖x0 − xc‖2 ≤ ε
(1)

where Dmse is the mean square error metric to measure the

distance between two distribution, the hyperparameter γ is

used to balance the two losses, and the ε is the perturbation

threshold. The distance constraint between the counterfac-

tual example and the original sample ensures the counter-

factual example is close to the data manifold.

For the “Why P, rather than Q?” question, the optimiza-

tion objective is to minimize the logit for class P and maxi-

mize the logit for target class Q while maintaining rest logits

of the other classes r and can be formulated as follows:

argmin
xc

Zp(xc)
2 −Zq(xc)

2 + γDmse (Zr (x0) ,Zr (xc)) ,

s.t. ‖x0 − xc‖2 ≤ ε.
(2)

The optimization objectives (i.e., Eq. 1 and Eq. 2) can be

solved by existing optimization methods, and we adopt the

same optimization algorithm like PGD [25] in this work.

3.2. Weighted Class Activation Feature Maps

Existing counterfactual explanation methods usually

treat counterfactual perturbations directly as explanations.

In contrast, we propose that the difference between the

counterfactual example and the original example in the

model’s feature representation is a more consistent explana-

tion for the model decision. Inspired by GradCam [32], we

also utilize weighted class activation feature maps to con-

struct the feature representation.

We denote Ft (x0) as the probability score on any tar-

geted class t, and l represents the index of the internal layer

to be explained, which contains K feature maps. The ac-

tivation of the layer is Al and the k-th feature map can be

denoted as Ak
l . For any target class t, the feature represen-

tation Rt (x0) is defined as:

Rt (x0) =

K∑
k=1

(
wk

t · Ak
l

)
, (3)

where wk
t is the weight of the corresponding feature map

Ak
l . Here, we use the gradients with respect to k-th feature

map Ak
l as the weight. Then, the gradients are globally av-

erage pooled over the height and width dimensions (indexed
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by i, j respectively) to obtain the channel-wise weights:

wk
t =

1

Z

∑
i

∑
j

∂Ft (x0)

∂Ak
ij (x0)

, (4)

where Ak
ij is the pixel in position (i,j) of Ak

l , and Z is the

number of pixels in Ak
l . In order to make the feature repre-

sentation reflect the detailed discrimination behavior of the

model, we do not use ReLU rectified function to filter neg-

ative values in contrast to GradCam [32].

3.3. Contrastive Saliency Map Generation

Finally, following the Eq. 3, we obtain the feature rep-

resentations for both original and counterfactual exam-

ples and generate the corresponding positive and negative

saliency maps by comparing the representation differences.

According to the aforementioned formulation (i.e., Eq. 3),

the feature representation for the original example with re-

spect to class t can be expressed as Rt (x0). However, [46]

pointed out that the implied noise in the original images

would introduce class-independent effects to the gradients,

which may lead to the deviation of the feature representa-

tion. Inspired by this work, we propose an aggregation ver-

sion to reduce such effects by adding subtle Gaussian noises

to the original examples, which can be expressed as follows:

R̄t (x0) =
1

M

M∑
m=1

Rt (x0 + εm), εm ∼ N (
0, σ2

)
, (5)

where t indicates the target class, M indicates the number

of random Gaussian noise εm applied to the input x0 and σ
is the deviation of the normal distribution.

Since we define the contrastive features as the differ-

ences between the original and counterfactual feature rep-

resentations, we then decompose the differences relative to

class t into promoted features (i.e., Mpro) and suppressed

features (i.e., Msup). Mpro denotes the features that are

promoted to be dominant in the counterfactual example,

while Msup indicates the features that are suppressed or un-

changed in the counterfactual examples, which are formu-

lated as follows:

Mpro =
1

N

N∑
n=1

ReLU
(
Rt (x

n
c )− R̄t (x0)

)
, (6)

Msup =
1

N

N∑
n=1

ReLU
(
R̄t (x0)−Rt (x

n
c )
)

(7)

where xn
c is the counterfactual example generated from x0

with different initialization and N indicates the number of

counterfactuals. After decomposing such features, we then

scale the values of Mpro and Msup into [0,1] by utilizing

Min-Max normalization, and upsample them with bilinear

interpolating to the same resolution of x0 to generate con-

trastive saliency maps.

When answering the “Why p” question, the target class

t should be replaced by p, and Msup will denote the fea-

tures that are the most relevant to class p, which will be

used to construct the positive saliency map and Mpro for

the negative saliency map, which will be used to construct

the negative saliency map. For the “Why p, rather q” ques-

tion, we calculate Mpro and Msup with respect to class q.

In this case, Mpro contains features that are introduced for

class q, hence will be used to generate the negative saliency

map and Msup for the positive saliency map. In a word,

the positive saliency map highlights important features with

respect to class p and the negative saliency map represents

features that benefit other classes (i.e., not-P or Q).

4. Experiments

4.1. Experimental Setup

Datasets and Models: We conduct experiments on the

commonly-used computer vision datasets, including the

ImageNet-compatible dataset (containing 1k images used

for NIPS 2017 adversarial competition) [1], the validation

set of PASCAL VOC 2007 [10] (containing 5k images) and

the split of validation set of MS COCO2017 [22] (contain-

ing 5k images). All images will be resized to 3×224×224

and normalized to [0,1] without performing other pre-

processing methods. The proposed method will be evalu-

ated on pre-trained VGG-19 [35] and ResNet-50 [13] which

are from torchvision library 1.

Baseline Methods: To demonstrate the effectiveness

of the proposed CCE, we compare it to diverse state-

of-the-art saliency map interpretation methods, includ-

ing propagation-based methods (Guided Backpropagation

[36], Integrate-Grad [38]), perturbation-based methods

(RISE [41], EP[11]), activation-based methods (GradCAM

[32], GradCAM++ [6], ScoreCAM [43],I-GOS [27],FullG

[37],CALM [18]) and counterfactual-based methods(PPE

[2],CE [24],SCOUT [44]) .

Parameter Settings: For the counterfactual examples,

we generate counterfactual examples with the perturbation

threshold ε = 2.0 and the number of iteration = 20 and set

σ = 0.05 for the Gaussian noise for Eq. 5. Numbers for

Gaussian noise(N ) and counterfactuals(M ) are both 5, and

optimization iterations is set 30 for counterfactuals in the

following experiments. When CCE interprets the “Why P”

problem, the positive saliency map highlights the features

most relevant and unique to the original class P, while the

negative saliency map can still provide some additional in-

formation. For comparison with existing methods, we use

Mpro and mix of two types of saliency maps Mp for class p,

which is defined as Mp = α·Msup+(1− α)·Mpro and α is

1 https://pypi.org/project/torchvision/
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Method
VOC 2007 ImageNet 2012 Coco 2017

Res. VGG Res. VGG Res. VGG

GN 1.098 1.597 1.138 1.574 1.178 1.665

PGD [25] 0.613 0.630 0.673 0.740 0.649 0.727

PPE [2] 0.747 0.795 0.735 0.811 0.792 0.844

EP [11] 3.495 3.875 4.426 3.975 3.158 3.647

CCE 5.559 5.178 5.959 5.394 5.671 5.334

Table 1: Comparative evaluation in terms of Class Devi-

ation Score which higher is better. The result shows our

method performs significantly better than other methods.

set to 0.7 for following experiments. All parameters are set

according to results of ablation experiments in Appendix.

4.2. Class Deviation Score

According to research [17], logits of non-target classes

are changed unexpectedly when using perturbations or

counterfactuals for interpretation. In this paper, we intro-

duce a new evaluation metric Class Deviation Score (CDS)

to quantify the degree of output predictions changes as well

as the occurrence of class deviation. We divide the classes

into target class p and non-target classes
¬
p and Class Devi-

ation Score is define as:

CDS =
Zp (x0)−Zp (xc)

1 + E

[
DKL

(
Z¬

p
(x0) ,Z¬

p
(xc)

)] (8)

The numerator term in Eq. 8 measures the degree of change

for the probability of the target class. If a method suc-

ceeds in decreasing the network prediction for the target

class, consequently, the distance between the original and

perturbed predictions will be maximized. Concomitantly,

the denominator of Eq. 8 adopt the Kullback-Leibler diver-

gence metric[20] to assess the average distance of all non-

target class distributions and penalizes the CDS when class

deviation occurs. We randomly select 1000 images from

three datasets to evaluate the mean CDS for Guassian Noise

(σ=0.25), PGD attack and counterfactual-based methods.

As shown in Tab. 1, we can observe that our CCE out-

perform other approaches. This is because our framework

explicitly perturbs the target class while upholding output

probabilities for non-target classes.

4.3. Sanity Check by Parameters Randomization

The intention of sanity check experiment [3] is to iden-

tify whether the explanation of the model decisions would

change if the model’s parameters are randomized. If the ex-

planation remains unchanged, then the explanation and the

model are not aligned. The cascade randomization experi-

ment randomizes the model starting from the last layer and

generates an explanation at each randomization step.

Method
ResNet-50 VGG-19

Ins. ↑ Del. ↓ Diff. ↑ Ins. ↑ Del. ↓ Diff. ↑
GBP [36] 49.71 10.72 38.99 40.12 10.71 29.41
IG [38] 37.38 11.56 25.83 36.58 9.46 27.12

RISE [41] 55.49 17.27 38.21 49.55 11.46 38.09
EP [11] 52.16 14.87 37.29 47.05 11.65 35.40

GradCAM [32] 56.43 18.87 37.56 44.87 14.65 30.21
GradCAM++ [6] 56.58 18.51 38.07 47.26 13.86 33.40
ScoreCAM [43] 57.09 18.56 38.53 49.45 14.85 34.61

I-GOS [27] 56.46 16.75 39.71 50.16 9.45 40.71
FullG [37] 50.30 12.89 37.42 52.01 14.19 37.82

CALM [18] 54.18 14.23 39.95 51.82 11.91 39.91

PPE [2] 52.84 13.27 39.57 49.38 10.12 39.26
CE [24] 57.18 17.92 39.26 48.39 12.57 35.82

SCOUT [44] 53.78 14.87 38.91 50.64 11.02 39.62
CCE(mixed) 58.02 17.96 40.06 52.25 11.27 40.99

CCE(positive) 57.47 18.14 39.33 51.86 11.79 40.07

Table 2: Insertion-Deletion Tests results. Higher insertion

score (Ins.) are better and lower deletion score (Del.). The

difference score (Diff. which higher is better) shows that

CCE outperforms other related methods. The best records

are marked in bold.

We use the ImageNet-compatible dataset to measure the

mean similarities of visual explanations using the Structural

Similarity Index Metric (SSIM) [45]. Specifically, we em-

ploy cascade randomization to compare the output of CCE

on a pre-trained VGG19 model. The Fig. 3 shows the vari-

ation of SSIM changes when the model is randomized and

the experimental results for one image, respectively.

We observe that the CCE is sensitive to the parameter

randomization of the model, and the saliency maps change

dramatically while the SSIM indicates the same results.

4.4. Insertion and Deletion Tests

We conduct the insertion and deletion tests following

[31] to evaluate different saliency approaches using 1000

images from the ImageNet-compatible dataset [1]. The in-

tuitive assumption behind the deletion metric is that remov-

ing the pixels/regions most relevant to a class will result in a

significant drop in classification scores [31]. We gradually

replace 3.6%(i.e. 224×8) pixels in the original image with

a highly blurred version each time according to the values

of the saliency map until no pixels are left. On the other

hand, the insertion metric gradually reinserts the content of

the original image starting with a blurred image, which pro-

duces images closer to the data manifold and has the ad-

vantage of mitigating the adversarial effects [41]. The in-

sertion test replaces 3.6% pixels of the blurred image with

the original one until the image is well recovered. We cal-

culate the area under the curve (AUC) of the classification

score after SoftMax as a quantitative indicator. Besides, we

provide the overall score to comprehensively evaluate the

deletion and insertion results, which can be calculated by

AUC(insertion)−AUC(deletion).
As the average results illustrated in Tab. 2, our method

outperforms other methods for the insertion metric and
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Figure 3: Sanity check results by cascade randomization. Both visual results (a) and SSIM (b) suggest that our explanations

change significantly when the model parameters are randomised.

overall score, while is comparable to other methods for

the deletion metric (with blur). The propagation-based ap-

proach produces more dispersed saliency maps so that im-

portant isolated pixels can be located more accurately in

deletion experiments.

4.5. Computation Costs Analysis
We calculate the average running time on 1000 images in

ImageNet-compatible dataset[1] for ResNet50 and VGG19

to quantify the time complexity in table 3. The best records

are marked in bold. CCE takes five times as long as CE

does, because CCE calculates 10 samples for each input,

while the contrastive-based method CE[24] calculates two

saliency maps for each input. The counterfactual-based

PPE[2] takes twice the time of CCE, which has much lower

computational efficiency than CCE. Please refer to the ap-

pendix for the visualization results of multiple objects.

Method GBP RISE GCAM+ SCAM FullG CE PPE SCOUT CCE

Time(s) 0.81 39.45 0.09 5.57 4.31 0.93 7.21 16.17 4.17

Table 3: Average result on ResNet50 and VGG19.

4.6. Qualitative Comparison

We qualitatively compare the saliency maps produced

by recent SOTA methods. As shown in Fig. 4, the re-

sults generated by CCE are more precise than that of

perturbation-based and activation-based methods. In addi-

tion, the saliency map from CCE is smoother and contains

less noise compared with propagation-based methods.

4.6.1 Explanations for P-contrast Question

The visual answers to “Why P, rather than Q?” from dif-

ferent classes are provided in Fig. 5. Each row represents

the explanations for two different Q-classes for one image.

First, we show the original image and its respective Grad-

CAM [32] explanation. For target class Q, we first visu-

alize a representative image of it, and afterward show the

positive and negative saliency maps corresponding to class

Q. Note that the network is not trained or generates expla-

nations based on these representative images, and the ex-

IntegrateGrad RISE EPGuidedBP

Heatmap
with Image

Raw 
Heatmap

CCEGradCAM GradCAM++ ScoreCAM

Heatmap
with Image

Raw 
Heatmap

Figure 4: Qualitative Comparison. The heatmap from CCE

contains less noise than propagation-based methods and is

more compelling than perturbation-based and activation-

based methods.

Why impala, rather than hartebeest? 

Impala

Why impala?

Hartebeest CCE Positive CCE NegativeGradCAM

Why flamingo, rather than spoonbill? 

Flamingo

Why flamingo?

Spoonbill CCE Positive CCE NegativeGradCAM
Why hartebeest?

GradCAM

Why spoonbill?

GradCAM

Original Image Representative

Original Image Representative

Figure 5: Counterfactual Contrastive explanations (CCE)

for P-contrast Questions.

planations are based on the network’s conception of class P

and class Q.

The counterfactual contrastive explanations provide a

human interpretable insight into the decisions of neural net-

works. For instance, the first row of Fig. 5 are explanations

for “Why flamingo, rather than spoonbill? ”. The Grad-

CAM explanations for flamingo and spoonbill are quite
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Why ostrich, rather than bustard? Original Sample Why ostrich?

Representative 
Sample

CCE Positive CCE NegativeGradCAM
Why bustard?

GradCAM

Why bustard, rather than ostrich? 

CCE Positive CCE Negative

Adversarial Example
Label: Ostrich

Label: Bustard

Label: Bustard

Figure 6: Counterfactual Contrastive explanations (CCE)

for O-contrast Questions.

similar, offering little information. However, for CCE, the

negative saliency map clearly points out the head regions

are mostly different, while the positive saliency map em-

phasizes the similarity of bodies. The second row of Fig. 5

shows explanations for “Why impala, rather than harte-

beest?”. According to the hartebeest’s representative image,

the two species have similar horns but distinctly different

faces. GradCAM explanations show few differences which

are ambiguous to humans, while we provide distinguishable

explanations. The negative saliency map indicates the sup-

pressed features are concentrated on the face, while the pos-

itive saliency map which emphasizes the promoted features

is concentrated on the area of the horns.

4.6.2 Explanations for O-contrast Question

In this section, we conduct the PGD attack on image x to

generate adversarial example x′ and form the O-contrast

question “Why is image x labeled as class P, while image x′

is labeled as class Q?”. The visual answers to this question

from GradCAM and CCE are provided in Fig 6.

The first column presents a representative image of a

bustard, the same class as the adversarial example, and

the second column shows the pristine image of an ostrich

along with the adversarial example. The following columns

present the GradCAM and contrastive explanations respec-

tively. It is hard to capture the differences between two

GradCAM explanations, for they both highlight the body

regions. However, CCE is totally different for the two im-

ages. In the contrastive explanations for why the image x
is not a bustard, the negative map highlights the neck while

the positive map emphasizes the thighs. In contrast, the ex-

planations for why the image x′ is not an ostrich point out

that features corresponding to the head and body are crucial

for a bustard, while the neck is of less importance. Hence,

contrastive explanations provide additional context and in-

formation that is not available from sole explanations.

4.7. User Study

User study has been used to evaluate explanations in

many researches. For instance, GradCAM[32] conducted

(a) Per-user Result. (b) Per-picture Result.

Figure 7: User study results comparing CCE to I-GOS and

GradCam. User rated from 1 to 5, the larger the better.

Dashed red lines in the box plots denote mean values.

a user study to evaluate faithfulness and user trust on their

saliency maps, and by showing explanations to the partic-

ipants. We conducted a user study to evaluate the effec-

tiveness of our proposed CCE visualization. For compar-

ison, we choose two typical methods from gradient-based

and CAM-based explanation. All images were randomly

chosen.

We recruited 100 participants comprising of graduate

and undergraduate students in engineering students at our

university (65 males, 35 females, age: 18-30 years) and they

were compensated based on the local-level minimum wage.

They were first shown a tutorial informing them about the

basic of image classification and saliency map explanations.

Then they were directed to the task that involved answer-

ing 10 sets of questions of images from ImageNet. Each

question set composed of two sections. In the first sec-

tion, participants were shown the image with its possible

classes, from which participants selected classes in which

they guessed the image might be classified by the model. In

the second section, the participants were shown the results

of the model and then evaluated and ranked three types of

saliency maps explaining the result from I-GOS, GradCAM

and CCE, based on the degree to which the saliency map

was able to convince them of the model’s result. They were

also asked to provide a confidence rating about how sure

they were about their response. Participants rated the con-

fidence in their answer or their understanding of the model

on a 5-point Likert scale [21] (1: very poor, 2: poor, 3: fair,

4: good, 5: very good) allowing for degrees of opinion to be

measured. At the end of all tests, participants directly eval-

uated the ability of the contrasting explanation compared to

the single explanation, regarding the ability to increase the

confidence of the model. Please refer to the appendix for

the picture of user experiment interface.

For statistical analysis, we report the mean accuracy and

standard deviation. Fig 7 shows the results comparing the

metrics across the three methods. Fig 7(a) indicates that

participants had the highest confidence in the model when

they were provided with CCE explanations (Mean=4.343,

SD=0.6837) than when they were provided with I-GOS
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(Mean=2.927, SD=0.8359) or GradCAM (Mean=4.022,

SD=0.4901) explanations. The differences between CCE

and each of the two other methods are statistically signifi-

cant (p < 0.0001 in Mann-Whitney U tests for both). In the

final evaluation question, 92% of participants reported that

the contrastive explanation improved the confidence of the

model, with an average rating of 4.29.

5. Conclusion and Future Work
In this work, we proposed a unified framework i.e.,

Counterfactual Contrastive Explanations (CCE), to con-

trastively explain three types of causal questions for neural

networks: “Why P”, P-contrast, and O-contrast questions.

We introduce a content-aware counterfactual perturbing al-

gorithm to generate contrastive examples, which is a reuse

of original image without need for extra data in other meth-

ods. Furthermore, we present a positive-negative saliency

scheme to provide visual contrastive explanations by com-

paring original and counterfactual examples. Our contrast-

ing solution achieves a more detailed explanation for ad-

versarial example. Both qualitative and quantitative exper-

iments, including user study, show the outstanding perfor-

mance of the proposed CCE explanation methods.

Although our work is a step towards solving causal prob-

lems, there are still some limitations in our work. Our

framework can be easily applied to other saliency-based

schemes, however, currently our implementation is an ac-

tivation based method. A detailed study of extensibility of

our framework to other explanation schemes is one of our

future research direction.
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