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Figure 1: We propose a method to generate 3D birds by transferring both the geometric and textural style of target image to
source. The left and right pictures show the 3D birds between populations of the same and different species, respectively.

Abstract

In this paper, we propose a novel method for single-view
3D style transfer that generates a unique 3D object with
both shape and texture transfer. Our focus lies primarily
on birds, a popular subject in 3D reconstruction, for which
no existing single-view 3D transfer methods have been de-
veloped. The method we propose seeks to generate a 3D
mesh shape and texture of a bird from two single-view im-
ages. To achieve this, we introduce a novel shape trans-
fer generator that comprises a dual residual gated network
(DRGNet), and a multi-layer perceptron (MLP). DRGNet
extracts the features of source and target images using a
shared coordinate gate unit, while the MLP generates spa-
tial coordinates for building a 3D mesh. We also intro-
duce a semantic UV texture transfer module that imple-
ments textural style transfer using semantic UV segmen-
tation, which ensures consistency in the semantic mean-
ing of the transferred regions. This module can be widely
adapted to many existing approaches. Finally, our method
constructs a novel 3D bird using a differentiable renderer.
Experimental results on the CUB dataset verify that our
method achieves state-of-the-art performance on the single-
view 3D style transfer task. Code is available at https:
//github.com/wrk226/creative_birds.

1. Introduction
Neural image style transfer has received increasing at-

tention in computer vision communities due to its remark-

able success in many automatic creations. These applica-
tions mainly belong to a 2D style transfer, which transfers
the artistic style of one reference image to another content
image. Recently, it is extended to transfer the shape and tex-
ture style of one 3D object to another for editing 3D content
in augmented reality and virtual reality [41]. However, this
extension needs to acquire the 3D information on objects
which suffers from the significant problem of being ardu-
ous, high-cost, and time-consuming. In contrast, taking a
single-view object image is easier and cheaper than 3D data
as cameras (e.g., mobile phones) are used widely in every-
day life. Therefore, we address a new task of generating a
3D object with novel shape and texture by transferring one
single-view object image to another, instead of acquiring
3D input information. We refer to this task as a single-view
3D style transfer.

Prior works have primarily handled either 3D style trans-
fer or single-view 3D reconstruction but have not simulta-
neously considered both for the aforementioned task. The
former heavily depends on the 3D information of the object
as an input, which is often expensive and time-consuming.
For example, 3DStyleNet [41] requires training on a large
dataset of 3D shapes, while Neural Renderer [20] transfers
the style of an image onto a 3D mesh. In addition, 3D scene
stylization [12, 27] generates stylized novel view synthesis
from multiple RGB images given an arbitrary style. The lat-
ter approach can easily implement 3D object reconstruction
using single-view images. Classical methods predict the re-
constructed information of a 3D object from the single-view
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images [18, 10, 19, 39, 11]. Specifically, category-Specific
mesh reconstruction (CMR) [18] learns to recover the 3D
mesh shape, texture, and camera pose of an object from
the single images of one object category. Following CMR,
unsupervised mesh reconstruction (UMR) [22] uses a self-
supervision with semantic part consistency to predict a 3D
object. As UMR does not require 3D information, a union
between the two approaches becomes a viable strategy to
tackle the single-view 3D style transfer task.

In this paper, we primarily focus on the novel 3D
bird generation as it is a popular example [18, 2, 38, 22]
in single-view 3D reconstruction, especially UMR [22].
Specifically, given a pair of single-view source and target
bird images within and between species, we explore plausi-
ble 3D bird creation by transferring the geometric and tex-
tural styles of the target bird to the source, as shown in Fig.
2. First, we employ the reconstruction network in UMR
[22] as an encoder to output the shape features, UV textures,
and camera poses of the target and source bird images, re-
spectively. Second, we propose a shape transfer genera-
tor for implementing the geometric transfer which consists
of a dual residual gated network (DRGNet), a scale factor,
and a multi-layer perceptron (MLP). DRGNet is designed
with a shared coordinate gate unit to select both the target
and source shape features, separately cascading single-layer
networks and incorporating residual connections into their
networks in Fig. 3. The scale factor controls the degree of
the transformation from the source to the target. MLP gen-
erates the spatial coordinates necessary for building a 3D
mesh. Third, we introduce a semantic UV texture transfer
that exploits switched gates to respectively control whether
the part textural transfer or not using AdaIN [13], LST [21]
and EFDM [44]. Finally, a novel 3D bird is constructed
by using a differentiable renderer [24] with the pose of the
source, the mesh, and the semantic stylized UV map. Over-
all, our contributions are summarized as follows:

• We propose a shape transfer generator consisting of a
dual residual gated network, a scale factor, and a multi-
layer perceptron for the geometric style transfer.

• We present a semantic UV transfer method to utilize
switched gates to respectively control whether the part
textural transfer or not by using AdaIN [13], LST [21],
and EFDM [44], and employing semantic UV segmen-
tation for the texture style transfer.

• To the best of our knowledge, we are the first to address
the single-view 3D style transfer task by combining the
shape and texture transfer to automatically create novel
3D birds from images in Fig. 1.

2. Related Work
Here, we mainly review some related tasks about the

style transfer from single-view images to 3D objects, in-

cluding single-view 3D reconstruction & deformation, and
2D & 3D style transfer.

Single-view 3D reconstruction & deformation.
Single-view 3D reconstruction aims to generate a 3D
model from a single 2D image. Early works [36, 28]
trained the model using the image and ground truth mesh
pairs, which are usually limited and expensive to obtain.
Based on the differentiable renderers [20, 24, 29], weakly
supervised methods become possible [39, 46, 33], but
typically require multi-view images or known camera
parameters. CMR [18] avoids these requirements by
constructing inter-class template mesh, but still needs to
be initialized by the landmark. UMR [22] avoids the need
for landmarks by maintaining semantic correspondence
between objects of the same class. Using UMR, our model
gains the capability to perform the 3D reconstruction.

The goal of 3D deformation is to deform the shape of the
target object to the source. Some early works tried to set
controllable points [32, 31] or cage [4] to deform the shape
of the object with manual control. To avoid human inter-
vention, some works tried to find the correspondence be-
tween source and target through building deformable cage
[37], encoding deformation process [34] and detecting 3D
keypoints [17]. We will compare our shape transfer module
with some of these works using the 3D reconstructed shape.

2D & 3D style transfer. 2D style transfer has been
extensively explored with many proposed methods such
asAdaIN [13], LST [21], Adaattn[25], InST [40], and
EFDM [45]. These methods can be easily extended to UV
texture maps as they are also 2D images. Following this
strategy, we explore a semantic UV texture transfer method
for the diversity of the stylized UV texture.

For 3D style transfer, early works [20, 23, 26] recon-
structed 3D meshes from single-view or multi-view images
and used differential rendering methods to transfer a style
image into the 3D mesh. 3DStyleNet [41] focuses on shape
transformation and still uses the texture of the source in
the transferred mesh. Other methods perform 2D-like style
transformation for point clouds [12, 27] or implicit fields
[14, 5, 42] without considering the style of the 3D shape.

In contrast, we study both 3D shape and UV texture
transfer from the target image to a source image for cre-
ating a 3D object. The work most similar to ours is 3D
portrait stylization [8], which produces a stylized 3D face
composed of geometric and texture style transfer. The geo-
metric transfer reconstructs a 3D geometry from the source
face image, utilizing facial landmarks translation between
the source and target face images to guide the deformation
of the dense 3D face geometry. The texture transfer per-
forms style transfer on the target texture by using a differ-
entiable renderer in a multi-view manner. In contrast to this
work, we design a shape transfer network to directly gener-
ate a novel 3D mesh and introduce a semantic UV texture
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Figure 2: The proposed single-view 3D style transfer pipeline employs a shared encoder from UMR [22] and a semantic UV
segmentation mask Useg from SCOPS [16], as well as a semantic texture transfer and shape transfer generator. The DRGNet
and Semantic Stylizer are shown in Figs. 3 and 4, respectively.

transfer method to obtain a new UV texture. More impor-
tantly, our work can handle the single-view 3D style transfer
task for novel 3D object generation.

3. Single-view 3D Style Transfer

In this section, we aim to extract 2D information from
two bird images and fuse these features to construct a novel
3D bird. To achieve this, we propose a single-view 3D style
transfer framework that automatically generates a plausible
3D bird, as illustrated in Fig. 2. In our method, we utilize
the pre-trained ResNet-18 from the UMR paper [22] as a
feature extractor to extract shape features. We also adopt
the texture predictor and camera predictor from UMR to
predict the corresponding textures and camera parameters.
In the following sections, we will refer to these modules
as the encoder in our network. Given a source bird image
S ∈ R256×256×3 and a target bird image T ∈ R256×256×3,
the encoder outputs the camera pose CS ∈ R7, CT ∈ R7,
shape features FS ∈ R512, FT ∈ R512 and the UV tex-
ture flows US ∈ R128×256×3, UT ∈ R128×256×3, respec-
tively. Concurrently, we construct a semantic UV segmen-
tation Useg ∈ {1, 2, 3, 4, 5}128×256 from UMR [22] using
SCOPS [16]. Following the encoder and the UV segmen-
tation, our framework mainly consists of a shape transfer
generator from FS to FT and a semantic texture transfer
from US to UT .

3.1. Shape Transfer from Images to 3D Mesh

Here, we aim to generate a novel 3D shape from source
and target bird images S and T . Using the previously de-
scribed encoder, we obtain their shape features FS and FT .
Specifically, we explore a shape transfer to generate a 3D
mesh by progressively adjusting and filtering the shape fea-
tures FS and FT . It includes a dual residual gated network
(DRGNet), a scale factor, and a multi-layer perceptron.
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Figure 3: The Dual Residual Gated Network consists of
stacked dual residual gate units that refine the input features
FS and FT , and outputs the refined features FL

S and FL
T .

Dual Residual Gated Network is designed by stacking
dual residual gate units as shown in Fig. 3. Following the
shape features FS and FT , we build dual source and tar-
get branches. Since these features are extracted from the
same encoder, their coordinates have potential correspon-
dences. So we design a gate shared in the dual branches to
select the features FS and FT in the same coordinates for
benefiting the shape transfer. Sequentially, we connect two
single-layer perceptrons in the dual branches, respectively.
Simultaneously, a residual connection [9] is added to allevi-
ate over-fitting, and gradient vanishing, and prevent distor-
tion caused by the unselected features. Beginning with the
initial inputs F 1

S = FS and F 1
T = FT , the l-th unit of dual

residual gate is described as:

gl = Sigmoid
(
W l · [F l

S , F
l
T ]
)
,

F l+1
S = F l

S + ReLU
(
BatchNorm

(
W l

S · [F l
S ⊙ gl]

))
,
(1)

F l+1
T = F l

T + ReLU
(
BatchNorm

(
W l

T · [F l
T ⊙ gl]

))
,

where W l ∈ R512×1024, W l
S ∈ R512×512 and W l

T ∈
R512×512 are the weights of the l-th unit, and Sigmoid,
Tanh, and ReLU are the activation functions, respectively.
To enhance the representation of specific individual traits,
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we stack the gated unit in Eq. (1) L times in our DRGNet
for refining the features progressively, and it outputs the fea-
tures FL

S ∈ R512 and FL
T ∈ R512. In this paper, the stacked

number is set to L = 8.
Scale Factor α is to control the proportion of the fea-

tures FL
S and FL

T during testing, while it is set to one during
training. Using the scale factor, the features are computed
by

[FS , FT ] = [(1− α) · FL
S , (1 + α) · FL

T ]. (2)

where −1 ≤ α ≤ 1, FS ∈ R512 and FT ∈ R512.
Multi-layer Perceptron is employed to fuse the features

FS and FT . It is a simple two-layer neural network with the
ReLU activation function, which is defined by

O = Wo · ReLU
(
W 2

f · ReLU
(
W 1

f · [FS , FT ]
))

, (3)

where W 1
f ∈ R512×1024, W 2

f ∈ R512×512, and Wo ∈
R3×372×512 are the network parameters, and O ∈ R3×372

is the output of the multi-layer perceptron.
Since most birds are symmetric, we only predict the left

half of the object in the output O, with a total of 372 ver-
tices. We then obtain an additional 270 coordinates of the
symmetrical vertices, as the remaining 102 vertices are on
the symmetrical plane. Finally, we use all of the 642 three-
dimensional coordinates to build the 3D mesh by employing
a differentiable renderer, i.e., soft rasterizer [24].

3.2. Semantic UV Texture Transfer

Following the shape transfer, our goal is to generate a
texture using the extracted source and target UV texture
flows US and UT obtained from the encoder. However,
birds often exhibit different textures or colors on differ-
ent body parts, such as sparrows that have a white belly,
a messy back pattern, and fixed head spots. Treating the
overall texture as a single style during transfer may result in
the transfer of local textures to incorrect semantic parts. To
address this issue, we propose a semantic UV texture trans-
fer method that performs semantic segmentation of the tex-
ture before transferring style to the corresponding semantic
parts. Our approach involves creating a semantic texture
using a semantic UV mask, which ensures consistency of
semantic distributions as shown in Fig. 4. It consists of
a semantic UV mask, a VGG encoder, a semantic stylizer,
and a decoder.

Semantic UV Mask Useg ∈ {1, 2, 3, 4, 5}128×256 is
generated by SCOPS [16]. To match the size of the
subsequent VGG feature map, Useg is downsampled, but
it is still referred to as Useg ∈ R64×128 for conve-
nience. It comprises five parts, including four semantic
UV parts: red head U1

seg ∈ {0, 1}64×128, green neck
U2
seg ∈ {0, 1}64×128, blue belly U3

seg ∈ {0, 1}64×128 and
yellow back U4

seg ∈ {0, 1}64×128, and one non-semantic

Transfer

Transfer

Transfer

Transfer

+

switch gate

Figure 4: The Semantic Stylizer uses the semantic UV mask
produced by SCOPS [16] to maintain consistent semantic
meaning of the transferred regions during style transfer.

part U5
seg ∈ {0, 1}64×128 to preserve the source UV tex-

ture. Each element ui
jk in U i

seg is defined as follows:

ui
jk =

{
1, if ujk = i,

0, otherwise,
(4)

where 1 ≤ i ≤ 5, ujk is the element of the UV mask Useg .
VGG Encoder [30] is used to extract the feature of the

UV texture, which has 512 channel maps of size 64× 128.
Given the source and target UV texture flows US and UT ,
the encoder outputs the features VS ∈ R512×64×128 and
VT ∈ R512×64×128, respectively.

Semantic Stylizer is introduced to incorporate the se-
mantic UV mask, represented as Useg , into existing UV
texture transformation methods for enhanced stylization.
Specifically, we focus on the instance normalization ap-
proach, which aligns the channel-wise mean and variance
of the masked source feature VS with those of the corre-
sponding masked target feature VT , without requiring ad-
ditional parameters. We extend this approach to various
methods such as AdaIN [13], linear style transfer (LST)
[21] and EFDM [44]. To handle the five semantic parts, se-
mantic AdaIN (SAdaIN) is computed by uniting these cor-
responding AdaIN feature matrix indexed by Useg , that is,
SA (VS , VT , Useg) =

∑5
i=1 SAi

(
V i
S , V

i
T , U

i
seg

)
:

SAi =

σ(V i
T )

V i
S ⊖ µ(V i

S)

σ(V i
S)

+ µ(V i
T ), if i ̸= 5,

V 5
S , if i = 5,

(5)

where V i
S = VS ⊙ U

i

seg , V i
T = VT ⊙ U

i

seg , U
i

seg is a bi-
nary matrix to repeat the index matrix U i

seg 512 times and
reshape it to 512 × 64 × 128, ⊙ is an element-wise mul-
tiplication, ⊖, σ and µ are the subtraction, variance, and
mean computations only depend on the index binary ma-
trix U

i

seg . Here, SA5 = V 5
S that means SAdaIN holds the
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source texture for the non-semantic part. Clearly, these local
statistics are respectively computed across spatially masked
locations, are merged into a new feature SA.

Similar to SAdaIN, semantic LST (SLST) is defined as
SL (VS , VT , Useg) =

∑5
i=1 SLi

(
V i
S , V

i
T , U

i
seg

)
:

SLi =

{(
cov(V i

S)cov(V i
T )VS

)
⊙ U

i

seg, if i ̸= 5,

V 5
S , if i = 5,

(6)

where cov(V i
S) = V i

S(V
i
S)

T is the centered covariance of
V i
S .

In addition, we further extend to a histogram-based style
transfer method, i.e., Exact Histogram Matching (EHM)
[6]. Similarly, semantic EFDM (SEFDM) is defined as
SE (VS , VT , Useg) =

∑5
i=1 SEi

(
V i
S , V

i
T , U

i
seg

)
:

SLi =

{
EHM

(
V i
S , V

i
T

)
⊙ U

i

seg, if i ̸= 5,

V 5
S , if i = 5,

(7)

To increase the diversity of the texture, we also design a
switch gate (SG) to stochastically exchange the part source
feature V i

S and the part target feature V i
T in both the Eqs.

(5) and (7).
Decoder is identical to the decoder of AdaIN [13] , LST

[21] and EFDM [44] for our SAdaIN, SLST and SEFDM,
respectively.

3.3. Training Loss

Our training loss is divided into two parts: shape transfer
and texture transfer. The former mainly includes single-
view 3D shape reconstruction with mask and perceptual loss
and shape transfer with 3D key points loss. The latter part
consists of traditional style transfer with style and content
loss. These two parts are trained separately. The shared
encoder and VGG-19 are pre-trained using UMR [22] and
[30], respectively. Given the source and target bird images
S and T , the shared encoder outputs the shape features FS ,
FT , and the UV maps US , UT respectively.

Shape Transfer. During source shape reconstruction,
the model uses only the source shape feature FS . However,
our model requires both shape features (FS and FT ). Thus,
we set both shape features to FS during reconstruction, and
it outputs the result OS . Similarly, they are set to FT for the
target reconstruction and it outputs OT . Following UMR
[22], the mask and perceptual losses are introduced as fol-
lows.

Mask Loss aims to compute the negative IoU [19] be-
tween the ground truth instance mask M and the predictive
mask M , which is produced by using [24] to render O based
on the camera pose predicted by the shared encoder [22].
Considering the source and target masks, it can be defined
as:

Lmask = Lm(MS ,MS) + Lm(MT ,MT ), (8)

where Lm(M,M) = 1− ∥M⊙M∥1

∥M+M−M⊙M∥1
.

Perceptual Loss calculates the perceptual distance [43]
between the input image I and the predictive image I pro-
duced by its UV map using the method [22]. Considering
the source and target images S and T , it is described as:

Lper = Lp(S, S) + Lp(T, T ), (9)

where Lp(I, I) = ∥VGG(I) − VGG(I)∥2. This loss can
improve the visual quality of texture by capturing its details.

3D Keypoints Loss is, more importantly, proposed to im-
plement the shape transfer between source and target. The
3D key points are obtained by detecting the 2D key points
[7] from an image, determining their corresponding vertices
on the reconstructed 3D shape using the predicted UV tex-
ture, and projecting them onto the symmetry plane. Since
the symmetry plane is identical for all output 3D models,
we can calculate the distance between key points based on
their projections. This loss is defined as the ℓ2 distances of
{pi, piS , piT }Ni=1, which are the 3D keypoints of the trans-
ferred, source, and target shapes. It is calculated by

Lkey =
1

2N

N∑
i=1

(
∥pi − piS∥2 + λ∥pi − piT ∥2

)
, (10)

where N is the number of 3D keypoints, λ is a balance pa-
rameter, and in this paper we set N = 15 and λ = 1. In
summary, the overall objective for shape transformation is

Lshape = Lmask + Lper + Lkey. (11)

Texture Transfer. We extend AdaIN [13], LST [21],
and EFDM [44] into SAdaIN, SLST, and SEFDM respec-
tively on the UV maps for the texture transfer. We utilize
their style loss Lstyle and content loss Lcontent as our tex-
ture transfer loss Ltexture = Lstyle + Lcontent on the UV
textures US and UT .

4. Experiments
In this section, we conduct extensive experiments to

evaluate the transfer ability of birds across populations of
the same species and between species. More results are pro-
vided in supplementary materials.

Datasets. Our method is validated on the CUB-200-
2011 dataset [35]. The dataset provides the bounding boxes
and instance masks for each bird, and we obtain seman-
tic segmentation using SCOPS [16]. Based on the pro-
vided bounding boxes, each image is cropped and resized to
256x256 to form one training sample and randomly flipped
with a probability of 0.5.

Training. Our training schedule is divided into two steps
due to the inclusion of texture transfer and shape transfer
modules in our model. We first train the shape transfer net-
work using the source and target images. Then, we use the
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(a) Source (b) Recon_s (f) Ours(c) NC (d) DSN (g) Recon_t (h) Target(e) KPD (f) NT

Figure 5: Visual comparisons on shapes using 3D deformation methods (e.g., NC [37], DSN [34], KPD [17] and NT [15]).
Both the source and target birds in the row 1-3 are from the same species, while they become from different species in the row
4-6. ”Recon s” and ”Recon t” represent the reconstruction of the source and the target respectively. Our method effectively
achieves novel shape creation from these reconstructions and maintains reasonability.

UV textures produced by the encoder for the source and tar-
get to train the texture transfer network. In our experiment,
these two steps are trained for 100k/80k iterations with an
8/8 batch size. We use Adam optimizer with a learning rate
of 1e-4/initial 1e-4 and decay by 0.9995 per iteration. On a
single GTX 2080ti GPU, training takes about 3/30 hours.

4.1. Main Results

To show the transfer capacity of our method for 3D bird
creation, we compare with four shape deformation methods
(i.e., NC [37], DSN [34], KPD [17] and NT [15]) and three
texture style transformation methods (i.e., AdaIN [13], LST
[21] and EFDM [44]).

Visual comparisons. We validate the effectiveness of
our model from two aspects: shape and texture transfer.

Shape Transfer. Our work is not directly comparable
to the 3D style transfer methods, even those involving 3D
portrait stylization [8] as they focus only on the face. For
potential comparisons, we initially use the UMR to recon-
struct the 3D models and then compare them with the shape
deformation methods (e.g., NC, DSN, KPD, and NT). Fig.
5 showcases the results of the shape transformation. We

observe that our method achieves a reasonable shape trans-
formation, better matching the characteristics of the source
and target. It demonstrates that when the shape difference
between the source and target objects from different species
is large, comparison methods can produce unreasonable dis-
tortions. This is likely due to the semantic part being diffi-
cult to align. Conversely, our method learns to reconstruct
the 3D model to prevent shape distortion and transfer their
shapes for novel shape generation simultaneously.

Texture Transfer. Fig. 6 shows the results of the style
transfer algorithms (e.g., AdaIN, LST, and EFDM), after
utilizing the modules of semantic transfer. Fig. 7 shows
the result after adding different switch gates. Comparing
Fig. 6 columns (c) and (d), we see that semantic transfer
improves the effect of style transfer on each semantic part
for all algorithms because the semantic mask prevents influ-
ence between different semantic parts. Furthermore, in Fig.
7 switch gate further enhances the diversity of results based
on the semantic mask, making our transfer more consistent
with natural evolutionary laws.

Comparison with real hybrid birds. To further validate
the effectiveness of our model, we simulate the morpholog-
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(a) Source (c) Baseline (e) Target(d) +M

A
d

aI
N

LS
T

EF
D

M

(b) Recon_s (h) Recon_t

LS
T

(a) Source (c) Baseline (e) Target(d) +M(b) Recon_s (h) Recon_t

Figure 6: Visual comparisons on textures using style transfer methods (e.g., AdaIN [13], LST [21] and EFDM [44]) associate
with our method (e.g., semantic UV mask (+M)). Both the source and target birds in the left picture are from the same
species, while they become from the different species in the right picture. We can see that a semantic UV mask can increase
the diversity of the texture compared to the original methods. More results are shown in Fig. 7.

(a) Source (c) +SG[1,1,0,1] (f) Target(b) Baseline (d) +SG[0,1,0,0] (e) +SG[1,0,1,1]

Figure 7: Visual comparisons with different switch gates
(+SG), the subscript are the switch signals for each seman-
tic part (i.e. head, neck, belly, and back). It is obvious that
the switch gate further increases the diversity of the trans-
formed texture.

Method NC[37] DSN[34] KPD[17] NT[15] Ours
Mask IoU↑ 0.6670 0.6937 0.5699 0.5209 0.7316

Table 1: Quantitative evaluations of shape transfer methods.

ical evolution of birds within and across species for biolog-
ical research. We gather real hybrid birds and their parent
species from the Internet [3, 1]. Our model simulates hy-
bridization using the parent species as the source and target
input. As shown in Fig. 8, the synthesized results are very
similar to the real hybrid examples. It’s important to note
that while our results are still far from the ultimate goal of
biologists, this is a meaningful attempt to extend the style
transfer into animal morphological evolution.

Qualitative Results. We use mask IoU to assess shape
transformation quality, comparing the Soft Rasterizer [24]
output to ground truth masks of source and target. Our
results outperform compared methods in preserving shape
outline of both source and target birds (Table 1). Mask IoU
within 0.7 to 0.95 is reasonable, as smaller values indicate
loss of shape information, while higher values suggest lack
of diversity. In addition, our goal with texture transforma-
tion is to improve the textural diversity of species, and we
have yet to find a suitable metric to measure this.

Source recon Ours Target recon

Source Real hybrid Target

Source recon Ours Target recon

Source Real hybrid Target

Figure 8: Visual comparisons to the real hybrid birds.

User Study We conducted a user study to better as-
sess our model’s performance compared to existing mod-
els. This study consisted of three main components: shape
transformation, texture transformation, and realism judg-
ment, which included 25 questions in total. As a result,
we collected 102 questionnaire responses with a total of
2550 votes. Table 2 shows the number of votes received
for each option. In the shape transformation comparison,
52.5% of users prefer our results compared to 27.8% for
NC, 11.8% for DSN, 3.5% for KPD, and 4.3% for NT. In
the texture transformation comparison, 76.9% of users pre-
fer the results of SAdaIN over AdaIN, 71.2% prefer the re-
sults of SLST results over LST, and 64.1% prefer the results
of SEFDM results over EFDM. In the realism judgment,
73.7% of users think that our result is more realistic.

4.2. Ablation Study

Since the modules of semantic transfer and switch gate
have been compared in the previous subsections. Here we
conduct ablation experiments on DRGNet, 3D keypoints
loss Lkey and scale factor α, respectively.

Effect of DRGNet. We evaluate the importance of
DRGNet by replacing it with MLP. From Fig. 10, (e) ours
using DRGNet can restore more edge details than (c) w/o
DRGNet (that is MLP) because it helps in the coordina-
tion of shape features. Moreover, Fig. 11 also shows that
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Method
Texture Shape Overall

AdaIN[13] SAdaIN LT[21] SLT EFDM[44] SEFDM NC[37] DSN[34] KPD[17] NT[15] Ours Fake Real
Votes↑ 118 392 147 363 183 327 142 60 18 22 268 134 376

Table 2: Quantitative evaluations of user study.

TargetSource 𝛼 = −1 𝛼 = −0.66 𝛼 = −0.33 𝛼 = 0 𝛼 = 0.33 𝛼 = 0.66 𝛼 = 1

Figure 9: Transfer degree of the shape controlled by the scale factor α from −1 to 1.

(a) Source (d) Ours(b) w/o DRGNet ℒ𝑘𝑒𝑦 (e) Target(c) w/o

Figure 10: Shape ablation study of DRGNet and 3D key-
points loss Lkey using our SLST+SG as texture transforma-
tion method.

Source Target

M
I
o
U

M
I
o
U

Iter(1e-4) Iter(1e-4)

Figure 11: Masked IoU using DRGNet and MLP.

DRGNet has a higher masked IoU than the MLP.
Effect of 3D keypoints loss Lkey . We evaluate the ef-

fectiveness of Lkey by replacing it with masked IoU loss,
where the masks of the source and the target are used to con-
strain the result together. Then the results using the mask
IoU loss instead of Lkey are shown in Fig.10 (d) w/o Lkey ,
indicating significantly poorer outputs. The reason is that
when the shape difference between the source and target

(a) Source (b) Recon_s (c) Ours (d) Recon_t (e) Target

Figure 12: Two examples of failed cases.

object is large, their masks are more likely to have shape
conflicts, resulting in an averaged result.

Scale factor α. We use α to adjust the ratio between
source and target features from −1 to 1. Fig.9 demonstrates
that the scale parameter α effectively controls the presen-
tation of the source and target characteristics in the results.
When α = −1 or 1, the results are exactly the source or
target 3D reconstruction. When α = 0, the results are to
combine the half source with the half target. In addition,
we also conducted experiments on DRGNet with different
layers, which are included in the supplementary materials.

Limitation. In this section, we discuss the limitations of
our model. As we intend to perform style transformation on
2D images at a 3D level, the model needs to understand the
3D structure of the input image correctly. The model will
produce problematic results when it incorrectly perceives
the three-dimensional structure of the input image. Accord-
ing to Fig. 12, the model improperly treats the sky as part
of the bird, leading to a blue appearance. In the second row,
the incorrect reconstruction of the complex target directly
fails our style transfer algorithm.

5. Conclusion
In this paper, we proposed a style transfer method to au-

tomatically create novel 3D birds from single-view images.
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We obtain the transformed shape features by filtering and
coordinating the image features progressively and then uti-
lizing a semantic transfer module to enhance the expressive-
ness of semantic texture style and the diversity of evolution.
Experimental results on the CUB dataset demonstrate that
our method achieves state-of-the-art performance. Note that
this is the first meaningful try to extend the style transfer
into the novel 3D bird creations from the images.
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for triangle meshes. ACM Trans. Graph., 23(3):399–405,
2004. 2

[33] Jiaming Sun, Xi Chen, Qianqian Wang, Zhengqi Li, Hadar
Averbuch-Elor, Xiaowei Zhou, and Noah Snavely. Neural 3d
reconstruction in the wild. In SIGGRAPH, pages 1–9, 2022.
2

[34] Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas, Niloy J.
Mitra, and Leonidas J. Guibas. Deformsyncnet: Defor-
mation transfer via synchronized shape deformation spaces.
ACM Trans. Graph, 39(6):Article 262, 2020. 2, 6, 7, 8

[35] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-
longie. The caltech-ucsd birds-200-2011 dataset. Technical
Report CNS-TR-2011-001, California Institute of Technol-
ogy, 2011. 5

[36] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In ECCV, pages 52–67,
2018. 2

[37] Yifan Wang, Noam Aigerman, Vladimir G Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages for
detail-preserving 3d deformations. In CVPR, pages 75–83,
2020. 2, 6, 7, 8

[38] Yufu Wang, Nikos Kolotouros, Kostas Daniilidis, and Marc
Badger. Birds of a feather: Capturing avian shape models
from images. In CVPR, pages 14739–14749, 2021. 2

[39] Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi.
Unsupervised learning of probably symmetric deformable 3d
objects from images in the wild. In CVPR, pages 1–10, 2020.
2

[40] Jinchao Yang, Fei Guo, Shuo Chen, Jun Li, and Jian Yang.
Industrial style transfer with large-scale geometric warping
and content preservation. In CVPR, pages 7834–7843, 2022.
2

[41] Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis, and
Sanja Fidler. 3dstylenet: Creating 3d shapes with geometric
and texture style variations. In ICCV, pages 12456–12465,
2021. 1, 2

[42] Kai Zhang, Nick Kolkin, Sai Bi, Fujun Luan, Zexiang Xu,
Eli Shechtman, and Noah Snavely. Arf: Artistic radiance
fields. In ECCV, 2022. 2

[43] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, pages 586–595,
2018. 5

[44] Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei
Zhang. Exact feature distribution matching for arbitrary style
transfer and domain generalization. In CVPR, pages 8035–
8045, 2022. 2, 4, 5, 6, 7, 8

[45] Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei
Zhang. Exact feature distribution matching for arbitrary style
transfer and domain generalization. In CVPR, pages 8035–
8045, 2022. 2

[46] Zhenyu Zhang, Yanhao Ge, Renwang Chen, Ying Tai, Yan
Yan, Jian Yang, Chengjie Wang, Jilin Li, and Feiyue Huang.
Learning to aggregate and personalize 3d face from in-the-
wild photo collection. In CVPR, pages 14214–14224, 2021.
2

8784


