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Abstract

This paper explores Deployment Authorization (DPA)
as a means of restricting the generalization capabilities of
vision models on certain domains to protect intellectual
property. Nevertheless, the current advancements in DPA
are predominantly confined to fully supervised settings. Such
settings require the accessibility of annotated images from
any unauthorized domain, rendering the DPA approaches
impractical for real-world applications due to its exorbitant
costs.

To address this issue, we propose Source-Only Deploy-
ment Authorization (SDPA), which assumes that only autho-
rized domains are accessible during training phases, and
the model’s performance on unauthorized domains must be
suppressed in inference stages. Drawing inspiration from dis-
tributional robust statistics, we present a lightweight method
called Domain-Specified Optimization (DSO) for SDPA that
degrades the model’s generalization over a divergence ball.
DSO comes with theoretical guarantees on the convergence
property and its authorization performance. As a comple-
mentary of SDPA, we also propose Target-Combined De-
ployment Authorization (TPDA), where unauthorized do-
mains are partially accessible, and simplify the DSO method
to a perturbation operation on the pseudo predictions, re-
ferred to as Target-Dependent Domain-Specified Optimiza-
tion (TDSO). We demonstrate the effectiveness of our pro-
posed DSO and TDSO methods through extensive experi-
ments on six image benchmarks, achieving dominant perfor-
mance on both SDPA and TDPA settings.

*Indicates equal contribution.
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Figure 1: Our domain specified optimization is designed
for maximizing the risk over unauthorized domains (e.g.,
PU1 and PU2 as framed yellow triangles) close to the au-
thorized domain Ps, and minimizing the risk on PS as the
centroid (risk quantifies the consistency between the learn-
ing model and the domain). Besides, unauthorized domains
far away from the authorized domain (e.g., PU3 and PU4

as framed blue squares) are not considered, as the model
trained on PS naturally generalizes poorly on them.

1. Introduction

Deep learning has achieved remarkable progress in a vari-
ety of vision applications [4, 7, 47, 48, 51, 38] with tremen-
dous commercial values [22, 41, 20, 40]. However, training
a deep model from scratch is non-trivial, as it contains abun-
dant knowledge including a professional tuning process [7],
large-scale image datasets with exhaustive annotations [9],
and expensive computational resources [2]. Therefore, the in-
tellectual property (IP) protection/authorization of the knowl-
edge embodied in a pre-trained deep model has been raised
as a matter of increasing concern [46, 43].

Previous studies on IP protection/authorization consist of
two branches, including authorizations of the model owner
and the model user [43], respectively. In addition to address-
ing who can own or use the model, a data-centric authoriza-
tion problem known as deployment authorization (DPA) has
been proposed [43]. DPA aims to address which data can
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Figure 2: Overview of supervised DPA (SUDPA), Source-only DPA (SDPA), and Target-combined DPA (TDPA), where the
subscripts S, U , and f refer to the authorized data, the unauthorized domains, and the learning model, respectively. SUDPA
allows the model authorizer to access both the images X and labels Y on PU in the training stage. Without labels, TPDA
allows the authorizer only to access the images X on PU . Both X and Y are inaccessible for the authorizer in SPDA.

be deployed on the model. More specifically, DPA seeks
to restrict the model’s generalization capability on certain
domains so that its performance is severely degraded when
deployed on unauthorized data, while it maintains its perfor-
mance when deployed on authorized data.

The practical significance of DPA can be attributed to
two main factors: (a) its commercial aspect, which safe-
guards the IP of commercial models from competitors, and
(b) its ethical aspect, which restricts unauthorized users from
exploiting models to target vulnerable populations. Concern-
ing the commercial aspect, DPA is essential for applications
such as online interactions between users and models via
interfaces, where well-trained models on specific data cannot
be shared and require payment to deploy, such as Amazon’s
Machine-Learning-as-a-Service. In terms of the ethical as-
pect, a typical example would be a company, like Meta, that
trains a recommendation system (RS) using adult data and ap-
plies DPA to prevent teenagers from abusing the system [43].
Without DPA, if the RS generalizes well to teenagers’ data
and is deployed without authorization, it could potentially
recommend inappropriate items such as alcohol to teenagers.
Due to the growing importance of data-centric IP protection,
our paper focuses on exploring DPA-related issues.

Concerning the current advances in DPA, a promising
solution called non-transferable learning (NTL) has been
proposed to address the supervised deployment authoriza-
tion (SUDPA) problem [43], as illustrated in Figure 2(a). In
particular, SUDPA assumes that the model authorizer can
fully access both authorized and unauthorized domains [43].
As highlighted in our teenager-adult example, implement-
ing SUDPA requires annotated data (e.g., labeled images
of items) from both the teenager and adult domains. Unfor-
tunately, collecting and labeling images from unauthorized
domains is too expensive, which is a significant limitation
for practical applications. Furthermore, this cost can escalate
infinitely since the authorizer might specify an arbitrarily
large range of unauthorized domains. To address this issue,
we propose two more practical yet more challenging DPA
problems, as illustrated in Figure 2(b) and (c).

• Source-only deployment authorization (SDPA): In
the teenager-adult example, the authorizer may only
want to deploy the recognition model trained on adult
data on the authorized domain. As illustrated in Fig-
ure 2 (b), our proposed SDPA approach addresses this
requirement by assuming that the authorizer: (a) has ac-
cess to only the authorized domain during the training
phase, and (b) intends to suppress the model’s perfor-
mance on all other domains.

• Target-combined authorization problem (TDPA):
When additional unauthorized domains are specified,
the authorizer only has to collect them directly with-
out annotations. Figure 2 (c) illustrates this scenario,
where the TDPA problem assumes that the authorizer
has access to both the entire authorized domain (i.e., la-
beled adult data) and the partially labeled unauthorized
domain (i.e., unlabeled teenager data).

In this paper, we propose a lightweight method named
“Domain Specified Optimization” (DSO) to address the
SDPA problem. DSO defines a divergence ball centered
around the training distribution, covering each neighboring
distribution close to the training domain [11]. Fig 1 illus-
trates that DSO simultaneously minimizes the model risk on
the training domain and maximizes the model risk on each
domain in the divergence ball except for the training domain.
Theoretical results ensure that: (a) DSO possesses well-
established convergence properties, and (b) DSO achieves
reliable authorization on any unauthorized domain. To solve
the TDPA problem, we adapt our DSO method into the
Target-specified DSO (TDSO) method, which perturbs the
pseudo predictions on the unauthorized domain. In summary,
we list our main contributions as follows:

Problem Contribution In addition to the vanilla DPA
problem, we introduce two more practical and challenging
problems: the Source-only DPA (SDPA) and the Target-
combined DPA (TDPA). The SDPA problem aims to achieve
uniform deployment authorization of vision models by de-
grading the model’s performance on any other domains,
while the TDPA problem responds to the requirement that
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the model authorizer specifies unauthorized domains without
incurring the cost of annotation.

Method Contribution To solve SDPA, we contribute
a novel method named “Domain Specified Optimiza-
tion” (DSO), which achieves reliable authorization on any
unauthorized domain close to the training distribution. Fur-
thermore, we solve the TDPA problem by proposing a
pseudo-prediction perturbation strategy named “TDAO”.

Experimental Results We conduct extensive exper-
iments on six image classification benchmarks, includ-
ing digit datasets (MNIST, USPS, SVHN, SYN_D and
MNIST_M), Cifar10 & STL10, Office-31, Visda 2017,
PACS and VLCS, to verify the effectiveness of our DSO
and TDSO on SDPA and TDPA problems.

2. Related Work
2.1. IP Attack and Protection on Learning Models

Due to the huge business value, deep models are prone
to be attacked by a variety of techniques including stealing
private training data and deploying the model for private
usage without verification [17, 5, 1, 34, 49]. To protect the
IP of deep models against attacks, methods of authorizing
model ownership and model usage have emerged in recent
years [43]. The typical framework for ownership autho-
rization is to compare model behaviors when encountering
samples with and without pre-embedded watermarks to ver-
ify the model owner in the testing phase [46, 50, 23]. On
the other hand, usage authorization directly locks the deep
models via some pre-defined protocols in the encryption and
decryption process [2]. To restrict the generalization capabil-
ity of models on certain domains, the deployment authoriza-
tion (DPA) has recently been proposed from the data-centric
IP protection viewpoint, which authorizes the deployment of
pre-trained models across different domains [43]. Following
the concept proposed by [43] research on the protection of
domain knowledge has emerged recently [42, 45]. For ex-
ample, [42] has proposed the CUTI method by highlighting
the private style features on the training domains such that
unauthorized domains with irrelevant private styles will fail
to deploy the trained models. Meanwhile, [45] extended the
notion of intelligent protection from image processing tasks
to NLP tasks.

2.2. Out-of-distribution Generalization/Detection

To enhance the generalization capability of learning
models on both seen and unseen domains, researchers
have explored various approaches ranging from domain
adaptation (DA) to Out-of-distribution (OOD) generaliza-
tion [24, 14, 3, 33, 39]. Specifically, domain adaptation
transfers the knowledge learned from the source domain
to a partially accessible target domain [14], while OOD
generalization focuses on developing models that can gener-

alize well on any completely invisible target domain [3]. An
analogy of DPA, TDPA, and SDPA is supervised fine-tuning,
unsupervised domain adaptation, and domain generaliza-
tion.

In the context of OOD generalization, the framework
of distributionally robust optimization (DRO)[35, 11] has
played a significant role, which is closely related to our
work. In particular, DRO seeks to achieve robustness by
identifying models that perform well on distributions that
are sufficiently close to the training distribution, but it faces
challenges when modeling the overall distributional shift. In
contrast to promoting model generalization, characterizing
these close domains and degrading model performance on
them is enough for our SPDA problem (as shown in Figure1).
This observation naturally links the formulation of DRO to
our problems.

Additionally, Out-of-distribution (OOD) detection, par-
ticularly the Near-distribution OOD detection (ND-OOD),
has relevance to our problem [13, 25, 44]1. Generally, OOD
detection aims to identify whether the testing data is dis-
tributed differently from the training data[44]. However,
conventional OOD detection methods often fail to recognize
"near" testing data with small distributional shifts [25]. To
overcome this challenge, ND-OOD has been proposed with
a first-generate-then-detect approach using deep generative
models [25]. Interestingly, we have found that such an ap-
proach is almost identical to the DPA baseline GNTL [43].

3. Problem Overview

This section overviews three deployment authorization
problem settings including SUDPA, SDPA, and TDPA.
Throughout this paper, we focus on the image classifica-
tion as the learning task with features X ∈ X and labels
Y ∈ Y , where the authorized training domain and unautho-
rized domains share the same label space Y with C classes.
In addition, we denote the classifier as f parameterized by
θ ∈ Θ throughout this paper. The authorizer aims for a model
f(⋅∣θ) with parameters θ that satisfies the following condi-
tions: (a) f preserves high accuracy on the authorized (train-
ing) domains, (b) f achieves poor performance on unautho-
rized domains. For ease to understand, one can compare the
SUDPA to supervised learning, SDPA to domain generaliza-
tion, and TDPA to domain adaptation, respectively.

Supervised Deployment Authorization (SUDPA). As
shown in Fig. 2 (a), SUDPA (first proposed in [43]) assumes
that the model authorizer possesses the full information on
both training and unauthorized domains, as {xi,yi}nS

i=1 ∼
PS(X,Y) and {xi,yi}nU

i=1 ∼ PU(X,Y) (nU and nS are
samples sizes). To solve SUDPA, the Non-Transferable
Learning (NTL) [43] framework simultaneously decreases

1One can employ an ND-OOD detection model and assign an incorrect
label to OOD samples.
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the fitting loss on PS(X,Y) and increases the fitting loss
on PU(X,Y), as follows:

LNTL =E(x,y)∼PS(X,Y) [DKL(f(x∣θ)∥y)]
−E(x,y)∼PU (X,Y) [DKL(f(x∣θ)∥y)] ,

(1)

where DKL refers to the KL-divergence loss [43].
Source-only Deployment Authorization with auxiliary

patches. [43] proposes another problem that the (authorized)
training domain has been embedded with pre-known patches
but the (unseen) unauthorized domains are free of patch
embedding. As the extension of NTL, a first-generate-then-
authorize approach named GNTL is proposed [43] based on
generative adversarial network (GAN). However, the such
problem relies on the effectiveness of the reliability of the
watermark [46]. In other words, if some model attackers
intimate the patch embedded in the training data and embed
such patches into the unauthorized images, then DPA fails.
Regardless of ownership verification, we only consider the
DPA problem in this paper.

Source-only Deployment Authorization (SDPA). To
promote the practicality of SUDPA without any auxiliary
information, we focus on the generic problem named the
source-only deployment authorization (SDPA) in this paper,
as shown in Fig. 2 (c). SDPA assumes that the model autho-
rizer only owns the training data {xi,yi}nS

i=1 ∼ PS(X,Y)
without access to any information on unauthorized data. The
authorizer aims to develop a well pre-trained model f(⋅∣θ)
that generalizes poorly on any unseen unauthorized PU .

Target-combined Deployment Authorization (TDPA).
Under certain conditions, we claim that the model autho-
rizer can provide the features of unauthorized data as a
trade-off between the SUDPA and SDPA. More formally,
the model authorizer currently owns the training data as
{xi,yi}nS

i=1 ∼ PS(X,Y), together with the unauthorized
features {xi}nU

i=1 ∼ PU(X), as shown in Fig. 2 (b).

4. Domain Specified Optimization
For SDPA, searching a model f with degraded perfor-

mance over the total distributions on X ×Y is exhaustive and
difficult. Recalling the goal of deployment authorization, the
model authorizer only concerns with suppressing the per-
formance of f on the neighboring distributions PU close to
the training domain. Thus, we formulate the above intuition
by bounding the distributional shift between PU and PS us-
ing some statistical divergence D (e.g., F-divergence [11])
as D(PU(X,Y)∥PS(X,Y)) ≤ ρ, where ρ is a small
value. Due to the difficulty encountered by existing methods
when modeling a general distribution shift on X ×Y since
PU(X,Y) is visible [37], we simplify the problem via the
adversarial example shift assumption as in [11, 10, 27, 35]
such that PU(X) ≠ PS(X) and PU(Y ∣ X) = PS(Y ∣ X).
Consequently, an ideal model f(⋅∣θ) for SDPA should fit the

conditional distribution PS(Y ∣X) when PU(X) = PS(X),
while deviating from PU(Y ∣X) when PU(X) ≠ PS(X).

4.1. Restricting the model generalization over the
uncertainty set

To move towards the above goal, we first have to model
the unauthorized distributions surrounding closely to PS(X).
Following [11], we first choose F-divergence [27] which is
convex and solvable in polynomial time as the distribution
divergence D; here, the former characteristic provides a
well-established convergence property, while the latter one
facilitates our implementation. Based on the adversarial
shift assumption and the basic property of F-divergence [10],
we have D(PU(X,Y)∥PS(X,Y)) =D(PU(X)∥PS(X)).
Finally, we define the F-divergence ball around PS(X) with
the Cressie-Read divergence Dϕk

[29]: UPS
= {PU(X) ∶

EPS
[ϕk (dPU (X)

dPS(X) )] ≤ ρ}, where ϕk ∶= tk−kt+k−1
k(k−1) parame-

terized by k is convex and ρ is the radius parameter [11].
More formally, we refer to the ball UPS

= B(PS(X), ρ) as
the uncertainty set over PS(X) [11].

Subsequently, we propose the objective of Domain Speci-
fied optimization (DSO) via a min-max framework:

LDSO = sup
PU

{EPU
[ℓ(f(X ∣ θ),Yerr)] ∶ PU ∈ U/Ps

} , (2)

where Yerr plays as the “error” labels to corrupt the training
of f on PU(X) ∈ U/Ps

. More formally, we construct the
corrupted labels Yerr deviating from the underlying labels
YU and force f to fit Yerr. As YU is also invisible, we
approximate YU ≈ YS and let Yerr = YS + 1 (Yerr is
obtained as the remainder of C), such that the overlap be-
tween Yerr and YU reduces to zero. The reasons behind
our approximation contain two critical aspects: (a) the adver-
sarial shift assumption allows us to approximate PU(Y ∣X)
using the posterior of f as PU(Y ∣ X) = PS(Y ∣ X).
Thus, it is reasonable for us to approximate YU sampled
from PU(Y ∣ X) as YS sampled from PS(Y ∣ X). (b)
previous DRO studies [10, 11, 35] have proved that (2)
can be equivalently regarded as the optimization on some
“hard” examples sampled from PS . Hence, the approxima-
tion YU ≈ YS performed in these methods is natural, as
EPU
[ℓ(f(X ∣ θ),Yerr)] and EPS

[ℓ(f(X ∣ θ),Yerr)] are
both calculated on visible PS(X) via different weights.

4.2. Facilitating the min-max optimization

To optimize the min-max game in (2), it must be guaran-
teed that the Lagrangian function of (2) is a convex optimiza-
tion problem [35]. Unfortunately, it is difficult to guarantee
the convexity of inequality constraint 0 < EPS

[ϕk (dPU

dPS
)] ≤

ρ in the Lagrangian function of (2) even with the convex ϕk

and the linear expectation operator [35], which renders the
non-convexity of the objective (2). Thus, we instead as-
sume that the supremum in (2) is achieved in UPS

as P0 and
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modify (2) as follows:

LDSO =K(Dϕk
(P0 ∥ PS)) sup

PU ∈UPS

EPU
[ℓ(f(X ∣ θ),Yerr)],

(3)
where K(t) is a scaling function such that K(t) = t when
t ≤ 0.2 and K(t) = 1.0 otherwise. Note that the new
objective in (3) vanishes when the supremum distribution
P0 reaches PS , which is in fact equivalent to the formula-
tion in (2) to some extent. Moreover, as the scaling term
K(Dϕk

(P0 ∥ PS)) is a constant with respect to the supre-
mum over PU ∈ UPS

, the formulation in (3) is convex based
on previous conclusions [35]. Finally, combined with the
standard supervised training loss on PS , we present the batch-
level formulation as the empirical version of (3) as follows:

LTotal =
nb

∑
i=1

ℓ(f(XS
i ∣ θ),YS

i )

+K(Dϕk
(P0 ∥ 1/nb)) sup

U∈U1/nb

nb

∑
i=1

Uiℓ(f(XS
i ∣ θ),Yerr

i ),

(4)
where nb is batch sample size and U1/nb

∶=
{U ∈ Rnb ∶ U⊺1 = 1, U ≥ 0,Df(U∥1/nb) ≤ ρ

nb
} [27].

To facilitate computation, we set the parameter k = 2 such
that the F-divergence Df is reduced to the χ2-divergence.
As the projection of the loss vector {ℓnb

i=1} on the uncertainty
ball U1/nb

, the supremum vector P0 ∈ Rnb is supported by
the fast bisection method provided by [27].

When the unauthorized features XU ∼ PU(X) are pro-
vided, the uncertainty set U/Ps

is reduced to a single point
as PU , such that the formulation of DSO in (4) is simpli-
fied. Therefore, we propose the Target-DSO (TDSO) for
target-combined deployment authorization with the follow-
ing empirical version:

LT
Total =

nb

∑
i=1

ℓ(f(XS
i ∣ θ),Yi) +

nb

∑
i=1

ℓ(f(XU
i ∣ θ),Yerr

i ).

(5)
For saving space, we leave the algorithms of detailed training
process of DSO and TDSO in the appendix.

4.3. Discussion

Issues on F-divergence Although other alternatives (e.g.,
Wasserstein distance [26]) might allow worst-case distri-
butions with different support from the training one, their
tractable reformulations are only available under restrictive
scenarios [11], which remains computationally challenging.
By contrast, F-divergence is computationally efficient with
the fast bisection method developed by [27], which is solv-
able in polynomial time.

Issues on the scaling function K(t) can be considered as
a hyper-parameter to achieve the Pareto optimality between

minimizing the source risk and maximizing the target risk.
In detail, K(t) = t ensures the DSO loss will vanish to zero
if the worst-case distribution is close to the training one.
Second, the constant 1.0 constrains the weight of DSO loss
to be less or equal to that of the training loss. We find such a
truncation function achieves good empirical performance.

Issues on Adversarial Shift Unlike methods aimed at
improving generalization in domain adaptation and out-of-
distribution (OOD) generalization, such as those proposed
in [37, 24], the adversarial shift assumption does not com-
promise the authorization capability of the function f . If
the function f does not generalize well under an adversarial
shift, it will perform even more poorly when confronted with
a general shift. In other words, when every target domain is
subject to an adversarial shift, the general shift yields distri-
butions that are further away from the training distribution.

Extension to open-set recognition We note that the ex-
tension of our methodology to handle open-set scenarios by
authorizing images with unseen styles or classes is intuitive.
This framework treats open-set tasks equally to closed-set
tasks, as explained in our paper. Pre-trained models naturally
generalize poorly on testing-only classes, and considering
training-only classes during testing is unnecessary.

The approximations of Yu ≈ Ys The presented approxi-
mation captures the notion that the SDPA task primarily fo-
cuses on PU that are close to PS , and that PU with Yu ≈ Ys

are closer to PU where YU differs significantly from Ys. In
this scenario, testing distributions PU differ conceptually
from PS , causing poor generalization of models trained on
PS . Hence, considering PU with significantly different YU

from YS is unnecessary. We highlight that such label approx-
imation in marginal DRO methods [11] is very common.

5. Theoretical Analysis

In this section, we provide a deeper insight into the behav-
ior of the proposed DSO method from three aspects: (a) its
generalization bound in the finite sample case; (b) its conver-
gence property with increasing sample number (c) its autho-
rization performance on any testing distribution. Following
previous protocols [11], we assume the bounded losses as
∣ℓ(f(XS ∣ θ),Yerr)∣ ≤ M1 and ∣ℓ(f(XS ∣ θ),YS)∣ ≤ M2.
Moreover, we denote the empirical distribution of PS by P̂S

N .
Detailed proof of our theory is provided in the appendix.

5.1. Generalization Bound of DSO

Following [27], we denote the empirical and expected
worst-subgroup risk in (3) asRk(ℓ(f(XS ∣ θ),Yerr);PS)
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and R̂k(ℓ(f(XS ∣ θ),Yerr); P̂S), respectively. Subse-
quently, we establish the generalization bound for each
model parameter θ in the following theorem:

Theorem 5.1. For a fixed θ and u ≥ 0, the following inequal-
ity holds with probability 1 − 2e−u:

∥Rk(ℓ(θ); P̂S
N) −Rk(ℓ(θ);PS)∥

≤ 5skρ2kns
− 1

max(k∗,2) (1
k
+
√
u + logns)(

√
v(ρk,M1) +

1

2
)2,

where v(ρk,M1) =max ( ρk

ρk−1 ,2)M1 and k∗ = k
k−1 .

Remark Intuitively, Theorem 5.1 characterizes the fact
that the gap between the empirical and expected versions of
the objective function of our DSO vanishes within increasing
training samples.

5.2. Convergence Property of DSO

We then present the convergence analysis of our DSO
method over the total parameter space θ ∈ Θ. With the
covering number technique on the model class space F =
{f(⋅ ∣ θ)} equipped with the norm ∥f∥L∞ = supx f(x ∣ θ),
we define the ϵ-covering number of F as N(F , ξ), where
V (F , ξ) denotes the corresponding covering set. More
specifically, we let N(F , ξ(u,v,ns)

3
) with ξ(u, v, ns) =

5ρk

C
ns
− 1

max(k∗,2) ( 1
k
+
√
u + logns)(

√
v(ρk,M1) + 1

2
)2 be

a ξ(u, v, ns)-finite cover of F . With the empirical risk
minimizer θ̂ns of Rk under P̂S

N , we denote the expected
and empirical versions of the total loss in (4) as by
R̂Total(ℓ(θ̂ns);PS) and R̂N

Total(ℓ(θ);PS), respectively.
Finally, we characterize the convergence behaviour of the
total objective function in (4).

Theorem 5.2. For u ≥ 0, the loss function ℓ(f(⋅ ∣
θ), ⋅) that is C-Lipschitz with respect to its first pa-
rameter f(⋅ ∣ θ) , and under the condition that
∣ℓ(f(XS ∣ θ),Yerr)∣ ≤ M1 and ∣ℓ(f(XS ∣ θ),YS)∣ ≤
M2, the following inequality holds with probability 1 −
2 (N(F , ξ(u,v,ns)

3
) +N(F ,

√
2u
ns

M2

4C
)) e−u:

R̂Total(ℓ(θ̂ns);PS) − inf
θ∈Θ
R̂N

Total(ℓ(θ);PS)

≤ 2
√

2u

ns
M2 + 30skρ2kns

− 1
max(k∗,2)C(k, u, ns, v, ρk,M1),

C(k, u, ns, v, ρk,M1) = ( 1k +
√
u + logns)(

√
v(ρk,M1)+

1
2
)2 is a constant.

Remark Intuitively, Theorem 5.2 entails that our DSO
method has well-established convergence property in the
statistical sense within increasing training samples.

5.3. Authorization Analysis of DSO

In this section, we provide an analysis of the authorization
guarantee of DSO in the SDPA scenario. For any unautho-
rized distribution PU , if PU ∉ UPS

/PS , we demonstrate that
the expected risk of f with respect to Yerr on PU , namely
EPU
[ℓ(f(X ∣ θ),Yerr)], is bounded by the corresponding

expected risk on any distribution P1 ∈ UPS
/PS .

Lemma 5.3. Suppose that P1 ∈ UPS
and PU ∉ UPS

have
the same support and P1(Y ∣ X) = PU(Y ∣ X) and
∣ℓ(f(X ∣ θ),Yerr)∣ ≤M1, then EPU

[ℓ(f(X ∣ θ),Yerr)] is
bounded by EP1 [ℓ(f(X ∣ θ),Yerr)] with the F-divergence
Dϕk
(P ∥P1) as follows:

EPU
[ℓ(f(X ∣ θ),Yerr)]

≤ k(k − 1)Dϕk
(PU∥P1)

1
kM1

1
kEP1 [ℓ(f(X ∣ θ),Yerr)]1−

1
k .

Remark Lemma 5.3 entails that when the divergence
Dϕk

is bounded as supP1∈UPS
Dϕk
(PU∥P1) ≤ W , the ex-

pected risk of PU that distributes out of the divergence ball is
bounded by k(k − 1)W 1

kM1
1
kEP1 [ℓ(f(X ∣ θ),Yerr)]1−

1
k .

Since the convergence property of DSO has been
proven in the previous subsection, the well-optimized
EP1 [ℓ(f(X ∣ θ),Yerr)] will reach a small value, which
ensures a small value of EPU

[ℓ(f(X ∣ θ),Yerr)] with poor
authorization performance.

6. Experiments
Datasets and Implementation In this section, we choose

the main body of the “DomainBed” test suite [15] to
conduct experiments, which includes four domain adapta-
tion benchmarks—Digits (MNIST (N) [8], USPS (U) [18],
SVHN (H) [28], SYN_D (S) [31] and MNIST_M (M) [14]),
Cifar10 [6]&STL10 [6], Office-31 [32], and Visda
2017 [30]—together with two OOD generalization bench-
marks, PACS [21] and VLCS [12]. Different from Do-
mainBed, we do not consider Terra Incognita. Office-Home
and DomainNet due to their poor cross-domain generaliza-
tion results under the supervised setting [15]. For PACS
and VLCS, we additionally train the model on each of the
combined three domains, with the remaining one as the
unauthorized domain [15]. Our experiments are performed
on Python 3.6.9, PyTorch 1.9.0+cu111, CUDA 11.4, and
NVIDIA GeForce RTX 3090 GPUs. Details on network
structures of solutions are introduced in the appendix.

Baselines We mainly compare our DSO and TDSO with
a well-trained source model and an existing DPA baseline
GNTL [43]. Notably, as GNTL follows a first-generate-
then-classify pipeline by tuning a GAN model, it can be
equivalently regarded as an ND-OOD detection baseline.

Metrics To facilitate clear comparisons, following [43],
we provide the relative performance drop of DSO, TDSO,
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and GNTL with respect to a well-trained source model. No-
tably, in Table 1, we compute the average authorization
performance by first training each method on a single do-
main (Amazon in Office-31), and subsequently averaging
the testing drop in the remaining domains (Webcam and Dslr
in Office-31). To mitigate the impact of random variations,
we report all metrics based on five independent experimental
repetitions.

Parameters settings Following [43], we apply VGG-
11 [36] for digits recognition and ResNet-50 [16] for the
remaining benchmarks, where all networks are initialized as
the pre-trained version of ImageNet. Moreover, we adopt
the Adam [19] optimizer with the learning rate initialized as
0.00005. For the DSO and TDSO methods, we set ρ = 50 as
in [27] throughout the experiments. For the GAN-augmented
NTL (GNTL) method, we conduct each experiment using the
original implementation developed in [43]. Note that, we test
the effectiveness of GNTL without any watermarks (patches),
as we focus on the pure deployment authorization in this
paper and wish to facilitate a fair comparison.

Questions Throughout the experiment, we validate our
proposed methods by answering the following two questions:

(a) Does our methods hurt the performance on the
source (authorized) distribution?

(b) Does our methods effectively degrade the performance
on the target (unauthorized) domains?

6.1. Results on average authorization performance

As shown in Tab. 1, we report the average authorization
performance for each solution under both the source-only
and target-combined authorization. In the interest of saving
space, detailed results are provided in the appendix. Regard-
ing the first question, our DSO and TDSO have a smaller
performance drop (often less than 3%) on the authorized
domain, which entails that our methods will not hurt the
authorization performance. Meanwhile, we observe that
while the GNTL method [43] achieves source-only autho-
rization in some cases (e.g., Digit), in most cases, its autho-
rization performance cannot be guaranteed with nearly no
performance degradation observed. In contrast, our DSO
achieves dominant authorization results with an acceptable
decline in its pre-training performance (usually less than
3%), while requiring no prior network component or aug-
mentation operation. This comparison answers our second
problem, which indicates the superiority of distributional
performance degradation via the uncertainty set formulation
in our DSO. Meanwhile, when the unauthorized features
are available in the target-combined scenario, our TDSO
nearly achieves near-perfect authorization by dramatically
degrading the performance of the unauthorized domains.

6.2. Study on Uniform deployment authorization

Beyond the average performance over multiple unautho-
rized domains in Tab. 1, the model authorizer instead prefers
to authorize the deployment of the learning model on unau-
thorized domains much closer to the training data, which
we call as the uniform authorization. For example, the su-
pervised model trained on the VOC domain in the VLCS
benchmark generalizes well on the Caltech domain with
91% accuracy, while naturally performing poorly on the La-
belme domain with only 51% accuracy. Thus, a reliable
authorization solution for realistic cases only needs to de-
grade the model performance on the Caltech domain, while
the accuracy decrease on Labelme is not important, as it is
not necessary to authorize the Labelme domain. Based on
the intuition in above, we perform a case study on the six
benchmarks by simulating a realistic scenario in which the
model authorizer aims to (a) preserve a pre-training accu-
racy over 95% on the training domain, and (b) degrade the
model performance to be lower than 70% on domains with
supervised generalization over 80%. We obtain the results in
Tab. 2, selected from the total authorization results (shown in
appendix). We can observe that the proposed DSO achieves
near-perfect authorization (except for P→ P) by successfully
degrading the performance on unauthorized domains with
a large margin on 15 out of the total 16 tasks. By contrast,
GNTL evidently fails on these challenging but realistic au-
thorization tasks with a success ratio of 4/16, which further
claims the superiority of our DSO.

6.3. Studies on the Label Corruption Protocol

In Section 4.1, we propose the label corruption protocol
Yerr = YS + 1. One might question whether an attacker
could easily recover the model’s utility on OOD data by ex-
ploiting this protocol. However, we contend that this concern
is unwarranted for two reasons: (a) the corruption protocols
are not disclosed to model users, and (b) Yerr = YS + 1
is merely one intuitive implementation of our DSO frame-
work, which also supports irreversible protocols such as
random corruption (i.e., uniformly selecting labels from the
remaining incorrect classes). As illustrated in Figure 3, we
evaluate the effectiveness of random corruption on the Office-
31 and Visda-2017 benchmarks. Results demonstrate that
both the transition (Yerr =YS + 1) and random corruption
approaches achieve promising authorization performance.
Besides, we note that using random error labels without
our DSO framework is impractical because maintaining the
model’s performance on data originating from the same dis-
tribution as the training domain is necessary.

6.4. Convergence and Parameter Sensitivity

Besides, we show that both the DSO loss and the super-
vised loss convergence well in Fig. 4a and Fig. 4b, which
is coherent with our Theorem 5.2. We also claim that the
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Table 1: Average performance drop (%) of each solution on SDPA and TDPA, where bold value represents the highest accuracy
in each row. Specifically, S-Drop denotes the accuracy drop on the source (authorized) domain, while T-Drop refers to the
average accuracy drop on multiple target (unauthorized) domains in the same benchmark. Note that both S-Drop and T-Drop
are obtained by comparing each solution with the performance of the purely supervised model. In addition, the combined
results on PACS and VLCS indicate the average performance on the four combined training tasks.

Benchmark
Task Source-Only Target-Combined

Methods GNTL DSO TDSO
Training Domain S-Drop T-Drop S-Drop T-Drop S-Drop T-Drop

Office-31
Amazon 0.0%↓ 9.0%↓ 1.0%↓ 30.0%↓ 0.0%↓ 67.5%↓
Webcam 0.0%↓ 21.5%↓ 3.0%↓ 64.5%↓ 0.0%↓ 94.0%↓

Dslr 3.0%↓ 27.5%↓ 3.0%↓ 63.5%↓ 0.0%↓ 87.0%↓

Digit

MNIST 0.0%↓ 15.5%↓ 1.0%↓ 19.5%↓ 0.0%↓ 45.5%↓
USPS 3.0%↓ 22.0%↓ 2.0%↓ 25.0%↓ 0.1%↓ 40.5%↓
SVHN 5.0%↓ 6.8%↓ 2.0%↓ 17.8%↓ 0.0%↓ 57.3%↓

SYN_D 0.0%↓ 3.8%↓ 1.0%↓ 21.0%↓ 1.0%↓ 74.0%↓
MNIST_M 1.0%↓ 35.7%↓ 3.0%↓ 35.0%↓ 0.0%↓ 61.0%↓

Cifar10 & STL10 Cifar10 0.0%↓ 6.0%↓ 3.0%↓ 12.0%↓ 0.0%↓ 32.0%↓
STL10 0.0%↓ 11.0%↓ 1.0%↓ 25.0%↓ 2.0%↓ 51.0%↓

Visda2017 Real 5.0%↓ 6.0%↓ 0.0%↓ 28.0%↓ 0.0%↓ 72.0%↓
Synthetic 0.0%↓ 1.0%↓ 1.0%↓ 16.0%↓ 0.0%↓ 28.0%↓

PACS

Art_painting 0.0%↓ 2.0%↓ 1.0%↓ 13.0%↓ 0.0%↓ 51.0%↓
Cartoon 3.0%↓ 0.3%↓ 1.0%↓ 8.0%↓ 1.0%↓ 47.3%↓
Photo 1.0%↓ 9.7%↓ 1.0%↓ 20.0%↓ 1.0%↓ 40.0%↓
Sketch 0.0%↓ 2.0%↓ 1.0%↓ 12.0%↓ 0.0%↓ 15.0%↓

Combined 0.0%↓ 11.8%↓ 0.0%↓ 25.8%↓ 0.7%↓ 58.0%↓

VLCS

Caltech101 3.0%↓ 0.7%↓ 0.0%↓ 6.7%↓ 3.0%↓ 10.7%↓
Labelme 0.0%↓ 2.3%↓ 0.0%↓ 18.3%↓ 1.0%↓ 32.3%↓

VOC2007 0.0%↓ 0.0%↓ 3.0%↓ 26.3%↓ 0.0%↓ 46.7%↓
Sun09 0.0%↓ 0.0%↓ 1.0%↓ 13.6%↓ 2.0%↓ 32.3%↓

Combined 0.0%↓ 0.0%↓ 2.0%↓ 23.0%↓ 0.7%↓ 47.8%↓

Table 2: Uniform authorization results of case study, where S→ S, A→ A and P→ P refers to P+C+A→ S, P+C+S→ A and
A+C+S→ P. Result in red and green represents the successful authorization and the failure.

Tasks Office-31 PACS VLCS
D→W W→D S→S A→A P→P L→C V→C C→C

Sup 96.2% 96.1% 80.1% 81.9% 94.4% 81.3% 92.0% 92.3%
G_NTL 89.1% 93.6% 64.2% 66.6% 83.8% 77.5% 92.7% 92.1%

DSO 40.1% 46.2% 57.5% 47.5% 72.1% 33.1% 43.5% 43.5%

Tasks Digit Visda
N→U U→N S→N S→U S→H M→N M→U R→S

Sup 86.2% 89.5% 88.0% 83.1% 85.6% 96.4% 83.2% 80.1%
G_NTL 71.1% 72.9% 84.4% 81.0% 86.8% 53.1% 13.4% 74.5%

DSO 68.5% 53.2% 68.1% 69.5% 60.6% 46.2% 19.1% 52.1%

proposed DSO is not sensitive to the selection of the radius
parameter ρ, as already explained in [27]. The correspond-
ing results are shown in Fig. 5 by varying ρ on three tasks
including MNIST → USPS in Digit, Real → Synthetic in
Visda2017 and VOC2007→ Caltech101 in VLCS.

Finally, we investigate the performance of TDSO with

varying sample sizes in the unauthorized (target) domain.
By tuning the ratio of Nu (number of the used unlabelled
data) to Nt (the number of the whole target samples) ranging
from 0.2 to 1.0, we find our TDSO method achieves good
authorization performance at all the time in Table 3.
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Figure 3: Authorization with different label corruption pro-
tocols, where the x-axis denote training domains. For the
random corruption protocal, Random-train refer to the model
performance on the training (authorized) domain, while
Random-test refer to the average performance on the rest
testing (unauthorized) domain.
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Figure 4: Convergence results of DSO on the task Dslr →
Amazon in Office-31 benchmark, where the left side shows
the loss curve and the right side shows the accuracy curve.
In the training phase, we record the first 1500 steps to report
the convergence situation.
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Figure 5: Parameter Sensitivity of DSO on VLCS, Digit and
Visda2017 with ρ ∈ {50,100,150,200,250,300}.

Comparison with recent Non-transferable baselines Be-
sides, we have also conducted a comprehensive comparison
with the recently proposed CUTI model [42] on Visda2017
(Synthetic to Real) and Office-31 (Dslr to Webcam, and Web-

Table 3: Authorization results of TDSO with varying un-
labelled sample size, which is reported on the DSLR →
Webcam task in the Office-31 benchmark.

Ratio 0.2 0.4 0.6 0.8 1.0
Authorized 97.6% 96.8% 97.0% 96.2% 98.2%

Unauthorized 36.9% 23.6% 10.3% 5.0% 4.8%

Figure 6: Comparison with CUTI on Visda and Office-31.

cam to Dslr) benchmarks in Figure 6. Corresponding results
demonstrates the superiority of our DSO.

7. Conclusion and Discussion
This paper contributes the Domain Specified Optimiza-

tion (DSO) method to achieve the newly proposed deploy-
ment authorization for the intelligent protection of pre-
trained models. By distributionally degrading the model
performance over the uncertainty set surrounding the train-
ing domain, our DSO can successfully restrict the general-
ization capability of the pre-trained models on unauthorized
domains. Extensive experiments conducted on six bench-
marks confirm the effectiveness of our methods.

However, we assume there is only a single authorized
domain in this paper, while a more complicated scene exists.
For example, someone wants the model trained on MNIST to
act poorly on USPS but generalize well on SVHN. Achieving
heterogeneous control of the generalization capability will be
considered in our future work. Besides, considering inducing
the spurious correlation between labels and training-specific
styles are also interesting.
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