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Abstract

Photometric stereo aims to recover detailed surface
shapes from images captured under varying illuminations.
However, existing real-world datasets primarily focus on
evaluating photometric stereo for general non-Lambertian
reflectances and feature bulgy shapes that have a cer-
tain height. As shape detail recovery is the key strength
of photometric stereo over other 3D reconstruction tech-
niques, and the near-planar surfaces widely exist in cul-
tural relics and manufacturing workpieces, we present a
new real-world dataset DiLiGenT-Π containing 30 near-
planar scenes with rich surface details. This dataset en-
ables us to evaluate recent photometric stereo methods
specifically for their ability to estimate shape details un-
der diverse materials and to identify open problems such as
near-planar surface normal estimation from uncalibrated
photometric stereo and surface detail recovery for translu-
cent materials. To inspire future research, this dataset will
open soruced at https://photometricstereo.
github.io/diligentpi.html.

1. Introduction
Photometric stereo [47, 44] aims at single view three-

dimensional (3D) reconstruction from image observations
captured under varying lights. Compared to structured
light-based 3D reconstruction techniques that are widely
applied in commercial scanners, the key strength of photo-
metric stereo is the detailed surface shape recovery, which is
of great interest for additive manufacturing and rendering.

To evaluate the effectiveness of photometric stereo meth-
ods, a batch of real-world benchmark datasets have been

† Equally contributed authors ‡ Corresponding authors.

built such as DiLiGenT [43, 41] (and its multi-view ex-
tension DiLiGenT-MV [29]), DiLiGenT102 [39] for distant
lights, and LUCES [34] for near lights. Existing datasets
focus on evaluating the effectiveness of photometric stereo
techniques on non-Lambertian surfaces, revealing the per-
formance of existing methods on real-world scenes. Since
the majority of target objects in these datasets are smooth
surfaces (some of them with a portion of detailed structures
on the surface), it is hard to evaluate the accuracy of sur-
face detail recovery, which is unique to photometric stereo
over other 3D reconstruction techniques. On the other hand,
near-planar surfaces usually accompanied with rich details
are commonly observed in our daily life, such as reliefs,
badges, and coins. However, existing photometric stereo
datasets mainly choose statue-like objects or other bulgy
shapes with a certain height as targets, lacking sophisticated
evaluation on near-planar surfaces.

In this paper, we build a new dataset named DiLiGenT-
Π1 for photometric stereo focusing on the recovery of near-
planar shape and surface details. As shown in Fig. 1, we col-
lect 30 representative real-world planar objects with rapidly
varied geometric details. The dataset can be categorized
into 4 groups containing metallic, specular, rough, and
translucent surface reflectance, respectively. The metal-
lic group contains 10 metallic coins; the specular group in-
cludes 10 enamel badges; the translucent group has 5 3D-
printed objects made by photo-polymer resin, and the rough
group contains 5 surfaces sharing the same geometry of the
translucent group but sprayed with a matte paint [35]. In
addition, our DiLiGenT-Π takes an optical profilometer to
capture the ultra-precise surface 3D structure in nanometer

1‘DiLiGenT’ [41] as the abbreviation of Directional Lighting, General
reflectance, with the ‘ground Truth’ shapes for photometric stereo bench-
marking. As we take the similar assumptions, we refer DiLiGenT as prefix
and use Π to indicate planar objects.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1: Overview of DiLiGenT-Π. We collect 4 groups of near-planar objects with rich surface details and diverse re-
flectance types (metallic, specular, rough, and translucent). The corresponding ‘ground-truth’ surface normals shown in the
even rows are measured via a precise profilometer in the accuracy of nanometers.

accuracy, providing the ‘ground truth’ surface normal with
well-preserved tiny surface details.

We apply DiLiGenT-Π to evaluate up-to-date photo-
metric stereo methods under the settings of calibrated and
uncalibrated distant light, and benchmark the reconstruc-
tion performance on detailed structures and near-planar sur-
faces. The evaluation results reveal the difference in surface
detail recovery of learning-based photometric stereo meth-
ods working with per-pixel and all-pixel manners [54]; the
challenging problems of uncalibrated photometric stereo for
near-planar surfaces; and the influence of translucent and
rough reflectance on surface detail recovery. The analy-
sis on the DiLiGenT-Π presents new challenges and open
problems for photometric stereo.

To summarize, this paper contributes to photometric
stereo benchmark and inspires future research by propos-
ing:

• the first real-world dataset, DiLiGenT-Π, that evaluates

near-planar surfaces with rich geometric details;
• up-to-date benchmark evaluation of photometric stereo

recovering important features for handling surface de-
tails; while

• revealing inherent obstacles of planar detailed objects
to photometric stereo with open problems.

2. Related Work
This paper focuses on the benchmark dataset for eval-

uating photometric stereo on near-planar surfaces with rich
details. In the following sections, we will discuss the related
datasets and representative works in photometric stereo.

2.1. Photometric Stereo Datasets

Synthetic datasets adopt physical-based rendering en-
gines such as Mitsuba [22] and Blender [11] to create image
observations and the corresponding surface normal maps of
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Table 1: Summary of real-word photometric stereo datasets. Material: controlled (C: fabricated or carefully selected with
controlled categories) or uncontrolled (UC: randomly picked up from daily objects); Ground Truth (GT measure): from
CAD/Scanned models with registration (+Reg) or from photometric stereo (PS). Number (#) of shapes, lights, and sets (one
set means a sequence of photometric stereo images under varying lighting conditions used for computation).

Dataset

DiLiGenT-Π DiLiGenT102 [39] DiLiGenT [41] LUCES [34] Harvard [51] ETHz [27] Gourd&Apple [4]
GT measure Scan+Reg CAD+Reg Scan+Reg Scan+Reg PS Scan+Reg PS
Material C C UC UC UC UC UC
# Shapes 30 10 10 14 7 3 2
# Lights 100 100 96 52 20 260 102/112
# Sets 30 100 10 14 7 3 2

diverse synthetic scenes. DPSN [40] introduces the first
synthetic photometric stereo dataset BlobbyPS, comprising
10 smooth Blobby [23] shapes with reflectance assigned by
measured MERL BRDFs [33] rendered under 96 light di-
rections. To extend the smooth surface of Blobby to more
complex shapes, PS-FCN [8] takes 59, 292 scanned sculp-
tures to render the ScuplturePS dataset. CNN-PS [18] pro-
poses the CyclePS dataset to extend material distribution
from uniform to spatially-varying, where each sub-region
or even each pixel of the surface is assigned with distinct
reflectances modeled by Disney Principle BSDF [5]. While
synthetic datasets expand photometric stereo data availabil-
ity, existing synthetic datasets are mostly rendered with
statue-like objects such as the shapes in Blobby [23] and
Sculpture dataset [6], leading to a shape domain gap to flat-
ten surfaces. In this paper, we render a synthetic dataset
containing 127 near-planar surfaces with rich details to en-
hance learning-based photometric stereo on near-planar sur-
face recovery.

Real-world datasets complement the gap between com-
puter graphics rendering and real-world imaging process.
The Gourd&Apple dataset [2] releases image observations
of 2 objects with spatially-varying isotropic BRDFs. Har-
vard dataset [50] contains 7 surfaces with uniform diffuse
reflectance. However, the ground truth surface normal of
the above two datasets is not provided. DiLiGenT [41]
records 10 objects with diverse shapes and general non-
Lambertian materials. Starting from DiLiGenT [41], bench-
mark evaluation of photometric stereo becomes available
based on the ‘ground truth’ surface normal from scanned
meshes. The following-up datasets further extends DiLi-
GenT [41] from the perspective of multi-views (DiLiGenT-
MV [30]), controlled materials and shapes (DiLiGenT
102 [39]), near-field illumination (LUCES [34]), environ-
ment illumination [1, 16, 17], and global illumination ef-
fects [27].

As summarized in Tab. 1, objects contained in exist-
ing real-world photometric stereo datasets are mostly bulgy
and smooth, which do not include flattened or near-planar
surfaces though they are commonly seen in our daily life.
More importantly, the smooth target shapes are not suitable
to evaluate the uniqueness of photometric stereo over other
3D reconstruction techniques, that is, the high-fidelity sur-
face detail recovery, especially for delicate structures. To
address these two problems, we newly build a real-world
photometric stereo dataset containing near-planar surfaces
with rich geometric details.

2.2. Photometric Stereo Methods

We briefly review existing photometric stereo meth-
ods based on distant calibrated and uncalibrated light set-
tings. Please refer to the photometric stereo survey of
non-learning based methods [41] and learning-based meth-
ods [54, 25] for more comprehensive analysis.

Calibrated photometric stereo works with calibrated dis-
tant lights. Existing non-learning based methods either treat
specular highlights and shadows as sparse outliers [48, 38]
or propose parametric or data-based reflectance model to
explicitly handle the non-Lambertian reflection [10, 14,
42, 15]. Beginning from DPSN [40], the image observa-
tions are directly mapped to the corresponding surface nor-
mal via deep neural networks, where the non-Lambertian
reflectance is implicitly learned from the synthetic train-
ing data. The network structure in existing learning-based
methods can be divided into the all-pixel branch (represen-
tative work: PS-FCN [8]) and the per-pixel branch (repre-
sentative work: CNN-PS [18]). Based on these two typ-
ical network structures, following-up works further pro-
mote photometric stereo by addressing the global illumi-
nation effects (e.g. PX-Net [32]), reducing the number of
inputs (e.g. SPLINE-Net [53], LMPS [28]), combining the
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merit of per-pixel and all-pixel methods (e.g. GPS-Net [52],
PS-Transformer [19]). However, few methods focus on the
recovery of surface details despite its importance in pho-
tometric stereo. Ju et al. [24] firstly addressed the high-
frequency surface details in photometric stereo based on
attention-weighted loss. Their following-up work [26] fur-
ther enhanced the detail recovery accuracy via a double-gate
normalization and a parallel high-resolution structure.

Uncalibrated photometric stereo works under unknown
distant light directions, so that photometric stereo becomes
more challenging even with Lamebrain reflectance assump-
tion. Non-learning based methods adopt the local diffuse
reflectance (LDR) maxima [37], perspective camera [36],
specularities [13], albedo entropy [3] to resolve the sur-
face normal estimation ambiguity in uncalibrated Lamber-
tian photometric stereo. Beginning from SDPS-Net [7],
learning-based uncalibrated photometric stereo methods ca-
pable of handling non-Lambertian reflectance are proposed.
SDPS-Net [7] first estimates the light directions and intensi-
ties from input image observations, and then feeds them into
the normal estimation network. Kaya et al. [27] proposed an
uncalibrated deep neural network with an inverse rendering
module, where the inter-reflections are explicitly modeled
in the image formation process. Following the analysis of
Chen et al. [9], the light calibration in deep uncalibrated
photometric stereo is related to the existence of attached
shadows and specular highlights in the image observations.
For near-planar surfaces where surfaces are flattened and
attached shadows are rarely observed, whether the existing
methods can be applied is not evaluated. The above un-
calibrated photometric stereo methods assume distant light.
Existing methods further extend the illumination setting to
general natural light. Lichy et al. [31] proposes a weakly
calibrated method working in the indoor environment, re-
quiring at most 6 images from approximately known light-
ing directions. Ikehata proposes photometric stereo meth-
ods [20, 19] to handle general unknown illumination in real-
world scenes.

3. DiLiGenT-Π Dataset
This section introduces our DiLiGenT-Π dataset, which

contains 30 near-planar scenes covered by varying materials
and geometric details. Each real-world scene contains RGB
images under 100 varying light directions and a precisely
measured ‘ground-truth’ normal map. The resolution for
each scene is 960× 960.

3.1. Objects groups

As shown in Fig. 1, we collect 4 groups of near-planar
objects named by their reflectance properties: metallic,
specular, rough, and translucent. In each group, we select
target objects with rich geometric details with size around

15 ∼ 25 mm.

Metallic group. We choose 10 different coins as target
objects commonly observed in our daily life. These coins
are casted from different metallic materials, such as nickel,
brass, aluminum alloy, and bi-metal. The reflectance distri-
butions are either uniform (e.g. CRAB) or spatially-varying
(e.g. RHINO). The surface normal of the coins contains rich
and delicate geometric details and even traces of daily use.
Their corresponding surface PV (peak to valley) depth value
is usually less than 1 mm.

Specular group. We choose 10 sets of badges as the tar-
get objects. These badges are made of polished metal, plas-
tic, and enamel, showing strong and sparse specular spikes
(e.g. BEAR), or broad and soft specular lobes (e.g. TREE) on
their captured images. All objects in this category contain
spatially-varying reflectances and have greater depth vari-
ation (PV is around 1.5 mm), making this group different
from the metallic group.

Translucent group. We collect 5 sets of 3D-printed re-
lief surfaces to build the translucent object group. The ma-
terials for 3D printing for the LOTUS-T and the BAGUA-T
are photo-polymer resin2 with different colors, respectively,
which is known to be slightly translucent, bringing unavoid-
able subsurface scattering in the surface reflectance. The
surface shapes in this group have even stronger surface un-
dulating (PV is around 4 mm), leading to stronger shadows
and inter-reflections being observed in the captured images.

Rough group. We fabricate another 5 sets of 3D-printed
relief surfaces sharing exactly the same shapes with the
translucent group but covered by gray matte spray3, whose
reflectance is approximately close to the Oren-Nayar diffuse
model [35] and the Torrance-Sparrow specular model [46],
as analyzed in [45].

3.2. Capture System and Light Calibration

As shown in Fig. 2, we design and build a photometric
stereo image capture setup with the function of automatic
illumination and capture at varying light directions. The
capture system is placed into a darkroom cage covered with
black felt to shield the ambient lights.

On the illumination side, we build a dual-axis rotation
platform to control the light direction, which is based on
robot arms capable of omni-direction illuminations on the
upper hemisphere of the target surface. We attach a sin-
gle LED light source on our robot arm to ensure the con-
sistency of emitted light intensity among different images.
We further adopt a co-concentric rotation design to achieve

2Kexcelled Ultradetail: https://www.kexcelled3d.com/pro
ducts/ultrdetial/. Retrieved August 16, 2023.

3FA-5: http://cysygroup.com/en/product.asp?catego
ry=NDT&page=5. Retrieved August 16, 2023.
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Figure 2: Capture system overview. Our automatic pho-
tometric stereo image capture equipment is placed in the
blackout cage, containing two rotation axes to provide illu-
mination from an arbitrary direction from the upper hemi-
sphere. A lens is placed in front of the LED to improve the
directionality and uniformity. Six mirror balls around the
object are used to calibrate light directions ‘on the fly’.

Figure 3: Process of obtaining a ‘GT’ normal map.

roughly the same distance between light and the target sur-
face so that the received light intensities at different surface
positions are roughly the same. To improve the directivity
of the LED point light source, A convex lens is placed in
front of the LED source.

On the camera side, we use a Daheng MER-503-36U3C
camera4 with a 50 mm lens to record 12-bit raw images
(with linear radiometric response). Under each directional
light, we capture 10 images with the exposure time set-
tings from 1 ms to 10 ms, from which a high dynamic
range (HDR) image that records both dark shadows and

4Camera website: https://www.get-cameras.com/USB-
Camera-Sony-IMX264-MER-503-36U3C. Retrieved August 16,
2023.

bright specular highlights can be reconstructed based on the
existing HDR algorithm [12].

During the capture, the object is placed in the center of
the rotation platform. The system controls the robot arm
to move toward a pre-defined light direction and triggers
the camera to shoot at various exposure times to obtain an
HDR image measurement. Then, the robot arm is rotated
to the next light direction. Totally, 100 HDR images under
varying lights are recorded by repeating the above process.

To calibrate the light directions, we place 6 mirror balls
with a radius of 8 mm around the object stage, and record
the specular highlights at each mirror ball during data cap-
ture. The light directions can then be calculated based
on the specular positions following the same calibration
method described in existing methods [41, 39]. Please
check our supplementary material for more details.

3.3. Obtaining the ‘GT’ Normal Map

Similar to previous real-world datasets: DiLiGenT [41]
and LUCES [34], we measure the ‘ground truth’ surface
normal from scanned mesh in DiLiGenT-Π. As shown in
Fig. 3, we apply a commercial 3D scanner Bruker Alicona
Infinity Focus (up to 10 nm accuracy)5 to measure a precise
point cloud. The scanner is based on Focus-Variation mea-
surement and can probe vertical surfaces precisely, which is
necessary to scan near-planar objects completely.

Given a scanned mesh of the near-planar surface, we
manually adjust the camera pose to align the mesh with one
captured image by matching key points and geometric fea-
tures. Then, taking the calibrated intrinsic camera parame-
ters and the extrinsic pose, we render the mesh to the corre-
sponding surface normal map by Blender [11] with the same
resolution to the captured images. We try our best to check
key points accuracy at the sub-pixel level, but inevitable er-
rors in the manual alignment process might still exist, so we
add a quotation on the ‘ground truth’ like [41, 39].

4. Benchmark Analysis
This section showcases the benchmark results for photo-

metric stereo techniques using the DiLiGenT-Π dataset.

4.1. Baseline Methods & Evaluation Metric

Based on the survey [41] adopt non-Learning photo-
metric stereo, we choose the baseline method (least-square
based Lambertian photometric stereo [47], LSPS), base-
line method with position thresholding strtegy [41] (TH28
and TH46 reject pixels whose intensities under varying
lights are outside the range of [20%, 80%] and [40%, 60%]),
respectively), WG10 [49] (a robust photometric stereo
method based on outlier rejection), ST14 [42] (showing

5Alicona website: https://www.alicona.com/en/product
s/infinitefocus. Retrieved August 16, 2023.
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Table 2: Benchmark results on our real-world dataset DiLiGenT-Π. Mean angular error in degree of each object on various
methods are presented, and the average angular error for each material group and for all objects is shown in the bottom rows.
We denote ‘NA-PSN’ as the abbreviation of NormAttention-PSN [26].

Calibrated Methods Uncalibrated Methods

Plane
LSPS
[47]

TH28
[41]

TH46
[41]

WG10
[49]

ST14
[42]

PX-
Net
[32]

CNN-
PS

[18]

PS-
FCN
[8]

GPS-
Net
[52]

NA-
PSN
[26]

PF14
[37]

UPS-
FCN
[8]

SDPS-
Net
[7]

LW21
[31]

SDM-
UniPS
[20]

M
et

al
lic

FLOWER 5.8 6.8 7.5 6 7.2 7.9 5.5 4.7 4.6 4.6 4.6 35.3 12.7 12.8 23.9 15.2
BIRD 9 8.1 9.1 8 11.6 10.8 8.8 6.8 7.2 6.8 6.9 34.9 15.4 17.6 28.5 26.5

RHINO 6.8 7.5 7.8 8.9 9.3 8.9 10.6 4.9 5.3 5.6 5.1 30.2 17.7 24.9 26.8 17
LIONS 6.6 6.7 7.7 7.4 9.1 8.1 6.8 4.7 4.5 4.6 4.4 40.9 11.8 19.6 27.1 9.2
QUEEN 6.2 7.5 8.1 8.9 8.6 8.3 14.7 5.4 4.7 4.7 4.9 46.4 12.6 16.5 27.2 10.6
CRAB 5.9 7.1 7.6 8.6 8.5 8.4 7.2 4.5 5.3 4.9 4.4 31.7 18.1 20.5 26.8 25.4
SHIP 5.9 7.1 8.9 6.4 9.3 9.1 12.3 4.9 6.1 5.1 4.9 89.7 15.6 19 26.4 22
PARA 6.7 6 6.6 5.1 8.4 8 4.9 3.9 4.7 4 4.2 42.7 17 19.8 24.6 23.2
SAIL 6.9 8.7 10.2 8.8 8.1 8.2 13.4 5.2 5.1 5.5 5.2 40.6 13.5 16.7 27 10.5
FISH 5.2 6.7 7.9 6.5 8.2 8.1 7.4 4.2 4.6 4.6 4.4 39.9 15.8 23.6 25.6 24.5

Sp
ec

ul
ar

TREE 20.1 9.4 11 9.7 14.9 10.6 11.3 7.8 10.2 9.3 9.7 32 40.6 34.1 35.8 47.2
OCEAN 14.5 6.2 6 5.9 8.4 7.6 5.9 4.6 5.8 5.4 5.8 77.9 26.7 31.4 28.1 34.6
LUNG 20.3 8.2 8.8 8.1 11.8 9.4 7.6 5.7 9.7 7.5 7.8 41.5 36.5 40.2 34.4 46.6
BEAR 9.8 9.1 8.5 8.9 8.6 9.7 7.9 7.4 7.4 6.9 7.4 84.8 27.6 30.7 27 23.8

TV 19.6 11.7 13.3 13.2 17.1 13.5 12.1 11.3 10.6 10.6 9.6 73 22.8 41.1 35.4 34.4
SUN 11.9 7.9 9.5 11.7 10.5 8.2 6.7 5.8 6.7 8 5.6 27.9 22.8 31.5 24 26.2

TAICHI 17.3 9.2 11.2 11 17.9 10.7 8.7 8.3 8 8.3 7.6 58.9 29.8 26.9 28.9 36.6
WAVE 15.7 6.9 7.7 7.3 9.2 8.4 7.1 5.3 6.8 6.3 6.1 76 30.8 39.1 25.9 34.9
ASTRO 17.6 7.9 8.7 7.9 11.4 9.2 7.1 6 7.2 7.7 7.2 35.2 25.9 37.7 36.5 37.8
WHALE 16.3 8.8 8.9 8.5 13.4 10.1 9.5 11.6 12.2 10.4 8.7 63.2 37.6 29.8 32 33.8

Tr
an

sl
uc

en
t BAGUA-T 20.6 16.7 16.5 16.1 17.8 17.4 15.8 16.4 16.8 16.1 16.5 20.3 19.9 28.9 27.8 17.1

LOTUS-T 15.9 14 14.1 13.8 14.3 14.5 13.7 13.5 13.6 13.7 13.7 19.8 19.5 26.5 21.3 13.6
LION-T 30.1 21 20.5 19.9 21.6 21.3 18.4 20.3 21.2 23.4 21 22.7 25.8 23.6 30.5 16.2

PANDA-T 18.6 16.4 16.4 16.3 16.8 16.8 15.9 16.6 17.2 17 16.6 19.2 18.5 23.7 22.8 17.6
CLOUD-T 18.7 17 17 16.8 18.1 17.7 16.1 17.2 17.8 17.6 17.3 20.6 20.7 27.5 24.2 19.2

R
ou

gh

BAGUA-R 20.4 13.2 12.2 11.6 16.5 13.6 11.9 12.2 13 16.4 12 19.5 16.8 22.5 25 14.6
LOTUS-R 15.7 12 11.7 11.3 12.3 12.4 11 10.9 11.8 13.4 10.8 18.3 14.7 21.7 23.8 11.8
LION-R 30.2 19.4 17.8 17 19.4 19.1 17.9 15.8 18.4 23 16.4 19.5 25.2 20.8 29.7 15.9

PANDA-R 18.7 14.6 14.1 14 16 15 14.1 14.2 14.8 16.3 13.9 17.4 16.8 21.8 21.6 17.1
CLOUD-R 18.4 14 13.6 13.5 17.4 14.7 13.6 14.6 14.3 15.9 13.4 18.4 16.8 27.4 21.7 17.1

M.Avg. 6.5 7.2 8.1 7.5 8.8 8.6 9.2 4.9 5.2 5.1 4.9 43.2 15 19.1 26.4 18.4
S.Avg. 16.3 8.5 9.4 9.2 12.3 9.7 8.4 7.4 8.5 8 7.5 57 30.1 34.3 30.8 35.6
T.Avg. 20.8 17 16.9 16.6 17.7 17.5 16 16.8 17.3 17.6 17 20.5 20.9 26.1 25.3 16.8
R.Avg. 20.7 14.6 13.9 13.5 16.3 15 13.7 13.5 14.4 17 13.3 18.6 18.1 22.8 24.4 15.3
Avg. 14.5 10.5 11 10.6 12.7 11.5 10.8 9.2 9.8 10.1 9.2 39.9 21.5 25.9 27.3 23.3

best performance at DiLiGenT reported in [41]). Based
on surveys about the learning-based photometric stereo [54,
25], we choose representative networks handling pho-
tometric stereo in an all-pixel manner (NormAttention-
PSN [26], PS-FCN [8]), per-pixel manner (CNN-PS [18],
PX-Net [32]), and the method GPS-Net [52] that considers
both the per-pixel and the all-pixel structures. Besides the
above calibrated photometric stereo methods, we also eval-

uate existing uncalibrated photometric stereo approaches,
including a non-learning based method PF14 [37] (show-
ing the best performance under uncalibrated setting as re-
ported in [41]), three representative learning-based methods
SDPS-Net [7], UPS-FCN [8] and UPS-GCNet [9] published
in recent years. We also include photometric stereo methods
such as LW21 [31] and SDM-UniPS [20] that are based on
more general natural illumination setup. During the evalu-
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ation, we adopted the code and pre-trained model released
by the authors to process the collected data in DiLiGenT-Π.

Similar to DiLiGenT [41] and DiLiGenT102 [39], the
mean angular error (MAngE) between the estimated and
the ground-truth surface normal is used as the metric for
measuring the performance of photometric stereo methods
quantitatively.

To clarify any concerns regarding the benchmark re-
sults, it’s important to note that the input format varies
between optimization-based methods (LSPS [47], TH28,
TH46, WG10 [49], ST14 [42], and PF14 [37]) and other
learning-based methods. Optimization-based methods em-
ploy a float format, providing higher precision, while other
learning-based methods utilize quantized 16-bit input. This
differentiation arises because the optimization-based meth-
ods are not sensitive to changes in the pixel value range re-
sulting from quantization. For the learning-based methods,
adhering to the standard procedure and employing quan-
tized images as input ensures the reliability of the evaluation
results.

4.2. Analysis to Different Baselines

As shown in Table 2, we evaluate the surface normal es-
timation accuracy for all methods on DiLiGenT-Π. In the
following, we first analyze the surface detail recovery from
calibrated photometric stereo, followed by the analysis of
uncalibrated photometric stereo on near-planar surfaces.

Calibrated photometric stero. From Table 2, we observe
that the LSPS [47] shows the best performance over other
non-learning-based photometric stereo methods, while the
angular error difference between LSPS [47], TH28, TH46,
and ST14 [42] are marginal. For surfaces with shadows
such as LION R, or containing dominant Lambertian re-
flectances and sparse specular highlights such as FLOWER,
TH46 is more effective than the LSPS [47]. However, TH46
could be unstable as only 20% of the image observations un-
der varying lights are used for computing surface normals,
especially for surfaces with dark reflectances (e.g.SUN and
TV). These observations are consistent with the previous
evaluation on DiLiGenT102 [39].

Among learning-based calibrated photometric stereo,
CNN-PS [18] and NormAttention-PSN [26] achieve smaller
mean angular errors, showing their advantages on de-
tailed surface recovery. As shown in Fig. 4, we visualize
the error distributions of PS-FCN [8], CNN-PS [21], and
NormAttention-PSN [26] on four representative surfaces
belong to the four reflectance groups. PS-FCN [7] outputs
blurry normal estimation results as highlighted in Fig. 4,
possibly due to the spatial smoothness brought by the fully
convolutional networks. As CNN-PS [18] solves photomet-
ric stereo in a per-pixel manner, the surface details are not
contaminated by the neighboring pixels. NormAttention-
PSN [26] is built upon PS-FCN [8] but can handle surface

detail recovery by an attention-weighted loss. We summa-
rize the benchmark results of calibrated photometric stereo
using DiLiGenT-Π as the following observation:

Observation 1 Learning-based photometric stereo meth-
ods in the per-pixel branch are generally more effective
than the all-pixel branch for handling surface detail esti-
mation. A detail-weighted loss can help methods in the all-
pixel branch for better recovering tiny structures.

Uncalibrated photometric stero. From Table 2, uncali-
brated photometric stereo methods generally show signif-
icant errors on near-planar surfaces in DiLiGenT-Π com-
pared to the case of calibrated photometric stereo. For the
non-learning-based method PF14 [37], the near-planar sur-
face could be an ill-posed shape when conducting SVD
for obtaining pseudo-surface normals and lights. Also, for
learning-based uncalibrated photometric stereo, attached
shadows and shading variations are essential in recovering
the unknown light directions, as stated in [9]. However, the
shadows are much less observable for near-planar surfaces
as the tiny detail can barely cast a block of shadows from
varying light directions compared with the case of the bulgy
objects, making the light estimation more challenging.

Fine-tuning on the synthetic near-planar dataset. To
check whether the error of learning-based uncalibrated pho-
tometric stereo can be further reduced by learning the data
prior, we create a near-planar synthetic dataset PS RELIEF
for finetuning the uncalibrated photometric stereo. As
shown in Fig. 5, our synthetic dataset contains 127 near-
planar surface normals extracted from CAD meshes. We
adopt Disney’s principled BSDF [5] as the reflectance
model and randomly generate BRDFs by adjusting the pa-
rameter to control the diffuse, specular, and metallic re-
flectance components in a similar manner to the existing
synthetic dataset CyclePS [18]. In total, PS RELIEF con-
tains 3429 scenes. For each scene, we render the object
by Blender [11] under 100 distant light directions with the
same uniform lighting distribution of DiLiGenT102 [39].

Table 3: Ablation study on photometric stereo methods
trained with or without fine-tuning (FT.) on the near-planar
synthetic dataset PS RELIEF.

Light Method DiLiGenT [41] DiLiGenT-Π

w/ FT. w/o FT. w/ FT. w/o FT.

Uncalibrated SDPS-Net [7] 17.80 9.51 16.03 27.76
UPS-Net [8] 25.05 15.37 14.99 21.54

Calibrated PS-FCN [8] 11.75 9.12 8.80 9.84

As shown in Table 3, we fine-tune the UPS-FCN [8]
and SDPS-Net [7] with PS RELIEF and test it on real-
world dataset DiLiGenT [41] and DiLiGenT-Π, which con-
tain bulgy shapes and near-planar shapes, respectively. The
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Figure 4: Visualization of surface detail recovery from different photometric stereo methods, where the odd and even columns
plot the estimated surface normals and the corresponding angular error maps, respectively. Per-pixel based photometric stereo
method CNN-PS [18] is more effective on detail recovery compared to all-pixel based method PS-FCN [8], as highlighted in
the yellow boxes (Observation 1).

Figure 5: Overview of our synthetic dataset PS RELIEF for
fine-tuning photometric stereo on near-planar surfaces.

mean angular errors on DiLiGenT-Π are significantly re-
duced after the fine-tuning on our near-planar dataset. How-
ever, we also observe performance degradation on DiLi-
GenT [41]. As shown in Fig. 6, the estimated surface nor-
mal for the BIRD in DiLiGenT-Π is more reasonable after
the fine-tuning, but with the consequence that the recov-
ered CAT shape in DiLiGenT becomes more flattened. This
behavior is not observed in calibrated photometric stereo
methods such as PS-FCN, where the fine-tuning of PS-FCN

on PS RELIEF does not influence the estimation on DiLi-
GenT [41] dramatically. We summarize the benchmark re-
sults of uncalibrated photometric stereo using DiLiGenT-
Π and fine-tuning existing methods using our synthetic
PS RELIEF dataset as the following observation:

Observation 2 Near-planar surfaces are challenging for
photometric stereo under uncalibrated light settings, and
the normal estimation of learning-based uncalibrated pho-
tometric stereo is sensitive to the shape distributions present
in the training dataset.

4.3. Analysis to Different Reflectance Groups

As shown in Table 2, we find the four groups in
DiLiGenT-Π sorted by the MAngE on different photometric
stereo methods, arranged from high to low, are translucent,
rough, specular, and metallic. The estimation errors come
from non-Lambertian reflectance and surface geometry de-
termining the shadows and inter-reflections. On the surface
geometry side, we present the angular difference of a pure
planar surface normal and the ground-truth surface normal
in Table 2 (first column), showing that the shape variations
of the translucent and the rough groups are greater than that
of the metallic and specular groups. Also, surfaces in rough
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Figure 7: Ablation analysis to the influence of reflectance
based on the same shape. The columns, from left to right,
display the image observations, the estimated normal maps
from CNN-PS [18], and from PS-FCN [8], with MAngE
labeled at the top-right corner. The rough and translucent
materials are more challenging than the metallic materials
for surface detail recovery (Observation 3).

and translucent groups contain more shadows and inter-
reflections as their depth variation measured by PV is 4 mm
compared to 1.5 mm, and 1 mm in the specular and metallic
groups. On the reflectance side, the sub-surface scattering
in the translucent group blurs the details of normal estimates
as visualized in Fig. 4, resulting in greater estimation errors
compared to the metallic and specular reflectance.

To disentangle the influence of reflectance and surface
geometry on surface normal estimation, we conduct an ab-
lation study on a metallic coin shown in Fig. 7. We scan
this coin’s 3D mesh and create another two objects by 3D
printing using translucent and rough materials that are the
same as those used in our DiLiGenT-Π. Based on the same

geometry, the surface normal estimation errors from CNN-
PS [18] and PS-FCN [8] are higher on rough and translucent
surfaces compared to metallic surfaces. Although the re-
covered details from the rough surface are sharper than the
translucent one, the rough surface is still challenging due to
its complex reflectance, and no previous photometric stereo
method has targeted this kind of reflectance existing in ob-
jects covered by matte spray. We summarize these analysis
results as our last observation:

Observation 3 Near-planar surface normal estimation us-
ing photometric stereo methods remains a challenging task
for translucent and rough surfaces, where surface details
are significantly blurred due to the subsurface scattering in
translucent surfaces.

5. Conclusion
This paper builds a real-world photometric stereo dataset

DiLiGenT-Π focusing on near-planar surfaces with rich de-
tails, which are important to show the core strength of pho-
tometric stereo. We conduct benchmark evaluations on the
dataset and draw three key observations. However, the eval-
uation metric utilized in this study is MAngE, which assigns
equal weights to surface normals regardless of the spatial
distribution of surface details. Therefore, it is desired to
devise a new evaluation metric that can measure the per-
formance of surface detail recovery. Overall, we hope that
DiLiGenT-Π and the key observations will offer useful in-
sights to further photometric stereo methods for detailed re-
covery of near-planar surfaces.
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