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Abstract

Diffusion models have shown remarkable success in vi-
sual synthesis, but have also raised concerns about potential
abuse for malicious purposes. In this paper, we seek to
build a detector for telling apart real images from diffusion-
generated images. We find that existing detectors struggle
to detect images generated by diffusion models, even if we
include generated images from a specific diffusion model
in their training data. To address this issue, we propose a
novel image representation called DIffusion Reconstruction
Error (DIRE), which measures the error between an input
image and its reconstruction counterpart by a pre-trained
diffusion model. We observe that diffusion-generated images
can be approximately reconstructed by a diffusion model
while real images cannot. It provides a hint that DIRE can
serve as a bridge to distinguish generated and real images.
DIRE provides an effective way to detect images generated
by most diffusion models, and it is general for detecting
generated images from unseen diffusion models and robust
to various perturbations. Furthermore, we establish a com-
prehensive diffusion-generated benchmark including images
generated by various diffusion models to evaluate the per-
formance of diffusion-generated image detectors. Extensive
experiments on our collected benchmark demonstrate that
DIRE exhibits superiority over previous generated-image
detectors. The code, models, and dataset are available at
https://github.com/ZhendongWang6/DIRE.

1. Introduction

Recently, Denoising Diffusion Probabilistic Mod-
els (DDPMs) [17, 41] have set up a new paradigm in image
generation due to their strong ability to generate high-quality
images. There arises plenty of studies [32, 10, 42, 23, 37]
exploring the improvement of the network architecture, ac-
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Figure 1: The DIRE representation of a real image and
four generated images from diffusion models: DDPM [17],
iDDPM [32], ADM [10], and PNDM [23], respectively. The
DIREs of real images tend to have larger values compared
to diffusion-generated images.

celeration of sampling, and so on. As users enjoy the strong
generation capability of diffusion models, there are concerns
about potential privacy problems. For example, diffusion
models may memorize individual images from their training
data and emit them at the generation stage [3, 52]. Moreover,
some attackers may develop new deepfake techniques based
on diffusion models. Therefore, it is an urgent demand for a
diffusion-generated image detector.

Our focus in this work is to develop a general diffusion-
generated image detector. We notice that there are various
detectors for detecting generated images available. Despite
the fact that most diffusion models employ CNNs as the
network, the generation processes between diffusion mod-
els and previous generators (e.g., GAN, VAE) are entirely
different, rendering previously generated image detectors in-
effective. A naive thought is to train a CNN binary classifier
on diffusion-generated and real images. However, we find
that such a naive scheme suffers limited generalization to
unseen diffusion-generated images.
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Figure 2: Illustration of the difference between a real
sample and a generated sample from the DIRE perspec-
tive. p,(x) represents the distribution of generated images
while p,(x) represents the distribution of real images. x,
and x, represent a generated sample and a real sample, re-
spectively. Using the inversion and reconstruction process
of DDIM [42], x, and x,. become x; and x/,, respectively.
After the reconstruction, x/. is actually within the py(x),
which leads to a noticeably different DIRE in real samples
compared to generated samples.

In this paper, we propose a novel image representation,
called DIffusion REconstruction Error (DIRE), for detect-
ing diffusion-generated images. The hypothesis behind
DIRE is that images produced by diffusion processes can
be reconstructed more accurately by a pre-trained diffusion
model compared to real images. The diffusion reconstruc-
tion process involves two steps: (1) inverting the input image
x and mapping it to a noise vector xr in the noise space
N(0,1), and (2) reconstructing the image x’ from x using
a denoising process. The DIRE is calculated as the differ-
ence between x and x’. As a sample x, from the generated
distribution p,(x) and its reconstruction x;, belong to the
same distribution, the DIRE value for x, would be relatively
low. Conversely, the reconstruction of a real image x,. is
likely to differ significantly from itself, resulting in a high
amplitude in DIRE. This concept is depicted in Figure 2.

DIRE offers a reliable method for differentiating between
real and diffusion-generated images. By training a simple bi-
nary classifier based on DIRE, it becomes possible to detect
diffusion-generated images with ease. The DIRE is general
and flexible since it can generalize to images generated by
unseen diffusion models during inference time. It only as-
sumes the distinct reconstruction errors of real images and
generated ones as shown in Figure 1.

To evaluate the diffusion-generated image detectors, we
create a comprehensive diffusion-generated dataset, the Dif-
fusionForensics dataset, including three-domain images (
LSUN-Bedroom [48], ImageNet [9], and CelebA-HQ [19])
generated by eleven different diffusion models. Diffusion-
Forensics involves unconditional, conditional, and text-to-
image diffusion generation models.

Extensive experiments show that the DIRE representa-
tion significantly enhances generalization ability. We show

that our framework achieves a remarkably high detection
accuracy and average precision on generated images from
unseen diffusion models, as well as robustness to various
perturbations. In comparison with existing generated image
detectors, our framework largely exceeds the competitive
state-of-the-art methods.

Our main contributions are three-fold as follows.

* We propose a novel image representation called DIRE
for detecting diffusion-generated images.

* We set up a new dataset, DiffusionForensics, for bench-
marking the diffusion-generated image detectors.

» Extensive experiments demonstrate that the proposed
DIRE sets a state-of-the-art performance in diffusion-
generated detection.

2. Related Work

Since our focus is to detect diffusion-generated images
and the proposed DIRE representation is based on the recon-
struction error by a pre-trained diffusion model, we briefly
introduce recent diffusion models in image generation and
generalizable generated image detection in this section.

2.1. Diffusion Models for Image Generation

Inspired by nonequilibrium thermodynamics [41], Ho et
al. [17] propose a new generation paradigm, denoising dif-
fusion probabilistic models (DDPMs), which achieves a
competitive performance compared to PGGAN [19] on 256
x 256 LSUN [48]. Since then, more and more researchers
turn their attention to diffusion models for improving the
architectures [10, 37], accelerating sampling speed [32, 42,
23, 24], exploring downstream tasks [16, 31, 1, 33], and efc.
Nichol et al. [32] find that learning variances of the reverse
process in DDPMs can contribute to an order of magnitude
fewer sampling steps. Song et al. [42] generalize DDPMs
via a class of non-Markovian diffusion processes into denois-
ing diffusion implicit models (DDIMs), which leads to more
high-quality samples with fewer sampling steps. A later
work ADM [10] finds a much more effective architecture
and further achieves a state-of-the-art performance compared
to other generative models with classifier guidance. From
the perspective that DDPMs can be treated as solving differ-
ential equations on manifolds, Liu et al. [23] propose pseudo
numerical methods for diffusion models (PNDMs), which
further improves sampling efficiency and generation quality.

Besides unconditional image generation, there are also
plenty of text-to-image generation works based on diffu-
sion models [37, 14, 35, 39, 5, 38]. Among them, VQ-
Diffusion [14] is based on a VQ-VAE [45] and models the
latent space by a conditional variant of DDPMs. Another typ-
ical work is LDM [37] that conditions the diffusion models
on the input by cross-attention mechanism, and proposes
latent diffusion models by introducing latent space [11].
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Recent popular Stable Diffusion vl and v2 are based on
LDM [37] and further improved to achieve a surprising gen-
eration performance.

2.2. Generalizable Generated Image Detection

Generated image detection has been widely explored over
the past years. Earlier researchers focus on detecting gener-
ated images leveraging hand-crafted features, such as color
cues [28], saturation cues [29], blending artifacts [22], co-
occurrence features [30]. Marra et al. [26] study several
classical deep CNN classifiers [18, 43, 7] to detect images
generated by image-to-image translation networks. How-
ever, they do not consider the generalization capability to
unseen generation models. In another work, Wang et al. [47]
notice this challenge and claim that training a simple clas-
sifier on ProGAN-generated images can generalize to other
unseen GAN-based generated images well. However, their
strong generalization capability relies on their large-scale
training and 20 different models each trained on a different
LSUN [48] object category.

Besides detection by spatial artifacts, there are also
frequency-based methods [12, 50]. Frank et al. [12]
present that in the frequency domain, GAN-generated im-
ages are more likely to expose severe artifacts mainly caused
by upsampling operations in previous GAN architectures.
Zhang et al. [50] propose a GAN simulator, AutoGAN, to
simulate the artifacts produced by standard GAN pipelines.
Then they train a detector on the spectrum input on the
synthesized images. It can generalize to unseen generation
models to some extent. Marra et al. [27] and Yu et al. [49]
suggest detecting generated images by fingerprints that are
often produced during GAN generation. A recent work [25]
proposes a detector based on an ensemble of EfficientNet-
B4 [44] to alleviate the generalization problem.

However, with the boosting development of diffusion
models, a general and robust detector for detecting im-
ages generated by diffusion models has not been explored.
We note that some recent works also notice the diffusion-
generated image detection problem [36, 8]. Different from
them, the focus of our work is exploring a generalizable
detector for wide-range diffusion models.

3. Method

In this paper, we present a novel representation named
DIffusion Reconstruction Error (DIRE) for diffusion-
generated image detection. DIRE measures the error be-
tween an input image and its reconstruction by a pre-trained
diffusion model. We observe that diffusion-generated images
can be more approximately reconstructed by a pre-trained
diffusion model compared to real images. Based on this, the
DIRE provides discriminative properties for distinguishing
diffusion-generated images from real images. The rest of
this section is organized as follows. We begin with reviewing

DDPMs, and the inversion and reconstruction process of the
DDIM [42]. Then we present details of DIRE for diffusion-
generated image detection. Finally, we introduce a new
dataset, i.e., DiffusionForensics, for evaluating diffusion-
generated image detectors.

3.1. Preliminaries

Denoising Diffusion Probabilistic Models (DDPMs). Dif-
fusion models are first proposed in [41] inspired by non-
equilibrium thermodynamics, and achieve strong perfor-
mance in image generation [17, 32, 10, 37]. They define
a Markov chain of diffusion steps that slowly add Gaussian
noise to data until degenerating it into isotropic Gaussian
distribution (forward process), and then learn to reverse the
diffusion process to generate samples from the noise (reverse
process). The Markov chain in the forward process is defined
as:

axabxi) = N [ o2xen, (L= 200D, ()

in which x; is the noisy image at the ¢-th step and vy, . . ., ap
is a predefined schedule, with 7" denotes the total steps.

An important property brought by the Markov chain is
that we can obtain x; from x directly via:

q(xt|x0) = N (%45 v/arxo, (1 — ay)I). 2

The reverse process in [17] is also defined as a Markov chain:

po(Xi—1[xt) = N(Xs—15 (X, 1), B (%1, 1)) (3)
Diffusion models use a network pp(x:—1|x:) to fit the real
distribution ¢(x;_1|x¢). The overall simplified optimization
target is a sampling and denoising process as follows,

Lsimple<9) = Et,xme |:H€ - 60(\/@)(0 + v 1-— QL €, t)H2i| )
“)

where € ~ N (0,1).

Denoising Diffusion Implicit Models (DDIMs).

DDIM [42] proposes a new deterministic method for

accelerating the iterative process without the Markov

hypothesis. The new reverse process in DDIM is as follows,

i = ey (XY Gl )
&)

Jar

+1/1 — a1 — 02 - €g(x¢, t) + o€y

If o = 0, the reverse process becomes deterministic (recon-
struction process), in which one noise sample determines one
generated image. Furthermore when 7' is large enough (e.g.,
T = 1000), Eqn. (5) can be seen as Euler integration for
solving ordinary differential equations (ODEs):

Xi-ar _ Xt L—ane  [1-oy eo(x1,1)
VvV t—At VALY At Qi e
(6)
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Figure 3: Illustration of the process of computing DIRE
given an input image x(. The input image x is first gradu-
ally inverted into a noise image x7 by DDIM inversion [42],
and then is denoised step by step until getting a reconstruc-
tion x{,. DIRE is simply defined as the residual image got
from x¢ and x,.

Suppose 0 = v/1 — a/+/a, X = x/+/, the correspond-
ing ODE becomes:
X(t)

dx(t) = €g (mt> do(t). @

Then the inversion process(from x; to x;41) can be the
reversion of the reconstruction process:

Xt+1 Xt 1-— Ayl 1-— (673
Vi1 \/07t+ <\/ 41 V o ) €o(3xt,1).
This process is to obtain the corresponding noisy sample >(<8T)
for an input image x. However, it is very slow to invert or
sample step by step. To speed up the diffusion model sam-
pling, DDIM [42] permits us to sample a subset of S’ steps
Ti,...,Ts, so that the neighboring x; and x4 become x,

and %, ,, respectively, in Eqn. (8) and Eqn. (5).

3.2. DIRE

Due to the intrinsic differences between diffusion models
and previous generative models (i.e., GANs, Flow-based
models, VAEs), existing generated image detectors experi-
ence dramatic performance drops when facing images gen-
erated by diffusion models. To avoid the abuse of diffu-
sion models, it is urgent to develop a detector for diffusion-
generated image detection. A straightforward approach
would be to train a binary classifier using a dataset of both
real and diffusion-generated images. However, it is difficult
for such a method to guarantee generalization to diffusion
models that have not been previously encountered.

Our research takes note of the fact that images generated
by diffusion models are essentially sampled from the dis-
tribution of the diffusion generation space (p,(x)), while
real images are sampled from another distribution (p,-(x))
although it may be near to py(x) but not exactly the same.

Denoising #

Image Source Generator

Condition of images
real 42,000
ADM [10] 42,000
unconditional DDPM [17] 42,000
iDDPM [32] 42,000
LSUN PNDM (23] 42,000
-Bedroom [48] LDM [37] 42,000
SD-v1 [37] 42,000
SD-v2 [37] 42,000
text-to-image ~ VQ-Diffusion [14] 42,000
1F [39] 1,000
DALLE-2 [35] 500
Midjourney 100
real 50,000
conditional ADM [10] 50,000
ImageNet 9]~ i Sio-image ~ SD-vI [37] 50,000
real 42,000
SD-v2 [37] 42,000
CelebA-HQ [19] text-to-image §A[fi]E-2 [35] 13%%0
Midjourney 100

Table 1: Composition of the DiffusionForensics dataset.
It includes real images from LSUN-Bedroom [48] Ima-
geNet [9], CelebA-HQ [19] and generated images from pre-
trained diffusion models. According to the class of diffusion
models, the containing images are divided into three cate-
gories: unconditional, conditional, and text-to-image.

Our core motivation is that samples from the diffusion gen-
eration space p,(x) are more likely to be reconstructed by a
pre-trained diffusion model while real images cannot.

So the key idea of our work is to make use of the diffusion
model to detect diffusion-generated images. We find that
images generated by diffusion models are more likely to
be reconstructed by a pre-trained diffusion model. On the
other hand, due to the complex characteristics of real images,
real images can not be well constructed. As shown in Fig-
ure 1, the reconstruction error of real and diffusion-generated
images shows dramatically different properties.

Given an input image xg, we wish to judge whether it
is synthesized by diffusion models. Take a pre-trained dif-
fusion model €y(x¢,t). As shown in Figure 3, we apply
the DDIM [42] inversion process to gradually add Gaussian
noise into xg via Eqn. (8). After S steps, xo becomes a
point x7 in the isotropic Gaussian noise distribution. The
inversion process is to find the corresponding point in noisy
space, then the DDIM [42] generation process (Eqn. (5))
is employed to reconstruct the input image and produces
a recovered version xj. The differences between xg and
x(, help to distinguish real or generated. Then the DIRE is
defined as:

DIRE(x0) = |xo — R(I(x0))], )

where | - | denotes computing the absolute value, I(-) is a
series of the inversion process with Eqn. (8) and R(-) is a
series of the reconstruction process with Eqn. (5).
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Then for real images and diffusion-generated images,
we can get their DIRE representations, we train a binary
classifier to distinguish their DIREs by a simple binary cross-
entropy loss, which is formulated as follows,

N
L(y,y') ==Y (yilog(y}) + (1 —yi)log(1—y})), (10)
i=1
where IV is mini-batch size, y is the ground-truth label, and
y’ is the corresponding prediction by the detector. In the
inference stage, we first apply a diffusion model to recon-
struct the image and get the DIRE. Subsequently, we input
the DIRE into the binary classifier, which will then classify
the source image as either real or generated.

3.3. DiffusionForensics: A Dataset for Evaluating
Diffusion-Generated Image Detectors

To better evaluate the performance of diffusion-generated
detectors, we establish a dataset, DiffusionForensics, which
is comprised of images generated by various diffusion mod-
els for comprehensive experiments. Its composition is shown
in Table 1. The images can be roughly divided into three
classes by their source: LSUN-Bedroom [48], ImageNet [9],
and CelebA-HQ [19].

LSUN-Bedroom. We collect bedroom images generated by
11 diffusion models, in which four subset images (ADM [10],
DDPM [17], iDDPM [32], PNDM [23]) are generated by un-
conditional diffusion models and the other seven (LDM [37],
SD-v1 [37], SD-v2 [37], VQ-Diffusion [14], IF [39]',
DALLE-2 [35], and Midjourney’) are generated by text-
to-image diffusion models. The text prompt for all the text-
to-image generation is “A photo of bedroom”. The numbers
of real and generated images in each image domain are listed
in Table 1. Subsets containing 42,000 images are divided
into 40,000 for training, 1,000 for validation, and 1,000 for
testing. The remaining subsets (IF, DALLE-2, Midjourney)
are only used for testing.

ImageNet. We further collect images from ImageNet for
evaluating detectors when facing more universal image gen-
eration and cross-dataset evaluation. To be specific, we col-
lect images from a conditional diffusion model (ADM [10])
with class condition. Applying the pre-trained ADM
model [10], we generate 50,000 images in total (50 images
for each class in ImageNet), i.e., 40,000 for training, 5,000
for validation, and 5,000 for testing. And for text-to-image
diffusion generation, we employ SD-v1 [37] in which the
text prompt for generation is “A photo of {class}”’(1,000
classes from ImageNet [9]). The number and split of images
is the same as conditional ADM.

CelebA-HQ. Besides the bedroom and universal ImageNet
scenarios, one may be curious about face domain. We further

'Reproduced version of Imagen by DeepFloyd Lab at StabilityAl:
https://github.com/deep-floyd/IF
thtps://www.midjourney.com

collect 42,000 real images from CelebA-HQ [19]. And sam-
pling 42,000 face images using the pre-trained SD-v2 model
with the prompt “A professional photograph of face”. The
40,000/1,000/1,000 images in this SD-v2 subset are used as
the face-domain training/validation/testing dataset. Further,
we collect 1,000 IF images, 500 DALLE-2 images, and 100
Midjourney images only for face-domain evaluation.

The split of real images for training/validation/testing
is 40,000/1,000/1,000 when the number of real images is
42,000, and 40,000/5,000/5,000 when the number of real im-
ages is 50,000. Besides, all the data in the DiffusionForensics
dataset are triplet, i.e., source image, reconstructed image,
and corresponding DIRE image. In general, the proposed
DiffusionForensics dataset contains unconditional, condi-
tional, and text-to-image generated images, which is fertile
for evaluation from various aspects.

4. Experiment

In this section, we first introduce the experimental setups
and then provide extensive experimental results to demon-
strate the superiority of our approach.

4.1. Experimental Setup

Data pre-processing and augmentation. All the experi-
ments are conducted on our DiffusionForensics dataset. To
calculate DIRE for each image, we use the ADM [10] net-
work pre-trained on LSUN-Bedroom as the reconstruction
model, and the DDIM [42] inversion and reconstruction pro-
cess in which the number of diffusion steps S = 20 by
default. We employ ResNet-50 [15] as our forensics clas-
sifier. The size of most images (ADM [10], DDPM [17],
iDDPM [32], PNDM [23], VQ-Diffusion [14], LDM [37])
in the dataset is 256 x 256. For Stable Diffusion [37] v1
and v2, IF, DALLE-2, and Midjourney, the generated images
are resized into 256 x 256 with bicubic interpolation. Dur-
ing training, the images fed into the network are randomly
cropped with the size of 224 x 224 and horizontally flipped
with a probability of 0.5. During testing, the images are
center-cropped with the size of 224 x 224.

Evaluation metrics. Following previous generated-image
detection methods [47, 46, 51], we report accuracy (ACC)
and average precision (AP) in our experiments to evaluate
the detectors. The threshold for computing accuracy is set to
0.5 following [47].

Baselines. 1) CNNDetection [47] proposes a CNN-
generated image detection model that can be trained on one
CNN dataset and then generalized to other CNN-synthesized
images. 2) GANDetection [25] applies an ensemble of
EfficientNet-B4 [44] to increase the detection performance.
3) SBI [40] trains a general synthetic-image detector on im-
ages generated by blending pseudo source and target images
from single pristine images. 4) Patchforensics [4] employs
a patch-wise classifier which is claimed to be better than
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Method

Training Generation Recon.

Diffusion-generated bedroom images

Total

dataset model model ADM DDPM iDDPM PNDM SD-vl SD-v2 LDM vVQD IF DALLE-2  Mid. Avg.
CNNDet [47] LSUN  ProGAN - 50.1/63.4 56.7/74.6 50.1/77.6 50.3/82.9 50.2/70.9 50.8/80.4 50.1/60.2 50.1/70.6 51.3/79.7 68.4/78.9 90.8/11.1 56.3/68.2
GANDet [25] LSUN  ProGAN —  54.2/43.6 52.2/47.3 45.7/57.3 42.1/77.6 68.1/78.5 61.5/52.7 79.2/57.1 64.8/52.3 90.6/16.1 95.7/11.8 92.3/24.1 67.9/47.1
Patchfor [4] FF++  Multiple - 50.4/74.8 56.8/67.4 50.3/69.5 55.1/78.5 49.9/84.7 50.0/52.8 54.0/92.0 92.8/99.7 55.3/88.1 66.9/65.1 90.9/81.5 61.1/77.6
SBI [40] FF++  Multiple —  53.6/57.7 55.8/47.4 54.0/58.2 46.7/44.8 65.6/75.9 55.0/59.8 81.0/88.3 59.6/66.6 70.8/78.1 67.7/52.5 76.5/9.6 62.4/58.1
CNNDet* [47] LSUN-B. ADM - 100/100 83.7/99.5 100/100 71.2/98.6 77.4/85.8 85.9/98.4 98.9/100 72.9/97.2 99.8/100 90.9/95.1 92.4/52.0 88.5/93.3
Patchfor* [4] LSUN-B. ADM - 100/100 72.9/100 100/100 96.6/100 63.2/71.3 97.2/100 97.3/100 100/100 99.8/100 100/100 99.4/100 93.3/97.4
F3Net* [34] LSUN-B. ADM - 96.0/99.7 95.5/99.6 96.4/99.9 96.0/99.7 86.1/95.3 81.1/91.5 93.8/98.4 90.1/96.7 89.4/96.6 92.9/95.8 86.9/23.1 91.3/90.6

LSUN-B. ADM ADM 100/100 100/100 100/100 99.7/100 99.7/100 100/100 100/100 100/100 100/100 100/100 100/100 99.9/100
DIRE (ours) LSUN-B. APNDM ADM 100/100 100/100 100/100 100/100 89.4/99.9 100/100 100/100 100/100 100/100 100/100 100/100 99.0/100

LSUN-B. iDDPM ADM 99.6/100 100/100 100/100 89.7/99.8 99.7/100 100/100 99.9/100 99.9/100 99.9/100 99.6/100 100/100 98.9/100

LSUN-B. StyleGAN ADM 98.8/100 99.8/100 99.9/100 89.6/100 95.2/100 100/100 100/100 100/100 100/100

99.9/100 100/100 98.5/100

Table 2: Comprehensive comparisons of our DIRE and other generated image detectors on the LSUN-Bedroom split of
DiffusionForensics. The previous detectors including CNNDet [47], GANDet [25], Patchfor [4], and SBI [40] are evaluated
with their provided weights. * denotes our reproduced training with the official codes. All the used diffusion-generation
models [10, 23, 32] for preparing training data are unconditional models pre-trained on LSUN-Bedroom (LSUN-B.) [48].
Generated images from StyleGAN [20] trained on LSUN-Bedroom are downloaded from the official repository. All the
testing images produced by text-to-image generators (SD-v1 [37], SD-v2 [37], LDM [37], VQDiffusion [14], IF, DALLE-2,
Midjourney) are prompted by “A photo of bedroom”. We report ACC (%) and AP (%) (ACC/AP in the Table).

Method Generated face imz}g.es

SD-v2 IF DALLE-2 Midjourney StarGAN
CNNDet* [47] 95.7/99.8 71.1/82.7 64.8/33.7 90.4/69.3 30.7/45.3
F3Net* [34]  89.9/99.1 75.2/84.9 75.2/69.8 82.5/87.9 27.0/45.2
DIRE (ours)  96.7/100 96.8/99.9 95.6/99.9 99.1/100 97.9/99.8

Table 3: Face domain evaluation. All detectors are trained
on CelebA-HQ [19] and diffusion images generated by SD-
v2 [37]. * denotes our reproduced training with the offi-
cial codes. When generating images using SD-v2 and IF,
the prompts used is “A professional photograph of face”.
ACC (%) and AP (%) are reported (ACC/AP in the Table).

simple classifiers for fake image detection. 5) F3Net [34]
proposes that the frequency information of images is essen-
tial for fake image detection.

4.2. Comparison to Existing Detectors

Diffusion models [17, 10] are claimed to exhibit better
generation ability than previous generation models (e.g.,
GAN [13], VAE [21]). We notice that previous detectors
achieve surprising performance on images generated by
CNNs [20, 6, 2], but the generalization ability to recent
diffusion-generated images has not been well explored. Here,
we evaluate CNNDetection [47], GANDetection [25], Patch-
forensics [4], and SBI [40] on the proposed DiffusionForen-
sics dataset using the pre-trained weights downloaded from
their official repositories.

First, we conduct experiments on the LSUN-Bedroom
split of DiffusionForensics. The quantitative results can be
found in Table 2. We find that existing detectors have a
significant performance drop when dealing with diffusion-
generated images, with ACC results lower than 70%. We
also include diffusion-generated images (ADM [10]) as train-
ing data and re-train CNNDetection [47], Patchforensics [4],

and F3Net [34], whose training codes are publicly avail-
able. The resulting models get a significant improvement
on images generated by the same diffusion models as used
in training, but still perform unsatisfactorily facing unseen
diffusion models. In contrast, our DIRE shines with excel-
lent generalization performance. Concretely, DIRE with the
generation model used to prepare training data and the recon-
struction model used to compute DIRE set to ADM achieves
an average of 99.9% ACC and 100% AP when detecting
bedroom images generated by various diffusion models.

Besides the comprehensive comparisons on bedroom im-
ages, we further conduct a comparison of DIRE and previous
detectors on the CelebA-HQ split of DiffusionForensics. The
result is reported in Table 3. Our DIRE, CNNDet [47], and
F3Net [34] are trained with images generated by SD-v2, and
evaluated with images generated by SD-v2, IF, DALLE-2,
Midjouney, and StarGAN. The results demonstrate our DIRE
encompasses a much stronger capability when detecting gen-
erated face images.

4.3. Generalization Capability Evaluation

Effect of choice of generation and reconstruction models.
We evaluate the impact of different choices of the generation
and reconstruction models on the generalization capability.
We employ the ADM [10] model as the reconstruction model
and apply different models for generating images. After gen-
eration, the ADM reconstruction model converts these im-
ages into their DIREs for training a binary classifier. In this
evaluation, we select three different generation models for
preparing training data: PNDM [23] and iDDPM [32] (diffu-
sion models) and StyleGAN [20] (GAN model). The results
are reported in Table 2. Despite the inconsistent use of gen-
eration and reconstruction models when training, DIRE still
keeps a strong generalization capability. Specifically, when
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Generation Generated IN images

Method model ADM SD-vI
CNNDet* [47] ADM 66.2/82.3 47.0/80.4
F3Net* [34] ADM 69.5/87.3 44.8/82.6
ADM 98.4/99.9 97.2/99.6
DIRE (ours) iDDPM 93.4/99.4 92.5/98.8
StyleGAN 85.6/98.4 85.4/98.1

Table 4: Cross-dataset evaluation on the ImageNet (IN)
split using the detectors trained on the LSUN-Bedroom split
of DiffusionForensics. * denotes our reproduced training
with the official codes. Each testing set is generated by corre-
sponding generation model pre-trained on the corresponding
dataset. Images generated by SD-v1 are prompted by “ A
photo of {class}” in which the classes are from [9]. ACC (%)
and AP (%) are reported (ACC/AP in the Table).

GAN-generated bedroom images

Method StyleGAN ProjGAN Dift-StyleGAN Diff-ProjGAN

CNNDet* [47] 94.3/99.8 62.2/93.2  68.1/91.4 60.0/92.6
F3Net* [34]  88.1/95.5 74.4/86.0  85.5/94.4 70.2/83.0
DIRE (ours)  99.8/100 100/100 100/100 100/100

Table 5: GAN evaluation on the LSUN-Bedroom split. * de-
notes our reproduced training on the LSUN-Bedroom-ADM
subset of DiffusionForensics with the official codes. Each
testing set is generated by corresponding GAN model pre-
trained on the corresponding dataset. ACC (%) and AP (%)
are reported (ACC/AP in the Table).

pairing iDDPM [32] as the generation model and ADM [10]
as the reconstruction model, DIRE achieves 98.9% ACC and
100% AP on average, highlighting its adaptation with images
generated by different diffusion models. It’s worth noting
that when the generation model is StyleGAN, DIRE still
exhibits excellent performance. This might be attributed to
DIRE’s capability of incorporating the generation properties
of other generation models besides diffusion models.
Cross-dataset evaluation. We further design a more chal-
lenging scenario, i.e., training the detector with images gen-
erated by models pre-trained on LSUN-Bedroom [48] and
then testing it on images produced by models pre-trained
on ImageNet [9]. We choose three different generators for
generating training images: ADM [10], iDDPM [32], and
StyleGAN [20]. The evaluation results on ADM (IN) are
shown in Table 4. We find that CNNDet [47] and F3Net [34]
get a dramatically performance. But DIRE still maintains a
satisfactory generalization capability even though facing un-
seen datasets, i.e., ACC/AP: 98.4%/99.9% and 93.4%/99.4%
when training on images generated by ADM and iDDPM,
respectively. This evaluation further validates that the pro-
posed DIRE is a general image representation for detecting
diffusion-generated images.

Unseen text-to-image generation evaluation. Furthermore,
we seek to verify whether DIRE can detect images generated
by unseen text-to-image models. We adopt SD-v1 as the

generation model and generate images based on the class
label of ImageNet [9]. The results are shown in Table 4.
Our detector DIRE trained with images generated by ADM
pre-trained on LSUN-Bedroom achieves a 97.2% ACC and
99.6% AP, demonstrating the strong generalization capability
of DIRE to text-to-image generation models.

Unseen GAN evaluation. Besides generalization between
diffusion models, we further evaluate the performance of
DIRE for images generated by GANs. We evaluate the
performance of our DIRE, CNNDet [47], and F3Net [34]
trained on the ADM subset of the LSUN-Bedroom split.
The results are reported in Table 5. In this setting, all the
trained detectors are not trained with any GAN image. Our
reproduced CNNDet and F3Net experience significant per-
formance drop, which suggests that previous generated im-
age detectors fail across diffusion and GAN models. In
contrast, DIRE achieves surprising performance when de-
tecting GAN-generated images. This indicates that DIRE
is not only an effective image representation for diffusion-
generated image detection but also may beneficial to detect
GAN-generated images even though DIRE is built upon
a mathematical formulation of the diffusion forward and
reverse processes.

4.4. Robustness to Unseen Perturbations

Besides the generalization to unseen generation mod-
els, the robustness to unseen perturbations is also a com-
mon concern since in real-world applications images are
usually perturbed by various degradations. Here, we eval-
uate the robustness of detectors in two-class degradations,
i.e., Gaussian blur and JPEG compression, following [47].
The perturbations are added under three levels for Gaus-
sian blur (¢ = 1,2,3) and two levels for JPEG compres-
sion (quality = 65, 30). We explore the robustness of our
baselines CNNDetection [47], GANDetection [25], SBI [40],
F3Net [34], Patchforensics [4], and our DIRE. The results
are shown in Figure 4. We observe that at each level of
blur and JPEG compression, our DIRE gets a perfect per-
formance without performance drop. It is worth noting that
our reproduction of CNNDetection* [47] and Patchforen-
sics* [4] trained on LSUN-Bedroom-ADM subset of Diffu-
sionForensics also get satisfactory performance while they
experience a dramatic performance drop facing JPEG com-
pression, which further reveals training on RGB images may
be not robust.

4.5. More Analysis of the Proposed DIRE

In this subsection, we conduct experiments on the LSUN-
Bedroom split of DiffusionForensics to help better under-
standing of DIRE.

How do the inversion steps in DDIM affect the detec-
tion performance? Recent diffusion models [42, 10] find
that more steps contribute to more high-quality images and
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Figure 4: Robustness to unseen perturbations. The top rows show the robustness to Gaussian blur, and the bottom rows
show the robustness to JPEG compression. * denotes our reproduced training on the LSUN-Bedroom-ADM subset of
DiffusionForensics with AP (%) reported for robustness comparison.

S ADM DDPM iDDPM PNDM SD-v1 ADM DDPM iDDPM PNDM SD-v1
5 100/100  100/100  100/100  97.5/100  87.5/99.8 w/o ABS 100/100 99.4/100 100/100 98.2/100 87.0/93.0
10 100/100  100/100  100/100  99.4/100  98.2/100 w/ ABS 100/100 100/100 100/100 99.7/100 99.7/100
20 100/100  100/100  100/100  99.7/100  99.7/100

50 100/100  100/100  100/100  100/100  99.9/100 Table 8: Effect of computing the absolute value (ABS)

Table 6: Influence of different inversion steps. All the
models in this experiment are trained on the ADM subset
and tested on other subsets of LSUN-Bedroom. ACC (%)
and AP (%) are reported (ACC/AP in the Table).

Input ADM DDPM iDDPM PNDM  SD-vl
REC 100/100 57.1/57.7 49.7/92.6 87.1/98.7 46.9/57.0
RGB 100/100 87.3/99.6 100/100 77.8/99.1 77.4/85.8
RGB&DIRE 100/100 99.8/100 99.9/100 99.2/100 62.4/92.4
DIRE 100/100 100/100 100/100 99.7/100 99.7/100

Table 7: Influence of different input information. All the
models in this experiment are trained on the ADM subset
and tested on other subsets of LSUN-Bedroom. ACC (%)
and AP (%) are reported (ACC/AP in the Table).

DDIM [42] sampling can improve the generation perfor-
mance compared to original DDPM [17] sampling. Here, we
explore the influence of different inversion steps in diffusion-
generated image detection. Note that the steps in reconstruc-
tion are the same as in the inversion by default. The results
are reported in Table 6. We observe that more steps in DDIM
benefit the detection performance of DIRE. Considering the
computational cost, we choose 20 steps by default.

Is DIRE really better than the original RGB for detecting
diffusion-generated images? We conduct an experiment on

when obtaining DIRE. All the models in this experiment
are trained on the ADM subset and tested on other sub-
sets of LSUN-Bedroom. ACC (%) and AP (%) are re-
ported (ACC/AP in the Table).

various forms of input for detection, including RGB images,
reconstructed images (REC), DIRE, and the combination
of RGB and DIRE (RGB&DIRE). The results displayed in
Table 7 reveal that REC performed much worse than RGB,
suggesting that reconstructed images are not suitable as input
information for detection. One possible explanation is the
loss of essential information during reconstruction by a pre-
trained diffusion model. The comparison between RGB
and DIRE also demonstrates that DIRE serves as a stronger
image representation, contributing to a more generalizable
detector than simply training on RGB images. Furthermore,
we find that combining RGB with DIRE together hurts the
generalization compared to pure DIRE. Therefore, we use
DIRE as the default input for detection by default.

Effect of different calculation of DIRE. After computing
the residual result of the reconstructed image and source
image, whether to compute the absolute value should be con-
sidered. As reported in Table 8, we find that the absolute op-
eration is critical for achieving a strong diffusion-generated
image detector, particularly on SD-v1 [37] where it improves
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Figure 5: Noise pattern and frequency analysis of DIRE of real and generated images. Noise pattern is regular to portray
the shape of objects in DIRE of real images, while it is messy in DIRE of diffusion-generated images. For frequency analysis,
the frequency bands in DIRE of real images are more abundant than that of diffusion-generated images, i.e., the white regions

in the frequency domain are larger.

ACC/AP from 87.0%/93.0% — 99.7%/100%. So by default,
the absolute operation is applied in all our models.
Qualitative Analysis of DIRE. The above quantitative ex-
periments have indicated the effectiveness of the proposed
DIRE. As analyzed before, the key motivation behind DIRE
is that generated images can be approximately reconstructed
by a pre-trained diffusion model while real images cannot.
DIRE makes use of the residual characteristic of an input
image and its reconstruction for discrimination. To gain a
better understanding of its intrinsic properties, we conduct a
further qualitative analysis of DIRE, utilizing noise pattern
and frequency analysis for visualization.

When images are acquired, various factors from hardware
facilities, such as lens and sensors, and software algorithms,
such as compression and demosaic, can impact image quality
at the low level. One typical low-level analysis of images is
noise pattern analysis®, which is usually regular and corre-
sponds to the shape of objects in real scenarios. In addition
to low-level analysis, frequency analysis can provide fre-
quency information about images. To compute the frequency
information of DIRE, we used FFT algorithms.

We visualize the results of the aforementioned two analy-
sis tools in Figure 5. The visual comparison of noise patterns
highlights significant differences of the DIRE of real and
diffusion-generated images from the low-level perspective,
with real images tending to be regular and corresponding to
the shape of objects while diffusion-generated images tend
to be messy. By comparing the FFT spectrum of DIRE from
real and diffusion-generated images, we observe that the
FFT spectrum of real images is usually more abundant than
that of diffusion-generated images, which confirms that real
images are more difficult to be reconstructed by a pre-trained
diffusion model.

5. Conclusion

In this paper, we focus on building a generalizable de-
tector for discriminating diffusion-generated images. We

3https://29a.ch/photo-forensics/#noise-analysis

find that previous generated-image detectors show limited
performance when detecting images generated by diffusion
models. To address the issue, we present an image represen-
tation called DIRE based on reconstruction errors of images
inverted and reconstructed by DDIM. Furthermore, we create
a new dataset, DiffusionForensics, which includes images
generated by unconditional, conditional, and text-to-image
diffusion models to facilitate the evaluation of diffusion-
generated images. Extensive experiments indicate that the
proposed image representation DIRE contributes to a strong
diffusion-generated image detector, which is very effective
for this task. We hope that our work can serve as a solid
baseline for diffusion-generated image detection.
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