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Abstract

Video snapshot compressive imaging (SCI) aims to cap-
ture a sequence of video frames with only a single shot of
a 2D detector, whose backbones rest in optical modulation
patterns (also known as masks) and a computational recon-
struction algorithm. Advanced deep learning algorithms
and mature hardware are putting video SCI into practical
applications. Yet, there are two clouds in the sunshine of
SCI: i) low dynamic range as a victim of high temporal mul-
tiplexing, and ii) existing deep learning algorithms’ degra-
dation on real system. To address these challenges, this
paper presents a deep optics framework to jointly optimize
masks and a reconstruction network. Specifically, we first
propose a new type of structural mask to realize motion-
aware and full-dynamic-range measurement. Considering
the motion awareness property in measurement domain, we
develop an efficient network for video SCI reconstruction
using Transformer to capture long-term temporal depen-
dencies, dubbed Res2former. Moreover, sensor response is
introduced into the forward model of video SCI to guaran-
tee end-to-end model training close to real system. Finally,
we implement the learned structural masks on a digital
micro-mirror device. Experimental results on synthetic and
real data validate the effectiveness of the proposed frame-
work. We believe this is a milestone for real-world video
SCI. The source code and data are available at https:
//github.com/pwangcs/DeepOpticsSCI.

1. Introduction

Capturing high-dynamic-range (HDR) and high-frame-

rate (HFR) video is a long-term challenge in the field of

computational photography. As an elegant solution of HFR,

video snapshot compressive imaging (SCI) optically multi-

plexes a sequence of video frames, each of which is coded

with a distinct modulation pattern (hereafter called mask),

into a snapshot measurement of a two-dimensional (2D) de-

tector, and computationally reconstructs a decent estimate
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Figure 1. The proposed deep optics framework brings a signif-

icant improvement for real-world video SCI as demonstrated in

real results (a), (b), and (c), got by previous SOTA STFormer [34],

current STFormer (under our framework), and our Res2former,

respectively. (d) summarizes the comparison between Res2former

and STFormer in terms of PSNR (vertical axis), FLOPs (horizon-

tal axis), and Parameters (circle radius). The proposed Res2former

achieves competitive performance (35.98 dB) with only 28.15%
FLOPs and 56.57% parameters of STFormer (36.34 dB). By in-

creasing parameters to STFormer’s level, large Res2former can

lead to a better performance (36.56 dB). By the way, STFormer

under our framework can increase by 0.35 dB.

of the original video from the measurement using an ad-

vanced algorithm. In a nutshell, video SCI is a hardware-

encoder-plus-software-decoder system and its performance

mainly depends on mask and reconstruction algorithm.

For the hardware encoder, random binary mask has been

widely used in both simulation and real video SCI sys-

tems, often implemented in a digital micro-mirror device

(DMD) [28, 27] or liquid crystal on silicon (LCOS) [29,

9, 16]. Recently, learned binary mask was also imple-

mented in programmable pixel sensors [21]. For the soft-

ware decoder, it is an ill-posed inverse problem to retrieve

high-fidelity video from the captured single measurement

and various reconstruction methods [41, 17, 18, 28, 5, 35,

4, 37, 34, 23] have been developed to solve it in recent

years. Conventional optimization algorithms adopt hand-

crafted priors, e.g., total variation [41] and non-local self-
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similarity [17], to confine the solution to the desired sig-

nal space. But optimization-based methods commonly re-

quire a long running time to get usable results. With the

powerful generalization ability of deep neural networks

(DNNs), deep learning methods have been increasingly

developed and achieved excellent results in a little infer-

ence time, usually designed as an end-to-end (E2E) net-

work, e.g., E2E-CNN [28], BIRNAT [5], MetaSCI [35],

RevSCI [4], STFormer [34], or a deep unfolding network,

e.g., GAP-net [23], ADMM-Net [18], SCI3D [37], ELP-

Unfolding [39]. Despite these remarkable advances, par-

ticularly in deep learning reconstruction methods, there are

still some practical challenges in putting video SCI into our

daily life.

Due to the limited bit depth of image sensors, the higher
temporal multiplexing, the lower dynamic range. For an

video SCI camera using random binary masks, the mea-

surable brightness values of video frames is approximately

equal to 2κ+1
/
B, far less than the available brightness val-

ues of image sensor 2κ, where B (usually 8≤ B≤ 50) and

κ denote compressed frames and sensor bit depth, respec-

tively. We take 8-frame video SCI camera equipped with a

typical 8-bit-depth image sensor as an example, namely, 8
video frames are compressed into a single image with 256
available brightness values during measurement. If using

random binary masks that take values of ‘1’ or ‘0’ with

equal probability, at each spatial position, half of 8 frames

are integrated into one pixel along temporal dimension with

high probability. In this case, each frame can only be rep-

resented by 64 brightness values, which is calculated by

256/4 = 64. Obviously, there is a significant gap between

the wide range of brightness variations in natural scenes and

the very limited dynamic range in previous video SCI. Such

a practical problem is also widely rooted in other compres-

sive imaging systems, e.g., spectral SCI [8], compressive

light field imaging [22], and single-pixel imaging [6].

Without considering sensor response, existing deep re-
construction networks have a great performance degrada-
tion when used in real system. As is well known, the per-

formance of DNNs is closely related to the used training

dataset. Without available specialized datasets, the forward

model of video SCI usually need to be mathematically for-

mulated to synthesize the training dataset from a public

HFR video dataset. Accordingly, deep reconstruction net-

works have a high dependence on the forward model. Un-

fortunately, previous forward model only considers optical
transmission and modulation but overlooks sensor response
characterizing the used image sensor, meaning that there is

a gap between previous forward model and real system. As

a result, previous deep reconstruction networks show ex-

cellent performance on synthetic data but degraded perfor-

mance on real data.

To address the above challenges, a deep optics frame-

work is proposed to improve the performance of real-world

video SCI. The contributions of this work are summarized

as follows.

• Unlike widely-used random binary mask, a new type

of structural mask is presented to realize motion-aware
and full-dynamic-range (FDR) measurement. Motion-

aware measurement contributes to video SCI recon-

struction. To our best knowledge, we are the first to

enable FDR video SCI.

• Considering the motion-aware property in the encoder,

we tailor an efficient reconstruction network, dubbed

Res2former, as the video SCI decoder by using Trans-

former to capture long-term temporal dependencies.

Compared with the state-of-the-art (SOTA) network

STFormer [34], Res2former is highly lightweight but

provides competitive performance.

• We propose a deep optics framework to jointly opti-

mize the proposed structural mask and reconstruction

network, in which sensor response is introduced to

guarantee end-to-end (E2E) training close to real sys-

tem. Under this framework, Res2former and previous

reconstruction networks achieve significant improve-

ment on synthetic data and real data.

2. Related Work
Deep optics. Deep optics takes the idea of jointly op-

timizing optics and algorithm to improve various com-

putational imaging systems, e.g. microscopy [25], HDR

imaging [21, 32, 24], depth imaging [40, 3, 36], single-

pixel imaging [10], light field imaging [13], and compress-

ing imaging [12, 40, 21, 14, 44, 33]. Mask optimization

for video SCI has been increasingly studied under hard-

ware constraints [40, 21, 14]. Based on an emerging pro-

grammable sensor SCAMP-5, a hand-held video SCI cam-

era [21] has recently developed but its spatial-temporal res-

olution is very limited. These works attached great impor-

tance to the implementation of binary mask by using some

heuristic sensors. This paper aims to the performance of

real-world video SCI. To our best knowledge, we are the

first to optimize more challenging structural mask and re-

move the incompatibility between temporal multiplexing

and dynamic range.

Video SCI reconstruction. Video SCI reconstruction algo-

rithms can be classified into regularization-based methods

and learning-based methods. Regularization-based meth-

ods combine the idea of iterative optimization, e.g., gener-

alized alternating projection (GAP) [15] or alternating di-

rection method of multipliers (ADMM) [2], with various

prior knowledge, e.g., total variation (TV) [41] and non-

local low rank [17]. They provide usable results in an un-

supervised manner but cannot balance fidelity and speed.

In recent years, kinds of learning-based methods have been
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Figure 2. Illustration of video SCI encoder. High-speed scene is

first optically modulated with temporally-varying masks and then

integrated into a single digital image (i.e., snapshot measurement)

through an off-the-shelf image sensor. In the process, optical mod-

ulation and sensor response are two key ingredients.

developed for high fidelity and low inference time. Re-

cently, an E2E network STFormer [34] has achieved the

state-of-the-art (SOTA) results using temporal and spatial

Transformer, but at the cost of high parameters and com-

plexity. In addition to E2E networks, e.g., Unet [28], BIR-

NAT [5], MetaSCI [35], RevSCI [4], deep unfolding net-

works, e.g., GAP-net [23], ADMM-Net [18], SCI3D [37],

ELP-Unfolding [39], and plug-and-play (PnP) algorithms,

e.g., PnP-FFDNet [42] and PnP-FastDVDnet [43], have

been developed by combining an iterative optimization

framework with convolutional neural networks or a deep

image denoiser. Both regularization-based methods and

learning-based methods aim to solve the ill-posed inverse

problem of video SCI forward model, thus their perfor-

mance is susceptible to this model. Previous forward model

only considers optical transmission and modulation but

overlooks sensor response in practice. As a result, exist-

ing reconstruction networks lead to excellent results in syn-

thetic data rather than real data.

3. Video SCI: from Theory to Practice
Aiming to move one step further towards real-world

video SCI, we hereby make a wide appeal for modeling

video SCI under hardware constraints and employing struc-

tural mask instead of random binary mask.

3.1. Mathematical Model of Practical Video SCI

As shown Fig. 2, video SCI encoder is mainly composed

of optical modulation and sensor response. In the video SCI

decoder, a reconstruction algorithm is employed.

Optical modulation. By implementing temporally-varying

masks M(u, v, t) on B discrete time slots (1 ≤ t ≤ B), a

dynamic scene irradiance X(u, v, t) is modulated into the

coded spatial-temporal irradiance X̃(u, v, t) by

X̃(u, v, t) = M(u, v, t)�X(u, v, t), (1)

where (u, v, t) denotes the spatial-temporal coordinate and

� denotes the Hadamard (element-wise) product.

Sensor response. Given an image sensor, X̃(u, v, t) is inte-

grated as a single digital image Y (u, v) (i.e., snapshot mea-

x

y
t

Figure 3. Proposed structural mask (b) vs. widely-used random

binary mask (c). As demonstrated in (a), structural mask values

represent the transmittance of incident light and the sum of values

across temporal dimension is 1. It lead to the motion-aware mea-

surement (d), havinging more visual information than the mea-

surement (e) captured by random binary mask.

surement) by

Y (u, v) = R
[

B∑
t=1

X̃(u, v, t)

]
+Z(u, v), (2)

where R represents the mapping function of from scene

irradiance to image pixels and Z(u, v) denotes the noise

originated from measurement, read-out, etc. Defining the

vectorization operation on a matrix as vec(·), we can refor-

mulate Eq. (2) as the following vectorized form:

y = R ◦H(x), (3a)

s.t. H(x) = Φx+ z, (3b)

where x= vec(X), y = vec(Y ), z = vec(Z), and Φ=
[diag (vec(M(:, :, 1))) , · · · , diag (vec(M(:, :, B)))].
Computational reconstruction. Provided with the used Φ,

a regularization-based or learning-based reconstruction al-

gorithm D is employed to retrieve a decent estimate x̂ of x
from y by

x̂ = D(y) = D ◦R ◦ H(x). (4)

In general, R can be modeled as a combination of non-

linear response function f , out-of-range clipping function

g, and quantization function h, i.e., R= h ◦ g ◦ f , leading

to non-linearity, saturation error, and quantization error, re-

spectively. These functions are generally inevitable to trans-

form real-valued scene irradiance into digital image bright-

ness. In most industrial cameras, the non-linearity function

f can be corrected to be linear, thus R = h ◦ g ◦ f is sim-

plified as R = h ◦ g.

Previous works [41, 17, 18, 28, 5, 35, 4, 37, 34, 23] view

Eq. (3b), only considering optical modulation and sensor in-

tegration, as the forward model of video SCI. By introduc-

ing the complete sensor response, we present the forward

model in Eq. (3) closer to real system.

3.2. Proposed Structural Mask

As mentioned previously, there is an incompatibility be-

tween temporal multiplexing and dynamic range in existing

works due to the use of random binary mask. Here, we pro-
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pose a new type of structural mask to realize full-dynamic-

range (FDR) and motion-aware measurement for video SCI.

Structural mask is mathematically defined as

Mλ(u, v, t)∈
{ {0, 1/2λ, ..., 1−1

/
2λ} λ≥2

{0, 1} λ=1
(5a)

s.t.

B∑
t=1

Mλ(:, :, t) = 1, (5b)

where λ denotes the bit depth of mask. Unlike widely-used

binary mask, the proposed mask has two attributes: dis-
cretization and structuralization. Discretization indicates

that the mask can only take binary (λ = 1) or grayscale

(λ ≥ 2) values. Structuralization indicates that, at all spa-

tial coordinates, the sum across temporal dimension is fixed

to 1, as demonstrated in Fig. 3 (a). Due to the undesirable

performance of λ=1 (see Tab. 5), we mainly focus on the

setting of λ≥ 2 in this paper. Structural mask can also be

easily implemented in an off-the-shelf spatial light modula-

tor (e.g., DMD) at the cost of decreasing the pattern refresh

rate. Fortunately, current DMDs’ pattern refresh rate is high

enough for video SCI. Taking DLP7000 DMD 1 as an ex-

ample, the maximal pattern refresh rate is 32552 or 4069 for

1-bit (i.e., binary) mask or 8-bit mask, respectively.

Full dynamic range (FDR). The proposed structural mask

is capable of removing the incompatibility between tem-

poral multiplexing and dynamic range, rooted in previous

video SCI using random binary mask. Taking an 8-bit im-

age sensor as an example, it can record scene irradiance un-

der brightness range [0, 1, . . . , 255]. For 8-frame video SCI

(i.e., B = 8), the sum of random binary mask across tem-

poral dimension is approximate to 4, equivalent to that al-

most 4 video frames are integrated into a single image with

brightness range [0, 1, . . . , 255]. Accordingly, the bright-

ness range of each video frame is limited in [0, 1, . . . , 63],
leading to a low dynamic range. Clearly, it cannot meet the

wide range of brightness variations in natural scenes and

worsen along with larger B. Using the proposed structural

mask, each pixel of captured measurement is the weighted

sum of a sequence of video pixels across temporal dimen-

sion and the total weight is 1. It means that the bright-

ness range of measurement is equal to that of each of video

frames regardless of B. Therefore, the proposed structural

mask keep the dynamic range of video SCI in line with that

of the used sensors, i.e., full dynamic range (FDR).

Motion-aware measurement. As shown in Fig. 3 (d) using

structural mask, the motionless objects, background, and

motion trajectory could be greatly recorded in the captured

measurement. We refer to it as motion-aware measurement.

Such measurement can be viewed as a coarse estimate of

original video frames. Generating the network input from

a coarse estimate is essential in nearly all impressive video

1https://ti.com/product/DLP7000

SCI reconstruction works [5, 35, 4, 37, 39, 34]. Unlike our

direct acquisition by optics, previous works get the coarse

estimate by idealizing video SCI forward model as Eq. (3b)

and then computing
∑B

t=1 X̃(t)
/∑B

t=1 M(t). But their

estimate becomes Y
/∑B

t=1 M(t) in practice. The gap in

input initialization also makes for previous network’s per-

formance degradation in real system.

4. Deep Optics Framework for Video SCI

Previous video SCI reconstruction networks [28, 5, 35,

4, 34, 23, 18, 37, 39] were trained on the impractical for-

ward model in Eq. (3b) and thus achieved impressive per-

formance in simulation rather than real system. To bridge

the performance gap, we propose an E2E deep optics frame-

work to jointly optimize structural mask and a reconstruc-

tion network under hardware constraints.

Algorithm 1: Structural Mask Training

Input: A learnable mask M ′∈ [0, 1] with a size of

B×H×W and the desired bit depth λ≥2.

Output: A λ-bit structural mask Mλ.

1 Forward F(M ′):
2 /* Discretization */
3 L ←− 2λ

4 M ←− ⌊
M ′ · L+ 0.5

⌋
/L

5 M [M == 1] ←− 1− 1/L
6 M [:, sum(M , 0) == 0] ←− 1/L
7 /* Structuralization */
8 Ω ←− sum(M , 0)
9 Σ ←− L · (Ω− 1)

10 for 0 ≤ k < B do
11 W ←− M [k]�Ω
12 Δ ←− 	Σ�W + 0.5
/L
13 Mλ[k] ←− M [k]−Δ
14 Ω ←− Ω−M [k]
15 Σ ←− Σ− L×Δ

16 return Mλ

17 Backward G(x):
18 y ←− x
19 return y

4.1. Overall Architecture

As shown in Fig. 4 (a), a real-world video SCI system

is composed of a compressive camera in the physical layer

and a reconstruction algorithm in the digital layer. Due to

the lack of specialized video SCI dataset, the compressive

camera commonly needs to be formulated as the forward

model to synthesize a amount of measurement-video (y, x)
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Figure 4. Deep optics framework for the joint optimization of structural mask and a deep reconstruction network. ⊕, C©/ D©, and ⊗ denote

element-wise addition, channel concentration/division, and matrix multiplication, respectively. By default, (N1, N2)=(3, 3).

pairs as training dataset. During this process, we introduce

sensor response to be close to real compressive camera.

As shown in Fig. 4 (b), the joint optimization framework

includes the modeled encoder and the designed deep de-

coder, in which learnable mask weights φ and reconstruc-

tion network weights ψ are trained in an E2E manner. The

proposed structural mask Mλ is updated from φ by a dif-

ferentiable transformer F , which is detailedly introduced in

Sec. 4.2. Given the input 3D video X , the encoder com-

presses it into a 2D measurement Y by

Y = R
[

B∑
t=1

Mλ �X

]
. (6)

Before fed into the decoder, the captured 2D measurement

Y is initialized into a 3D datacube X ′ by

X ′ = Y + Y �M . (7)

The structural mask Φλ in the encoder and a deep recon-

struction network D as the decoder are jointly optimized by

the following vectorized loss function:

argmin
{φ,ψ}

K∑
k=1

‖Dψ ◦ R ◦ Hφ(xk)− xk‖22, (8)

where K denotes the number of training samples, φ and

ψ represents the parameters of learnable mask Mλ and

deep decoder D (described in Sec. 4.3), respectively. Since

sensor’s non-linearity is easily calibrated, we model the

sensor response of an 8-bit image sensor as R(x) =
	255 · x+ 0.5
/255, a composition of out-of-range clip-

ping and quantization. As a hard thresholding function,

R doesn’t yield useful gradients and it follows the training

strategy of mask optimization.

4.2. Structural Mask Optimization

Noise

grad.=

grad.=1

MM

x

y

11M

Figure 5. Illustration of mask optimization with non-differentiable

hardware encoder. During forward propagation, y = R[F(Φ′) ·
x]. During back propagation, the derivative of R and F (see

Alg. 1) are set to 1. Noise should be considered into the encoder

when error caused by measurement noise and physical mask mis-

calibration is non-negligible.

By considering mask as learnable weights, jointly op-

timizing mask with a deep reconstruction network could

contribute to video SCI as demonstrated in previous bi-

nary mask optimization works [12, 40, 21], which is gen-

erally faced with difficulties in forward-propagation bina-
rization and back-propagation differentiability. Compared

with them, optimizing the proposed structural mask is more

challenging due to the difficulties in forward-propagation

discretization and structuralization, and back-propagation

differentiability.

A pioneering work [11] indicated that back-propagation

gradients through discretization can be considered to be

invariant as long as the forward-propagation input is lim-
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ited in [−1, 1]. Inspired by this work, we propose a dif-

ferentiable structural mask transformer F to generate λ-bit

structural mask Mλ from a learnable loating-point mask

M ′ ∈ [0, 1]. As illustrated in Alg. 1, the input M is

first discretized and then structuralized in the desired dis-

crete domain during forward propagation, and following

the training strategy in [11], the gradient of F is set to 1
during backward propagation. In the discretization process,

the discretized mask M is fine-tuned to meet the structure

of the temporal sum being 1 at all spatial position. The

same back propagation strategy is also used for the non-

differentiable sensor response R. Φ′ and Φλ denote the

measurement matrix form of M ′ and Mλ, respectively.

The whole training framework is depicted in Fig. 5.

4.3. Res2former as Deep Decoder

Building spatial-temporal interactions is the key of video

SCI reconstruction. Temporal features are considered to

be as important as spatial features in previous reconstruc-

tion networks [28, 35, 4, 37, 39, 34]. Previous SOTA

STFormer [34] has a long-term spatial-temporal feature ex-

traction ability but the computational complexity and mem-

ory occupation is too high to enable real-world large-scale

video SCI. Considering the motion-aware property caused

by the proposed structural mask, we tailor an highly ef-

ficient reconstruction network, dubbed Res2former, as the

deep decoder. Res2former is the first to put most of com-

putations into capturing long-term temporal dependencies

using Transformers.

As demonstrated in the decoder of Fig. 4 (b), Res2former

is composed of a feature extraction module, a two-level U-

shaped network built by multiple ResTSA modules, and

video recovery module. Feature extraction module is to

extract low-level features from measurement domain, com-

posed of two 3D convolutional layers with kernel sizes of

3× 3× 3 and 1× 3× 3 respectively. From the perspec-

tive of U-Net [30], N1 ResTSA modules work with two

downsampling/upsampling operations as encoder/decoder

and N2 ResTSA modules as the bottleneck. Such an ar-

chitecture can enable Res2former to learn high-level fea-

ture residuals from the low-level feature embeddings com-

putationally efficiently. The video reconstruction module is

composed of pixelshuffle [31] and two 3D convolution lay-

ers with kernel sizes of 1×1×1 and 3×3×3 respectively.

The main novelties of Res2former is ResTSA module and

its temporal self-attention (TSA) mechanism. Next, we in-

troduce them in detail.

ResTSA Module. Previous works [38, 19] have indicated

that channel grouping calculations can effectively reduce

model complexity and layered interactions between groups

can effectively improve the multiple-scale representation

ability [7]. As shown in Fig. 4 (c), ResTSA module is also

a hierarchical and residual-like structure built by multiple

TSA branches. Given an input Xr, a P -level ResTSA mod-

ule can be formulated as

L1,L2, ...,LP = Div(L),
L′

1 = TSA(L1),
L′

2 = TSA(L2 +L′
1),

...

L′
P = TSA(LP +L′

P−1),
L̄ = Conv1×1×1(Concat(L′

1,L
′
2, ...,L

′
P )) +L.

(9)

where Div and Concat denote the channel division and

concatenate respectively.

TSA Branch. With a global perception ability, Transformer

can mitigate the shortcomings caused by CNNs’ limited re-

ceptive field and has achieved SOTA performance for video

SCI reconstruction [34]. However, self-attention compu-

tation along spatial-temporal (3D) dimensions leads to a

computational bottleneck for real-world large-scale video

SCI applications. Inspired by [1, 34], in each ResTSA

module, self-attention computation is limited in the tem-

poral dimension. Given an input L ∈ R
B×H×W×C , we

first use a 2D convolution to establish local interrelations

and then reshape the output into Lt ∈ R
HW×B×C , i.e.,

Lt = Reshape(Conv3×3(L)). Next, we can obtain query
Q ∈ R

HW×B×C
2 , key K ∈ R

HW×B×C
2 , and value V ∈

R
HW×B×C

2 by the following linear projection:

Q = LtW
Q,K = LtW

K ,V = LtW
V , (10)

where {WQ,WK ,W V } ∈ R
C×C

2 denote the linear pro-

jection matrices. Note that the output dimension is reduced

to half of the input dimension, further decreasing the com-

putational complexity. Then, Q, K, and V are divided

into N heads along the feature channel: Q = {Qk}N1 ,

K = {Kk}N1 , V = {V k}N1 ∈R
HW×B× C

2N . For k-th head,

the attention can be calculated by

headk = Ak ∗ V k, (11)

where Ak = softmax(QjK
T
j /

√
d) ∈ R

HW×B×B repre-

sents an attention map with a scaling parameter d = C
2N .

Finally, we concatenate the outputs of N heads along the

channel dimension and perform a linear mapping to obtain

the final output L′∈R
B×H×W×C :

L′=L+ Reshape(W (Concat[head1, ..., headN ])),
(12)

where W ∈ R
C
2×C is the linear projection matrix. After

temporal self-attention calculations, long-term correlation

have been established. Next, we use the feed-forwad net-

work, composed of two 3D convolutions with kernel sizes

of 3×3×3 and 1×1×1, respectively, to further improve

the model capacity and the local detail refinement ability,

which can be formulated as

L̄ = L′+Conv1×1×1(LeakyReLU(Conv3×3×3(L′))). (13)

10651



Table 1. Definition of different encoders.

Encoder Configuration

RBw/oSR Random Binary Mask without Sensor Response

RBwSR Random Binary Mask with Sensor Response

LSwSR Learned Structural Mask with Sensor Response

Table 2. Average PSNR (left), SSIM (center) and Q-Score (right)

of different networks on six grayscale benchmark datasets.

Network
Train: RBw/oSR Train: RBw/oSR
Test: RBw/oSR Test: RBwSR

U-net [28] 29.45, 0.882, 47.31 27.02, 0.878, 46.82

BIRNAT [5] 33.31, 0.951, 50.30 29.72, 0.935, 48.80

MetaSCI [35] 31.72, 0.926, 48.34 28.84, 0.921, 47.92

RevSCI [4] 33.92, 0.956, 51.21 29.71, 0.939, 49.43

SCI3D [37] 35.26, 0.968, 52.70 30.97, 0.952, 50.94

ELP-Unfolding [39] 35.41, 0.969, 53.02 30.77, 0.955, 51.53

STFormer [34] 36.34, 0.974, 54.00 31.78, 0.962, 52.15

Table 3. Average PSNR, SSIM and Q-Score of the re-trained U-

net, RevSCI, SCI3D, and STFormer.

Network Train & Test: RBwSR
U-net[28] 24.67, 0.878, 46.25

RevSCI [4] 26.46, 0.897, 46.57

SCI3D [37] 27.54, 0.939, 49.51

STFormer [34] 27.66, 0.941, 49.69

Drop
#2

Aerial
#4

Ground Truth U-net RevSCI SCI3D STFormer

Figure 6. Visual results of the re-trained Unet, RevSCI, SCI3D,

and STFormer.

4.4. Compared with Previous Framework

Previous reconstruction networks [28, 5, 35, 4, 34, 23,

18, 37, 39] were trained using random binary mask without

considering sensor response and thus have achieved impres-

sive performance on simulation rather than real system. The

proposed deep optics framework aims to this problem. As

mentioned previously, the modeled encoder is essential for

training and simulated testing. As shown in Tab. 1, different

encoders are distinguished into

• Previous framework: i) training a deep decoder with

the RBw/oSR encoder; ii) deploying the well-trained

deep decoder into real video SCI systems.

• Our framework: i) training a deep decoder with the

LSwSR encoder in an E2E fashion; ii) deploying the

learned structural mask and the well-trained deep de-

coder into real video SCI systems.

5. Experiments
In this section, we validate the effectiveness of the pro-

posed deep optics framework, including learned structural

mask and reconstruction network Res2former. We evalu-

ate the accuracy of different networks’ reconstruction by

peak signal-to-noise-ratio (PSNR), structured similarity in-

dex metrics (SSIM), and Q-Score of HDR-VDP-2 [20] (dy-

namic range metric) and by our built real system.

5.1. Datasets and Implementation Details

Following previous works [28, 5, 35, 4, 34, 23, 18, 37,

39], we employ DAVIS2017 [26] as the training dataset. For

the simulation test, 6 benchmark datasets including Kobe,

Runner, Drop, Traffic, Aerial, and Vehicle with

a size of 256 × 256 × 8 are used. For the real data, we

built a video SCI prototype using a DLP7000 DMD, whose

details are in supplementary materials (SM). The real data

with a size of 768 × 1024 × 10 is captured from Car and

Windmill scenes by our prototype. The proposed E2E

network is trained on Pytorch with 8 A40 GPUs. Adam op-

timizer is used to minimize the loss function with the learn-

ing rate of 10−4.

5.2. Results on Synthetic Data

Before evaluating the proposed method, we give a

clear insight into the performance degradation of pre-

vious video SCI reconstruction networks in real sys-

tem, including Unet [28], BIRNAT [5], MetaSCI [35],

RevSCI [4], SCI3D [37], ELP-Unfolding [39], and the

SOTA STFormer [34]. These well-trained networks (based

on the RBw/oSR encoder) in their works are now tested

with the RBwSR encoder (close to a real system). To avoid

overexposure caused by binary mask, automatic aperture

is simulated by value scaling before sensor response. As

shown in Tab. 2, there is a serious degradation in both

structural information (PSNR, SSIM) and dynamic range

(Q-Score). Obviously, it is caused by the gap between

training without sensor response and testing with sensor re-

sponse. Unfortunately, the RBw/oSR-training-plus-RBwSR-

using framework is prevailing even though sensor response

is inevitable in hardware encoder. It could be a natu-

ral explanation for why the performance of previous net-

works [28, 5, 35, 4, 34, 23, 18, 37, 39] on real data is far

from that on simulation. Moreover, we have re-trained four

representative networks, including Unet [28], RevSCI [4],

SCI3D [37], and STFormer [34] with the RBwSR encoder.

The results are shown in Tab. 3 and Fig. 6. All these

re-trained networks lead to worse results and their recon-

structed video frames have an visually clear degradation in

the dynamic range. It is because these networks are inca-

pable of simultaneously resolving compressive video recon-

struction and dynamic range reconstruction caused by ran-

dom binary mask. With unavoidable sensor response in real
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Table 4. Average PSNR, SSIM and Q-Score of different networks on six grayscale benchmark datasets.

Network
Under Previous Framework Under Our Framework

Gain ↑ Parameters FLOPs Runing Time

(with impractical RBw/oSR encoder) (with practical LSwSR encoder) (M) (G) (s)

U-net [28] 29.45, 0.882, 47.31 32.42, 0.940, 49.72 2.97, 0.058, 2.41 0.82 53.49 0.01

RevSCI [4] 33.92, 0.956, 51.21 34.81, 0.965, 52.74 0.89, 0.009, 3.31 5.66 766.95 0.19

STFormer [34] 36.34, 0.974, 54.00 36.69, 0.976, 55.08 0.35, 0.002, 1.08 19.48 3060.75 0.49

Res2former NA 35.98, 0.972, 54.31 NA 11.02 861.76 0.19

Res2former-L NA 36.56, 0.975, 54.93 NA 17.70 1362.51 0.42

#2

#6

#10

#2

#6

#10

#2

#6

#10

#1

#5

#9

#1

#5

#9

#1

#5

#9

(1a) (1b) (1c) (2a) (2b) (2c)
Figure 7. Results of real data. (1a)-(2a), (1b)-(2b), and (1c)-(2c) are reconstructed by STFormer under previous framework, STFormer

under our framework, and Res2former under our framework, respectively. Our deep optics framework brings a significant improvement

compared with previous framework. In real data, the proposed Res2former is as good as STFormer.

Figure 8. Dynamic range comparison through the 3D heat map of

a standard ColorChecker placed in scenes, which is an average ef-

fect of the recovered 10 video frames. Obviously, Res2former and

STFormer under our framework can retrieve wider dynamic range

(close to ground truth) than STFormer under previous framework.

system, random binary mask is therefore not the best choice

unless using expensive high bit depth sensor (defying the

main motivation of video SCI).

Next, we valuate the generalization of the proposed deep

optics framework and Res2former’s effectiveness on bal-

ancing reconstruction performance and computational load.

Unet [28], RevSCI [4], and STFormer [34] are re-trained

under our deep optics framework as competitors, in which

only Res2former is replaced and 4-bit structural mask is

jointly optimized. As shown in Tab. 4, three other net-

works have archived improvement with various degrees.

The jointly-optimized U-net has achieved a significant im-

provement in PSNR and SSIM and the improvement of

the jointly-optimized RevSCI is the best in terms of Q-

Score, resulting from their promotion space is greater than

STFormer. The Res2former can achieve the result close to

the jointly-optimized STFormer (< 1dB) with only 28.15%
FLOPs and 56.57% parameters of STFormer and its run-

ning time is far less than STFormer. We have also tried to

increase the parameters of Res2former to close to that of

STFormer. The large Res2former, dubbed Res2former-L,

is generated by increasing channels from 96 to 128 and the

depth of ResTSA module from N1=3 to N1=5. Res2former-

L can achieve the same level as the jointly-optimized

STFormer and is better than the original STformer.

5.3. Results on Real Data
Table 5. Ablation study with different kinds of structural mask.

Mask Random Learned

1-bit 34.25, 0.964, 50.06 34.62, 0.964, 51.45

2-bit 35.03, 0.967, 53.17 35.87, 0.971, 53.91

3-bit 34.91, 0.965, 52.54 35.90, 0.971, 54.17

4-bit 34.95, 0.965, 52.85 35.98, 0.972, 54.31
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We validate the effectiveness of the proposed deep optics

framework and Res2former in our prototype whose details

can be got in SM. Previous SOTA STFormer is regarded

as the benchmark reconstruction network. We conduct real

system test in the following three settings: i) STFormer

under previous framework; ii) STFormer under our frame-

work; ii) Res2former under our framework. Two kinds of

high-speed scenes (Car and Windmill) are modulated by

random binary masks (previous framework) or the learned

structural masks (our framework) and then captured into

single-shot 768× 1024 measurement frames by an off-the-

shelf camera with 50 fps. The compressive sampling ratio

1/10. To ensure motion uniformity Car and Windmill
are driven by an electric linear gateway and a rotating motor,

respectively. As shown in Fig. 7, the reconstructed results

of STFormer under our framework is far better than that

of the original version of STFormer in dynamic and static

region. STFormer and Res2former are too close to call in

real data. Moreover, we analyze the dynamic range of these

recovered results. The proposed framework can eliminate

the dynamic range degradation (rooted in previous works)

completely and achieve FDR video SCI, as demonstrated in

Fig. 8. More results are in SM.

5.4. Ablation Study

To verify the proposed deep optics framework, we con-

duct two ablation experiments: i) learning for different bit

of structural mask; ii) training with learnable structural

mask or fixed structural mask (generated through Alg. 1

with an random input). All experiments are conducted

on Res2former and tested on the 6 grayscale benchmark

datasets. As shown in Tab. 5, mask optimization can con-

tribute to reconstruction regardless of the bit depth (space).

The larger the learnable mask space is, the better the re-

sults are, which follows the conclusion about mask condi-

tioning in [33]. With randomly generated structural mask,

Res2former cannot achieve its full potential.

6. Conclusion

Aiming to move one step further of video SCI towards

practical applications, we have proposed a deep optics

framework to jointly optimize the proposed structural mask

and reconstruction network Res2former. As validated in

simulation and real system, our framework can bring a

significant improvement for other networks. Besides, our

Res2former can provide competitive performance in a com-

putationally efficient manner.
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