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Abstract

VLN-CE is a recently released embodied task, where AI

agents need to navigate a freely traversable environment to

reach a distant target location, given language instructions.

It poses great challenges due to the huge space of possible

strategies. Driven by the belief that the ability to anticipate

the consequences of future actions is crucial for the emer-

gence of intelligent and interpretable planning behavior, we

propose DREAMWALKER — a world model based VLN-CE

agent. The world model is built to summarize the visual, to-

pological, and dynamic properties of the complicated conti-

nuous environment into a discrete, structured, and compact

representation. DREAMWALKER can simulate and evaluate

possible plans entirely in such internal abstract world, be-

fore executing costly actions. As opposed to existing model-

free VLN-CE agents simply making greedy decisions in the

real world, which easily results in shortsighted behaviors,

DREAMWALKER is able to make strategic planning through

large amounts of “mental experiments.” Moreover, the ima-

gined future scenarios reflect our agent’s intention, making

its decision-making process more transparent. Extensive ex-

periments and ablation studies on VLN-CE dataset confirm

the effectiveness of the proposed approach and outline fruit-

ful directions for future work.

1. Introduction

For decades, the AI community has strived to develop in-

telligent robots that can understand human instructions and

carry them out. As a small step towards this long-held goal,

vision-language navigation (VLN) [6] — the task of entail-

ing autonomous agents to navigate in never-before-seen 3D

environments with language instructions — gained growing

attention. In the standard VLN setting, agent’s movement

is constrained to a small set of pre-defined sparse locations.

As pointed out by [45], such over-simplified, discrete task

setup involves many unrealistic assumptions such as known
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Instruction: Head out and turn left. Pass a fireplace and continue 
towards the sofa. Enter the room and stop when seeing a table. 

Figure 1: In partially observable, continuous VLN environments,

DREAMWALKER maps its surrounding into a discrete and structured

abstraction. In this internal world, it is able to conduct mental plan-

ning ( ) by imagining future scenarios, before taking real action.

topology, perfect localization, and deterministic transition.

To better reflect the challenges of real world navigation,

Krantzet al.[45]update thediscreteVLNtoacontinuousver-

sion – VLN-CE (VLN in continuous environments), where

the agent is free to traverse any unobstructed location with

low-level actions. VLN-CE proved much more challenging

than its discrete counterpart: the performance gap between

the state-of-the-arts in the two settings is more than 20%, in

terms of episode success rate. The main challenge posed by

VLN-CE lies in the demand of strategic planning in conti-

nuous environments with low-level actions.

As a direct response, we developed a world model based

VLN-CE agent, called DREAMWALKER. Previous studies in

cognitive science [17, 34, 35] suggest that humans build a

mental model of the local surrounding, based on our limited
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senses. This internal world model summarizes our knowle-

dge about the environment and serves as the basis for many

high-level meta-skills, e.g., reasoning, planning, decision-

making, and interpretation. The world model theory is one

source of the idea of model-based Reinforcement Learning

(RL) [73] and promotes many recent advances in robot con-

trol [69, 62, 58, 91]. Keeping this grand idea in head, we let

DREAMWALKER explicitly abstract crucial characteristics of

its continuous surrounding environment to a discrete, struc-

tured representation (Fig.1). This allows DREAMWALKER to

“imagine” a lot of future possible navigation plans and eva-

luate the corresponding consequences entirely in the mind,

before taking actual low-level actions in the real world. In

this way, DREAMWALKER takes the challenge of VLN-CE

head-on: mental planning with discrete world model enables

efficient navigation behavior in continuous environments.

Technically, the world model is built upon agent’s past ex-

periences and can make predictions about the future. It con-

tains two parts: i) An environment graph (EG) is constructed

as a composition of selected or predicted waypoints and their

typological relations. EG collects agent’s temporary know-

ledge about its surrounding. ii) A learnable scene synthesizer

(SS) predicts future observations from a waypoint with mul-

tiple steps. SS embeds agent’s stable knowledge about envi-

ronments, such as general room layout rules and transition

dynamics, into its network parameters. Based on the world

model, DREAMWALKER synthesizes various future naviga-

tion trajectories, and assesses their progress towards the final

target location. Then, the best mental plan is found by Monte

Carlo Tree Search [41] and executed in the continuous world

with low-level actions. With the navigation proceeds, EG is

further updated for making a new round of mental planning.

Notably, our DREAMWALKER significantly distinguishes

itself from prior VLN-CE solutions [67, 29, 43, 44] in the

following aspects: i) Recent advanced solutions are essen-

tially model-free methods. While in principle a representa-

tion of the environment could be implicitly learned through

model-free RL, the reinforcement signal may be too weak to

quickly learn such a representation and how to make use of

it. In contrast, our agent plans its actions within an explicit,

and abstract model of the continuous environment. ii) Ex-

isting agents navigate by greedily and reactively choosing

between a small set of nearby waypoints, based on their

hidden state which compresses past observations. They tend

to be shortsighted, due to the absence of reliable strategies

for capturing information for achieving the future [23]. Yet

DREAMWALKER can use the world model to anticipate the

impacts of possible actions and plan strategic behavior. iii)

The future scenarios created by the world model explain the

intention of DREAMWALKER in a way that human can un-

derstand, making its behaviors more interpretable [9, 79].

Extensive experiments on VLN-CE dataset [45] confirm

that our DREAMWALKER gains promising performance with

the appealing ability of real-time behavioral interpretation.

This work is expected to foster future research in developing

more strategic, robust, and interpretable VLN-CE agents.

2. Related Work

VLN in Discrete Environments. The release of R2R data-

set [6] has stimulated the emergence of variousVLN systems

and datasets. In particular, early VLN agents are built upon

recurrent neural network based sequence-to-sequence mo-

del [6, 18, 77, 88, 86, 31, 52, 93, 38, 53, 84, 82, 2], while the

recent ones explore graph neural networks [15, 83] and non-

local transformer models [30, 60, 10] for long-term planning,

with the assist of environment map building [92, 11, 51],

cross-modal matching [81, 94, 87], and multi-modal pre-

training [54, 26, 64, 65, 3] techniques. Besides the advance

in model design, several more challenging VLN datasets,

such as R4R [32], RxR [46], and REVERIE [63], are devel-

oped to address long-term navigation [32, 46] and concise

instruction guided navigation [63].

These remarkable efforts follow the seminal work of R2R

to assume the agent can ‘perfectly’ teleport to and from a

fixed small set of locations (pre-stored in a sparse naviga-

tion graph) in the Matterport3D [8] environment. Although

facilitating the evolution and evaluation of VLN algorithms,

such discrete task setup is too simplified to cover the prac-

tical challenges that a robot would encounter while naviga-

ting the real world, such as environment topology acquire-

ment and localization error. In this work, we focus on per-

forming VLN in continuous environments, setup by [45].

VLN in Continuous Environments (VLN-CE). Krantz et

al. [45] lift the discrete R2R VLN task setup to the conti-

nuous setting — VLN-CE, where the embodied agent is ini-

tiated in freely traversable 3D environments and must exe-

cute low-level actions to follow natural language navigation

instructions. After throwing away the unrealistic assump-

tion of the navigation graph, the VLN task becomes more

challenging and closer to the real-world. Later approaches

attempt to reproduce the success of the abstract VLN in

the continuous counterpart, by building a high-level action

space based on online prediction of waypoints [67, 29, 43,

80, 4]. More recently, [44] explores transferring pre-trained

VLN policies to continuous environments, demonstrating

advantages over training VLN-CE policies from scratch.

Our agent is favored due to i) its model-based nature, and

ii) the ability of strategic and interpretable planning. First, our

agent learns and builds an explicit model of the world, free-

ing navigation policy learning from environment modeling.

Second, by visualizing possible futures, our agent is able to

develop advanced plan before moving and explain its beha-

viors. In contrast, current agents make only greedy decisions

purely relying on their latent state. Their planning ability is

rather weak and the decision mode is non-transparent.

World Model. Equipping robot machines with the ability to
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build world models is viewed as a key step towards the next-

generationofAI[34, 50].Capturing high-level aspects of the

environment, world models help enable AI agents for rea-

sonable decision-making through simulation (a.k.a., imagi-

nation) of possible futures. Towards this direction, a bunch

of approaches have been recently developed to predict for-

ward dynamics/representations [59, 37, 12, 20, 39, 49], per-

form sampling-based planning [72, 61, 91], conduct self-

simulation based policy learning [89, 85, 22], and recon-

cile the advantages of model-based and model-free RL re-

gimes [66, 56, 75, 47]. Some others leverage world models

to anticipate (short-term) targets for goal-conditioned po-

licy learning [58, 57], boost the learning of world models by

introducing belief of state uncertainty [13, 20, 19], informa-

tive state representation [48, 25, 76], and model regulariza-

tion [50, 14, 40]. Although world models find successful ap-

plications in Atari [36, 24, 23, 25] and robot motion plan-

ning [16, 69], many of them are restricted to relatively

simple tasks or low-dimensional environments, pointed out

by [23, 25, 58, 42]. To date, world models have been rarely

investigated in visually-rich,embodied tasks.Thefewexcep-

tions [49, 42] simply use a viewpoint synthesis network as

the world model. They either pre-access the entire environ-

ment typology [42], or only treat the synthesized observa-

tions as sub-goals without sampling-based planning [49].

In [1], NeRF-based world model is adopted for drone navi-

gation planning, which requires pre-exploration of the envi-

ronment. For ours, in addition to the challenging task setup,

ourworldmodel isorganizedasastructuredsummarizationof

environment layoutandacompact representation of environ-

ment evolution, instead of [49, 42] encoding all the knowl-

edge about the environment into latent network parameters.

More importantly, our explicit and discrete abstraction of the

continuous environments offers a suitable testbed for men-

tal experiments. Through sampling and assessing numerous

possible solutions entirely in the mind, our agent can conduct

strategic and global navigation planning before moving.

Monte Carlo Tree Search (MCTS). MCTS [41] is a heu-

ristic search algorithm for approximating optimal choices in

large search spaces. It has demonstrated great success in cre-

ating game-playingAIagentsandsolvingsequentialdecision

tasks, such as Atari games [21, 71] and Go [73, 74, 71].

In this work, we adopt MCTS to search for possible na-

vigation plans based on the world model. MCTS has so far

been rarely explored in the field of VLN-CE. In addition, in

many application scenarios of MCTS, all the aspects of the

world states are fully observable. However, the continuous

VLN-CE environments are partially observable, and hence

we run MTCS in a discrete, synthesized world space.

3. Methodology

Task Setup and Notations. In VLN-CE [45], AI agents are

required to navigate in never-before-seen 3D environments

to target positions, according to language instructions. The

environments are assumed to be continuous open space. At

each step, the agent must choose a low-level action from

{turn-left 15◦, turn-right 15◦,move-forward 0.25m, stop},

given the instruction X and 360◦ panoramic RGBD obser-

vation Y . The navigation is successful only if the agent se-

lects stop within 3m of the target location within 500 steps.

Waypoint Action Space. Recent VLN-CE solutions [67, 29,

43, 44] adopt a high-level waypoint action space. During na-

vigation, the agent uses a Waypoint Predictor to get a heat-

map of 120 angles-by-12 distances, which highlights navi-

gable waypoints in its surrounding. Each angle is of 3 de-

grees, and the distances range from 0.25 meters to 3.00 me-

ters with 0.25 meters separation, respectively corresponding

to the turning angle and forward step size of the low-level

action space (Fig. 2(f)). In this way, the problem of inferring

low-level controls is translated to the task of waypoint pre-

diction and selection. Please refer to [29] for more details.

Algorithmic Overview. Our DREAMWALKER agent solves

VLN-CE through i) building a world model (§3.1) that ex-

plicitly abstracts intrinsic properties of continuous environ-

ments into a structured, discrete representation; ii) condu-

cting strategic planning in the discrete mental world before

taking actual actions in the continuous environment (§3.2).

3.1. World Model: Structured, Discrete, and Com-
pact Abstraction of Continuous Environments

To efficiently plan and act in the highly complex world,

humans develop a mental model to represent our knowledge

about the surrounding, based on our past daily experiences

and current information perceived by limited sense [22]. In

view of this, our world model is built as combination of two

parts: i) An environment graph (EG) – a structured and disc-

rete representation of agent’s temporary knowledge about the

visual landmarks and typologies of the current partially ob-

served environment; and ii) A scene synthesizer (SS) that en-

codes agent’s stable knowledge about some general rules of

environments such as transition dynamics and room layout,

which are learned from training experiences and utilized to

predict the unobserved portions of the current environment.

Environment Graph (EG). EG is organized as an episodic

graph G=(V, E), where nodes v∈V denote previously vi-

sited waypoints and edges eu,v∈ E store geometric relations

between waypoints (Fig. 2(a)(g)). At the beginning of current

navigation episode, G only contains one single node — the

starting location. Then, the agent predicts a set of accessi-

ble waypoints, and selects one of them to navigate. After rea-

ching the selected waypoint, G will be updated by involving

this waypoint. Hence EG evolves with the navigation pro-

ceeds. Concretely, for each node v∈V , its embedding is the

feature of the corresponding waypoint observation:

v=Ypv , (1)
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Instruction: Head out and turn left. Pass a fireplace and continue 
towards the sofa. Enter the room and stop when seeing a table. 

Instruction: Head out and turn left. Pass a fireplace and continue 
towards the sofa. Enter the room and stop when seeing a table. room and stop when

(a) (b) (c) (d) (e) 

(f) (g) (i) (h) (j) 

Figure 2: (a) Top-down view of current navigation, where indicates previously visited waypoints and refers to detected but unvisited

waypoints. (b) DREAMWALKER synthesizes future observations at unvisited waypoints through SS. (c-d) With the synthesized obser-

vations, DREAMWALKER further extends the synthesized trajectories and looks deeper into the future. (e) DREAMWALKER selects the best

mental plan for execution. After reaching the selected waypoint, it starts next-round planning. (f) Top-down view of the waypoint action

space. (g) EG G of (a). (h-j) DREAMWALKER images its future observation at the unvisited waypoint , based on its current observation.

The synthesized and real observations at are given in (i) and (j), respectively. For clarity, only RGB observation is provided. Notably,

the imagined scenarios explain agent’s inner decision mode in a way that human can understand, leading to improved interpretability.

where pv refers to the location of waypoint v, and the co-

ordinate of the start point is set as (0, 0); Ypv
indicates the

embedding of the panoramic observation Ypv
at location pv .

For each edge eu,v∈E , its embedding eu,v encodes topo-

logical relations between waypoints u and v:

eu,v=(cos θu,v, sin θu,v,�pu,v), (2)

where θu,v and �pu,v = pu − pv refer to the angle and dis-

tance between u and v, respectively. Note that the connecti-

vity among waypoints is also captured by G. An edge, eu,v ,

exists only if u and v are connected, that is, they are detected

as valid in the waypoint prediction heatmap of each other.

As such, EG is built upon the information gathered during

current navigation episode. Hence it represents the agent’s

temporary knowledge about its observed surroundings, and

organizes them in a concise, structured, and discrete manner.

Scene Synthesizer (SS). SS is a generative network that pre-

dicts future scenes based on agent’s past observations only,

without having to navigate them (Fig. 2(h-j)). Given pano-

ramic RGBD observation Yp perceived at position p, SS is

to render a plausible, full-resolution panoramic RGBD ob-

servation Ŷp′ at an unvisited position p′. The position p′ of

interest is a waypoint of p, thus p and p′ are spatially close.

Like previous world structure-aware video synthesis meth-

ods [55, 42], we first project Yp to a 3D point cloud using

the depth information and re-project this point cloud into

the observation space at position p′, so as to obtain a sparse,

geometry-aligned RGBD panoramic image Yp→p′ . The SS

network takes as inputs both the observation Yp perceived at

p and the reconstructed observation Yp→p′ , and synthesizes

the observation Ŷp′ for the unvisited waypoint position p′:

Ŷp′ = Scene Synthesizer(Yp, Yp→p′). (3)

SS learns from experiences of ‘viewing’ numerousVLN-CE

training environments. Its parameters encode agent’s statis-

tical knowledge about some fundamental constraints in the

world, such as the transition dynamics and general rules be-

hind room arrangement (e.g., ‘dishwasher is typically lo-

cated in the kitchen’).

Working Mode of World Model. Integrating EG and SS

together leads to a powerful world model. EG stores agent’s

understanding of the observed portions of the environment.

Based on working memory, SS makes use of statistical know-

ledge to forecast the unexplored portion of the environment

(Fig. 2(a-e)). For instance, starting from a waypoint v in G,

the world model uses SS to imagine the future (i.e., Ŷp
v
′
) if

the agent navigates to a previously unvisited waypoint v′ of

v. With the synthesized observation V̂p
v
′

at waypoint v′, the

world model can make further future prediction. Notably,

our world model, or more precisely, its parametric part – SS,

is trained independently, which lifts the navigation policy

from learning inherent structures of environments.

3.2. Mental Planning: Forecasting the Future in the
World Model

Powered by the world model, DREAMWALKER gains the

ability of anticipating the consequences of its actions, for an

extended period into the future. This is because the world mo-

del can simulate how the environment changes in response

to agent’s actions. DREAMWALKER can thus make advanced

planning, through perform mental experiments in the simu-

lated world. Basically, at every navigation-decision making

step, DREAMWALKER first uses the world model to syn-

thesize many future navigation trajectories, and then selects

the best one for execution. Here we adopt Monte Carlo Tree

Search (MCTS) [41, 21], a powerful approach for decision

problems, to achieve world model based online planning.

MCTS based Mental Planning. As a best-first tree search

algorithm, MCTS represents the space of candidates into a
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tree and finds an optimal solution in an iterative manner. In

our case, each tree node s represents a possible world state:

the rootnodes0 is theworldstateG at currentnavigation step,

while other nodes indicate future world states, synthesized

by the world model. The edge from node s to s′ denotes the

actiona taken in s to reach s′, and is identified by pair (s, a).
The core idea of MCTS based planning is to gradually ex-

pand the search tree and evaluate rewards, i.e., create many

plans and assess the outcomes in mind. This is achieved by

an iterative tree search process. Each search iteration starts

from the root state s0, and sequentially samples states and

actions, based on the simulation of four phases (Fig. 3):

i) Selection: Actions/edges are selected according to a tree

policy. A commonly used policy is to select greedily with

respect to Upper Confidence bounds for Trees (UCT) [7]:

UCT(s, a) = Q(s, a) + C

√
logN(s)

N(s, a)
, (4)

where Q(s, a) is the average accumulated reward of tak-

ing action a; N(s, a) and N(s) return the visiting times

of edge a and state s, respectively; C is a scalar explora-

tion constant. Starting from the root node, the action is

selected as:

a
∗ = argmax

a∈A(s)

UCT(s, a), (5)

where A(s) is the global action space at state s, which

enumerates all the possible waypoints. The selection is per-

formed recursively until an unexpanded edge is selected.

ii) Expansion: With the finally selected unexpanded edge, a

new leaf node ṡ is further appended, i.e., N(ṡ) = 1.

iii) Rollout: A quick rollout is performed to predict further

multiple steps into the future, according to a certain roll-

out policy. Based on a reward function R, the value of the

new leaf node ṡ, i.e., V (ṡ), is obtained.

iv) Back-up: The statistics of nodes and edges are updated

bottom-up through the tree from ṡ until reaching the root

node.

N(s, a) = N(s′),

Q(s, a) = R(s, a) + γV (s′),

N(s) = 1 +
∑

a∈A(s) N(s, a),

V (s) = 1
N(s)

∑
a∈A(s)

(
N(s, a)Q(s, a)

)
.

(6)

Here R(s, a) gives the reward for taking action a at state

s; s′ =T (s, a), where T (s, a) is the deterministic transi-

tion function. The design of our reward function R and

the rollout policy will be detailed later.

As such, in each iteration, DREAMWALKER creates and ex-

ecutes a plan in the world model by expanding the search

tree, and anticipates the consequence by estimating the re-

wards. After several times of iterative simulation, the agent

UCT

N(s)=2

N(s)=1

2

UCT

N(s)=1

N(s)=1 D

N(s)=2

max

UCT UCT
max

NNNNNNNNNNNNNNNN

Selection Extension Rollout Back-upSelection Extension Rollout Back-upp

 tree 
policy

rollout 
policy

R

s0

s
.

.

K steps

Figure 3: MCTS based Mental planning. Each node in the research

tree refers to a possible world state, corresponding to a future plan.

conducts a lot of mental experiments, and the best action is

selected among the edges starting from the root node:

a
∗ = argmax

a∈A(s0)

Q(s0, a). (7)

Herea∗ corresponds to a certain waypoint observed at cur-

rent world state s0. According to EG G, the agent can

reach this waypoint by taking a sequence of low-level ac-

tions. If a∗ is never visited before, EG is updated after its

first visit, followed by new-round mental planning and next-

step action. When a∗ is a visited waypoint, the agent will

move to this waypoint and choose stop to terminate navi-

gation. In this way, our agent predicts future in the discrete

world model, and navigates in the continuous environment.

Reward. The immediate reward R(s, a) is defined accord-

ing to the change of distance to goal after taking action a.

Let Gs=(Vs, Es) denote EG corresponding to state s, where

Vs−V refers to those waypoints visited in dream world state

s, the distance to the target location in state s is defined as:

D(s) = min
v∈Vs

Fd(v,Gs, X), (8)

where Fd is a learnable distance function that predicts the

distance from waypoint v to the target location, conditioned

on EG Gs and instruction X . More specifically, D(s) is built

upon a graph attention (GAT) network [78]:

Fd(v,Gs, X) = MLP(ṽ),

Ṽ = {ṽ}v = GAT({[v,X]}v, {[eu,v,u,X]}u,v),
(9)

where v (u) is the initial embedding of node v (u), eu,v is

the edge embedding of eu,v∈E . X denotes the textual em-

bedding of the instruction X , and [·, ·] refers to concatena-

tion. After fusing node and edge embeddings with the tex-

tual context, GAT outputs the collection of improved node

embeddings Ṽ . After that, a small multilayer perceptron

(MLP) is applied per node for distance regression.

Given the deterministic transition s′ = T (s, a), we have

a = Vs′−Vs. If action a is a previously visited waypoint,

i.e., a∈V , the immediate reward R(s, a) is given as:

R(s, a)=

{
+5, Fd(v,Gs, X) ≤ 3,

−5, Fd(v,Gs, X) > 3.
(10)
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Here a ∈ V means the agent chooses stop at waypoint a.We

estimate if its distance to the target is within the success cri-

teria, i.e., 3m, and assign a constant positive/negative reward

(+5/-5) accordingly. If waypoint a is never visited before,

we define:
R(s, a)= D(s′)−D(s). (11)

That is to say, the reward is defined as the distance that a

can bring the agent closer to the target than before.

Rollout Policy. In the rollout phase, a rollout policy is ado-

pted to guide the fast playout starting from the new expanded

leaf state ṡ. This can be intuitively viewed as further imag-

ining the future of state ṡ with several steps through fast sa-

mpling. For the sake of Monte Carlo property and simplicity,

we treat the distance function D(·) (cf. Eq. 8) as the rollout

policy. For example, at the first rollout step, the action dis-

tribution p over possible waypoints A(ṡ) at state ṡ is given

as:
p[a] = softmaxa∈A(ṡ)Fd(a,Gṡ, X). (12)

The rollout stops when a previously visited waypoint is se-

lected or a maximum rollout depth K is reached. The re-

wards {R1, R2, · · · , RK} along the rollout record are col-

lected to compute the accumulated discounted reward as the

value of ṡ:
V (ṡ) =

∑K

k=1 γ
k−1Rk. (13)

4. Experiments

After stating our experimental setup (§4.1) and imple-

mentation details (§4.2), we provide performance compari-

son results with VLN-CE state-of-the-arts (§4.3). Then we

identify there is still room for improvement in the aspects of

world model (§4.4) and distance estimation (§4.6), reveal-

ing possible future directions. We further verify the con-

tribution of our world model based mental planning (§4.5).

Finally, we evaluate the impacts of core hyper-parameters

(§4.7) and offer visual analyses (§4.8).

4.1. Experimental Setup

Dataset. We conduct experiments on VLN-CE dataset [45].

The dataset has 16, 844 trajectory-instruction pairs across 90
Matterport3D [8] scenes, and is divided into four sets, i.e.,

train (10, 819 pairs, 61 scenes), val seen (778 pairs, 53
scenes), val unseen (1, 839 pairs, 11 scenes), and test

(3, 408 pairs, 18 scenes). As the scenes in val unseen and

test are not exposed in train, the performances on val

unseen and test are more important than val seen.

Evaluation Metric. Following [45, 43, 44], we use five me-

trics for evaluation, i.e., Navigation Error (NE), Trajectory

Length (TL), Success Rate (SR), Oracle success Rate (OR),

and Success rate weighted by Path Length (SPL), where SR

is the priority. Please see [5, 6] for full details on metrics.

4.2. Implementation Details

Network Architecture. As in [43, 44, 45, 29], the RGB and

depth channels of the panoramic observation Y are respec-

tively encoded by ImageNet [68] pre-trained ResNet-18 [27]

and PointGoal [90] pre-trained ResNet-50.The language ins-

truction X is encoded through a bi-LSTM with GLoVE[33]

word embeddings. Scene Synthesizer is built as a two-stage

generator, following [42].Waypoint Predictor is the one used

in [29]. For the distance function Fd, GAT is implemented

as standard [78], and MLP has 1, 024 hidden neurons.

Network Training. The training ofWaypoint Predictor and

Scene Synthesizer are scheduled as in [29] and [42] respec-

tively. For our distance function Fd, we progressively con-

struct EGs along the ground-truth trajectory of each training

episode. Fd is trained by minimizing the L2 loss between

the predicted distance and ground-truth distance for each

waypoint for each EG. More specifically, for robust distance

prediction, for a ground-truth trajectory with L waypoints,

we construct L EGs where the l-th EG is constructed by

adding the l-th waypoint of the trajectory as well as up to

5 random sampled, accessible waypoints into the (l−1)-
th EG. In addition, we randomly replace ground-truth way-

points with the ones created by Scene Synthesizer, making

Fd better adapted to the working mode of mental planning.

Reproducibility. Our hyper-parameters are set as follows.

The discount factor γ is 0.98 (Eq. 6 and 13). The horizon of

mental planning, i.e., the maximum step of imagining the

future trajectory, is4.Thenumberofsearchiterationsfor each

time of mental planning is 50. Our model is implemented

in PyTorch with Habitat [70] simulator, and trained on one

NVIDIA RTX 3090 GPU. Our code is released at https:

//github.com/hanqingwangai/Dreamwalker.

4.3. Comparison with VLN-CE State-of-the-Arts

We compare our agent, DREAMWALKER, with five pre-

viously published VLN-CE models [45, 43, 67, 29, 44]. As

illustrated in Table 1, our agent outperforms all the com-

petitors across all the splits, in terms of SR. In particular,

DREAMWALKER surpasses BridgingGap [29], the current

top-leading VLN-CE model, by 7%, 5%, and 7%, on val

seen, val unseen, and test splits, respectively. Since

all the involved competitors are model-free approaches, our

promising results demonstrate the superiority of our world

model based algorithmic design, which relieves the burden

on the agent to learn the knowledge about the environments

during navigation policy training. In addition, we can find

that DREAMWALKER boosts SR score greatly without intro-

ducing much extra travel expense. This evidences that, com-

pared to greedily following a sophisticated navigation pol-

icy, planning ahead in the mental world enables advanced

decision-making with little expense of physical execution.

4.4. How Far We Are From a Perfect World Model?

The world model allows our DREAMWALKER to employ

‘mental imagery’ to perform mental experiments, so as to

plan ahead before taking action. The previous experiments

sted by our world model with the corresponding actual
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val seen val unseen test
Model

NE↓ TL SR↑ OR↑ SPL↑ NE↓ TL SR↑ OR↑ SPL↑ NE↓ TL SR ↑ OR↑ SPL↑

CMA [45][ECCV20] 7.21 9.06 34 44 32 7.60 8.27 29 36 27 7.91 8.85 28 36 25

Waypoint [43][ICCV21] 5.48 8.54 46 53 43 6.31 7.62 36 40 34 6.65 8.02 32 37 30

LAW [67][EMNLP21] 6.35 9.34 40 49 37 6.83 8.89 35 44 31 7.69 9.67 28 38 25

BridgingGap [29][CVPR22] 5.02 12.5 50 59 44 5.74 12.2 44 53 39 5.89 13.3 42 51 36

Sim2Sim [44][ECCV22] 4.67 11.2 52 61 44 6.07 10.7 43 52 36 6.17 11.4 44 52 37

DREAMWALKER (Ours) 4.09 11.6 59 66 48 5.53 11.3 49 59 44 5.48 11.8 49 57 44

Table 1: Impacts of core method components on VLN-CE dataset [45] (§4.4-§4.5).
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Figure 4: Curves of success rate and

distance estimation error (§4.6).

(cf. §4.3 and Table 1) primarily demonstrated the

power of the world model in strategic navigation

planning, through the comparison with existing

model-freeVLN-CE agents.To help highlight how

far we are from a perfect world model, we derive

a variant – “perfect imagination” – from our algo-

rithm, by replacing the future scenarios forecas-

val seen val unseen
Variant

NE ↓ TL SR ↑ OR ↑ SPL ↑ NE ↓ TL SR ↑ OR ↑ SPL ↑

DREAMWALKER (Ours) 4.09 11.6 59 66 48 5.53 11.3 49 59 44

Perfect Imagination 3.75 10.8 64 69 60 4.88 11.1 54 63 49

Copy Memory 7.10 13.5 35 44 31 7.76 13.8 27 35 24

Greedy Selection 5.22 10.5 47 56 43 5.93 10.9 42 53 36

Table 2: Impacts of core method components on VLN-CE dataset [45] (§4.4-§4.5).

ahead observations from the environment. For complete-

ness, we also provide a “lazy” world model – “copy mem-

ory” – which simply memorizes all past observations and

generates future predictions by simply copying the nearest

memory. From Table 2 we can find that, compared with

DREAMWALKER, “perfect imagination” yields solid per-

formance boost. This is because the agent coupled with

a perfect world model can make perfect prediction of the

future. This also suggests the upperbound of our performance

w.r.t.worldmodel,andisconsistentwithpriorstudies [84, 42]

which find that allowing agent to look ahead at actual obser-

vations from environments can facilitate decision-making in

the abstract setting. At the other extreme, “copy memory”,

not surprisingly, gives the worst results, since the agent does

notmakeanyimaginationof thefuture.Thisverifies again the

benefit of world model in navigation planning.

4.5. Advanced Planning or Greedy Selection?

It is also interesting to quantify the contribution of our

world model based mental planning. To this end, in Table 2,

we report a baseline - “greedy selection”: at each decision-

making step, the agent greedily selects the waypoint in the

view of field for navigation, according to the estimated dis-

tance to the target location. This decision-making strategy

is adopted by all current VLN-CE agents, yet lacking ex-

plicit planning. Our world model enables sampling-based

planning — first assessing the consequences of possible

navigation solutions in the mind then taking actual action.

From Table 2 we can find that, mental planning exhibit sig-

nificantly better performance compared with the greedy ac-

tion selection strategy. This evidences our primary hypothe-

sis that imagination of possible futures in the internal world

abstract is necessary for strategic navigation planning.

4.6. What Is the Impact of Distance Function?

During mental planning, DREAMWALKER makes use of

the distance function Fd (cf. Eq. 9) to calculate the immedi-

ate reward R (cf. Eq. 11) for a certain action. In other words,

DREAMWALKER assesses the outcome of mental plans by

means of the distance function. We therefore conduct ex-

periments to study the influence of the distance function.

Specifically, we report the performance by randomly replac-

ing the distance estimates with the ground-truth in differ-

ent probabilities. The performance are plotted in curves in

Fig. 4. We can observe that, when the distance estimation

becomes more accurate, DREAMWALKER performs better.

With perfect distance estimation – the agent is allowed to

access accurate distance between any waypoint and the tar-

get goal, 100% SR can be reached. We also find that, even

when the replacement probability is as low as 20%, the

agent can achieve a rather high 70 SR. It demonstrates the

central role of the distance function in our algorithm and,

also, suggests a feasible direction for further improvement.

4.7. Hyper-Parameter Study

In this section, we examine our hyper-parameter setup.

Search Iterations of MCTS. We first investigate the influ-

ence of searching iterations in MCTS based mental plan-

ning. Intuitively, with more searching rounds, the search

tree has a higher probability to reach a good terminal state

and can better estimate the outcome of possible actions, yet,

at the expense of larger simulation cost. Therefore, in addi-

tion to estimating the navigation performance with different

searching rounds (i.e., 10, 30, 50, 70), we also report statis-

tics for the runtime. As shown in Table 3, the runtime grows

linearly as the number of searching rounds increases. How-

ever, when the number of searching rounds exceeds 50, the

performance gain becomes marginal. Thus we finally set the

number of searching rounds to 50 to save the unproductive

computation cost. We also stress that our mental planning

is very fast which typically responds within 1.5s.

Horizons of Mental Planning. We report the performance

with different planning horizons — imaging future trajecto-

ries with a maximum length of 0, 2, 4, or 6 forward steps.

From Table 4 we can find that, both the performance and

the runtime generally grows as the horizons increased from
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Searching val seen val unseen Runtime
#

Iteration NE ↓ TL SR ↑ OR ↑ SPL ↑ NE ↓ TL SR ↑ OR ↑ SPL ↑ (s/step) ↓

1 10 4.43 12.1 55 63 45 5.76 12.5 44 55 38 0.43

2 30 4.29 10.9 57 65 47 5.62 11.1 46 57 42 1.08

3 50 4.09 11.6 59 66 48 5.53 11.3 49 59 44 1.43

4 70 4.02 12.6 59 67 48 5.49 12.9 50 60 44 1.74

Table 3: Impact of sampling iteration for navigation plan searching (§4.7).

Planning val seen val unseen Runtime
#

Horizon NE ↓ TL SR ↑ OR ↑ SPL ↑ NE ↓ TL SR ↑ OR ↑ SPL ↑ (s/step) ↓

1 0 5.22 10.5 47 56 43 5.93 10.9 42 53 36 0.09

2 2 4.21 11.8 56 64 45 5.66 12.2 47 57 41 1.15

3 4 4.09 11.6 59 66 48 5.53 11.3 49 59 44 1.43

4 6 4.18 12.5 57 65 44 5.59 12.9 48 58 41 2.05

Table 4: Impact of planning horizon (§4.7). The maximum searching round is 50.
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Figure 5: FID curve of synthesized panoramic

view w.r.t. prediction step (§4.7).

(a) 

A

B

Instruction: Walk out of the bedroom and go into the hallway. Turn the corner and walk into 
the dining area. Pass the dining table and walk into the living room. Stop near the chair. 

Search Tree

0 4.6

(b) 

V=4.3

V=3.8V=1.4

(c) 

(d) (e) 

visited waypoint

unvisited waypoint

DREAMWALKER 

greedy policy

Figure 6: (a) Trajectories of an episode navigated by a greedy pol-

icy (red) and DREAMWALKER (blue). (b) Current panoramic ob-

servation. (c) The search tree rooted by the world state of (a). The

nodes and edges are painted according to their V (s) and Q(s, a)
respectively. (d) Imagined view at waypoint A. (e) Imagined view

at waypoint B. See §4.8 for more details.

0 to 4 steps. Comparing #3 and #4 rows, we can find that

the performance gain becomes marginal or even negative.

This happens probably due to that the capacity of the world

model is overloaded. As in [42], we assess the fidelity of our

synthesized panoramic RGBD views by computing Fréchet

Inception Distance (FID) [28] to the ground-truth scenes.

As shown in Fig. 5, the error between simulated views and

corresponding actual observations from real environments

accumulates as the trajectory rolls out. Hence the scenar-

ios forecasted over long horizons might be useless or even

detrimental to mental planning.

4.8. Qualitative Result

To better understand the superior performance of our

method and demonstrate the interpretability of the mental

planning mechanism, we analyse a challenging qualitative

case in Fig. 6. In this case, we visualize the navigation

trajectory performed by a greedy policy (i.e., greedily se-

lecting the best waypoint predicted by the distance func-

tion) and our DREAMWALKER. As seen, given a compli-

cated instruction “Walk out · · · to outside.”, the agent with

the greedy policy soon gets lost after it enters the dining

room, while our DREAMWALKER manages to reach the tar-

get location. For an intuitive comprehension of the plan-

ning procedure, here we visualize a part of the search tree.

The nodes and edges in the search tree are colored accord-

ing to their corresponding V (s) and Q(s, a) values, i.e.,

red color indicates high value and blue color indicates low

value. We can clearly observe that the search tree is split

into two branches when the planning proceeds to “walk into

the dining area”, i.e., DREAMWALKER starts to imagine the

outcomes of two possible actions, and the branch of the cor-

rect action finally wins with a large margin as the branch of

the wrong action receives rather low rewards (deep blue).

We visualize the imagined future waypoints of the correct

action and the wrong action respectively and find that the

correct action leads to a room which looks more like a “liv-

ing room” mentioned in the instruction, while the wrong

action leads to a corridor. This study demonstrates that

our DREAMWALKER can provide strong interpretability of

decision making by conducting tractable planning and pre-

senting intuitive visualization for imagined observations.

5. Conclusion and Discussion

In this article, we devise DREAMWALKER, a world model

based VLN-CE agent. Our world model is built as a discrete

and structured abstraction of the continuous environment,

allowing DREAMWALKER to synthesize, assess, and inter-

pret possible plans in the mind before taking actual actions.

We empirically confirm the superiority of DREAMWALKER

over existing model-free agents, in terms of performance

and interpretability. Building more expressive and versatile

world models, and exploring world model based VLN-CE

policy learning will be the focus of our future work.
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