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ever, in this paper, we revisit this common belief. Mo-
tivated by the large gap separating the two domains, we
propose a strategy that enables effective training of ego-
centric models without exocentric transferring. Our Ego-
Only approach is simple. It trains the video representation
with a masked autoencoder finetuned for temporal segmen-
tation. The learned features are then fed to an off-the-shelf
temporal action localization method to detect actions. We
find that this renders exocentric transferring unnecessary by
showing remarkably strong results achieved by this simple
Ego-Only approach on three established egocentric video
datasets: Ego4D, EPIC-Kitchens-100, and Charades-Ego.
On both action detection and action recognition, Ego-Only
outperforms previous best exocentric transferring methods
that use orders of magnitude more labels. Ego-Only sets
new state-of-the-art results on these datasets and bench-
marks without exocentric data.

1. Introduction

In this paper we consider the problem of action detec-
tion from egocentric videos [30, 21, 19] captured by head-
mounted devices. While action detection in third-person
videos [6, 36] has been the topic of extended and active re-
search by the computer vision community, the formulation
of this task in the first-person setting is underexplored.

One major challenge of egocentric action detection is
the lack of data, i.e. insufficient amount of egocentric
videos to train large-capacity models to competitive results.
For example, existing methods such as Ego-Exo [43] and
Charades-Ego [56], attempted to train egocentric models

Figure 1. Our Ego-Only approach achieves state-of-the-art results
on Ego4D [30] action detection and Charades-Ego [56] action
recognition without any extra data or labels (Section 4). Compared
with exocentric transferring, Ego-Only uses orders of magnitude
fewer labels, simplifies the pipeline, and improves the results.

Exocentric Videos
(length: 10 seconds)

Egocentric Videos

Figure 2. Domain gap between egocentric videos (Ego4D [30])
and exocentric videos (Kinetics-400 [37]). Exocentric videos are
typically in the form of short trimmed clips, which show the actors
as well as the contextual scene. Egocentric videos are dramatically
longer, capture close-up object interactions but only the hands of
the actor. These differences make it challenging to transfer models
from exocentric action recognition to egocentric action detection.

from scratch using egocentric data only, but failed to obtain
satisfactory results. Therefore, current egocentric action de-
tection methods rely on out-of-domain large-scale exocen-
tric (third-person) videos [37] or even images [22], under
the assumption that the large-scale pretraining with proper
transferring techniques can mitigate the negative effect of
the domain gap between egocentric and exocentric videos.
This hope is reinforced by the observation that deep neu-
ral networks exhibit invariance to object viewpoints [55],
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as evidenced by the effective transfers from large-scale
ImageNet pretraining to various still-image [50, 35, 62]
and video understanding tasks [37, 5, 2]. Prior video ap-
proaches [43, 56] also demonstrated empirical benefits of
transferring from exocentric representations over simply
learning egocentric representations from scratch. As a re-
sult, this line of research focuses mainly on improving the
transferring techniques that minimize the domain gap, or
simply scaling exocentric data to a huge amount [72, 29].

However, we argue that the dramatically different view-
point of first-person videos poses challenges that may not
be addressed simply by scaling exocentric data or design-
ing better transferring techniques, as illustrated in Figure 2:
(1) No actor in view. In egocentric videos, the subject is
behind the camera and is never visible, except for their
hands. Conversely, third-person videos usually capture the
actors as well as informative spatial context around them.
(2) Domain shift. Egocentric videos entail daily life activi-
ties such as cooking, playing, performing household chores,
which are poorly represented in third-person datasets. (3)
Class granularity. First-person vision requires fine-grained
recognition of actions within the same daily life category,
such as “wipe oil metallic item”, “wipe kitchen counter”,
“wipe kitchen appliance”, and “wipe other surface or ob-
ject” [30]. (4) Object interaction. Egocentric videos capture
a lot of human-object interactions as a result of the first-
person viewpoint. The scales and views of the objects are
dramatically different than in exocentric videos. (5) Long-
form. Egocentric videos are typically much longer than ex-
ocentric videos and thus require long-term reasoning of the
human-object interactions rather than single frame classifi-
cation. (6) Long-tail. Real-world long-tail distribution is
often observed in egocentric datasets, as they are uncurated
and thus reflect the in-the-wild true distribution of activities,
which is far from uniform. (7) Localization. Egocentric ac-
tion detection requires temporally sensitive representations
which are difficult to obtain from third-person video classi-
fication on short and trimmed clips.

We argue that these challenges impede effective transfer
from the exocentric to the egocentric domain and may ac-
tually cause detrimental biases when adapting third-person
models to the first-person setting (as shown in Section 4).
Therefore, instead of following the common transferring as-
sumption, we revisit the old good idea of training with in-
domain egocentric data only, but this time in light of the
development of recent data-efficient training methods, such
as masked autoencoders [32, 59, 27] as well as the scale
growth of egocentric data collections (e.g., the recently in-
troduced Ego4D dataset [30]).

In this paper, we study the possibility of training with
only egocentric video data by proposing a simple “Ego-
Only” training approach. Specifically, Ego-Only consists of
three training stages: (1) a masked autoencoder stage that

bootstraps the backbone representation, (2) a simple fine-
tuning stage that performs temporal semantic segmentation
of egocentric actions, and (3) a final detection stage using
an off-the-shelf temporal action detector, such as Action-
Former [73], without any modification. This approach en-
ables us to train an egocentric action detector from random
initialization without any exocentric videos or images.

Empirically, we evaluate Ego-Only on the three largest
egocentric datasets, Ego4D [30], EPIC-Kitchens-100 [21],
Charades-Ego [56], and two tasks, action detection and ac-
tion recognition. Surprisingly, Ego-Only outperforms all
previous results based on exocentric transferring, setting
new state-of-the-art results, obtained for the first time with-
out additional data. Specifically, Ego-Only advances the
state-of-the-art results on Ego4D Moments Queries detec-
tion (+6.5% average mAP), EPIC-Kitchens-100 Action De-
tection (+5.5% on verbs and +6.2% on nouns), Charades-
Ego action recognition (+3.1% mAP), and EPIC-Kitchens-
100 action recognition (+1.1% top-1 accuracy on verbs).

In addition to the state-of-the-art comparison, we also
noticed a few critical factors (as shown in Section 4) for the
effectiveness of an Ego-Only approach: (1) dramatic per-
formance deterioration when skipping either MAE pretrain-
ing or temporal segmentation finetuning; (2) importance of
MAE pretraining on egocentric (as opposed to exocentric)
data to learn the in-domain distribution; (3) criticality of
long-term modeling for good accuracy; (4) the sensitivity
to amount of unsupervised data; (5) surprising lack of per-
formance gains by joint ego-exo pretraining or finetuning.

In summary, our contributions are four-fold:

* We propose the first Ego-Only method that trains ego-
centric action representations effectively without any
form of exocentric data or transferring.

* We demonstrate that exocentric transferring is not nec-
essary for state-of-the-art egocentric action detection.

* Ego-Only advances state-of-the-art results on both ac-
tion detection and action recognition, evaluated on
three large-scale egocentric datasets.

* Our empirical evaluation reveals several critical factors
for the effectiveness of an Ego-Only approach.

2. Related Work

Action recognition methods learn to classify actions in
trimmed video clips. Recent action recognition models in-
clude convolutional neural networks [60, 10, 64, 61, 65, 45,

, 26] and vision transformers [24, 5, 25, 44, 2, 52]. The
learned action representations are often used as features for
downstream tasks.

Temporal action localization aims to detect action in-
stances from long videos. Most methods [48, 47,71, 75] de-
tect actions using frozen video features from action recog-
nition models. Recently, ActionFormer [73] models long-
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Figure 3. Our Ego-Only approach simplifies the previous pipeline
by removing the dependence on pretrained exocentric checkpoints
obtained with extra data, extra labels, and extra pretraining stages.

sequence features with transformers. SegTAD [74] detects
actions via temporal segmentation. TALLFormer [17] trains
the feature backbone end-to-end with the detector.

Self-supervised learning aims to learn visual representa-
tion without human annotation. Traditional methods in-
clude hand-crafted pretext tasks [54, 68, 39, 23] and con-
trastive learning [70, 33, 15, 31, 16, 7, 8, 9, 63]. Re-
cently, masked autoencoders [4, 77, 32, 67, 27] have shown
training efficiency [32], model scalability [32], data effi-
ciency [59], and effectiveness on videos [67, 59, 27].

Egocentric video datasets [30, 20, 21, 57] have grown in
size by orders of magnitude over the past few years, present-
ing new challenges [21] and opportunities[30], such as ego-
centric action recognition [2 1, 43] and detection [21]. Most

egocentric action detection methods [30, 21, 73, 46] follow
temporal action localization practices [75, 73, 47, 71] and
adopt exocentric pretrained checkpoints [10, 28, 5, 3, 2].

In this paper, we study the possibility of detecting ego-
centric actions without any form of exocentric transferring.

3. Method

In Section 3.1, we provide an overview of our Ego-Only
approach which enables egocentric action detection without
relying on exocentric transferring. The proposed Ego-Only
method consists of three training stages: a standard masked
autoencoder (MAE) pretraining stage, an egocentric fine-
tuning stage, which we present in Section 3.2, and finally
standard training of a temporal action detector.

3.1. Ego-Only

There is an extensive literature about training object de-
tectors [50, 35] on images end-to-end from random initial-
ization [34]. However, these approaches are difficult to
adapt to egocentric action detection where both the videos
and the actions are long-form. For example, Ego4D [30]

Moments clips are 8 minutes long, and around half of the
actions are longer than 10 seconds which is the typical
length of an exocentric video. In this case, end-to-end train-
ing of an action detector is impossible due to GPU mem-
ory limitations unless one reduces aggressively the model
size, the spatial resolution, or the temporal sampling den-
sity, which would lead to degradation in performance.

This empirical challenge calls for a “proxy” objective
that enables learning visual representations with a large
model size, a high spatial resolution, and a high temporal
sampling density. This surrogate objective is usually real-
ized by pretraining on short exocentric videos. However, as
discussed in Section 1, the learned representation may not
transfer effectively. Instead, in our Ego-Only approach, we
approximate the temporal action detection task by perform-
ing temporal semantic segmentation that predicts action la-
bels at each frame. Note that this approximation is not exact
because we truncate long-form videos into clips, throwing
away the action context outside the sampled clip. Such ap-
proximation leads to a trade-off between the action context
and the temporal sampling density, ablated in Section 4.3.

This simple surrogate objective allows us to train visual
representations from random initialization towards tempo-
ral action detection. However, we empirically find that the
learned representation generalizes poorly even with strong
augmentation and regularization. In order to further im-
prove generalization, we introduce an additional MAE pre-
training stage which has been shown to yield strong gener-
alization in the low-data regime [59]. This additional pre-
training improves generalization as shown in Table 5.

Putting these pieces together, Figure 3 summarizes our
complete Ego-Only method that includes the initial MAE
pretraining, the egocentric finetuning task as an approxi-
mation of action detection, and the final temporal action
detector that incorporates full context of the whole long-
form video. This approach differs from existing methods in
the absence of an exocentric pretraining stage that requires
large-scale annotated exocentric videos or images. For ex-
ample, most prior approaches pretrain egocentric models on
Kinetics-400 (K400) with 240K annotated videos, while our
Ego-Only method uses merely 14K annotated action seg-
ments on Ego4D and achieves better results (Table 5).

Next, we describe in more detail the initial MAE pre-
training stage and the final action detection stage that are
both adopted from existing literature without any modifica-
tion. Note that this paper aims to revisit the value of exocen-
tric transferring and does so by proposing an ego-only meta
algorithm that is intentionally kept as simple as possible.

Masked Autoencoder. Our method applies the original
MAE [32] and video MAE [27] algorithms. Specifically,
we consider the vanilla vision transformers [24, 27], ViT-
B and ViT-L, as our architectures, due to the native sup-
port by MAE. We do not consider convolutional architec-
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Figure 4. Ego-Only finetuning stage (left) and action detection stage (right). In the finetuning stage, the vision transformer is finetuned to
predict action classes at each frame from spatially-pooled features (colors represent frame indices within a clip). In the detection stage,
finetuned backbone features are frozen and extracted using a sliding window. Features at the same timestamp (e.g. T1) but from different
windows are average-pooled. On top of the long sequence of frozen features, a detector is then trained to temporally localize the actions.

tures [28] or hierarchical transformers [51, 52, 25, 44] that
require adaptation of the MAE algorithm. Since videos are
highly redundant, we use a very high masking ratio (90%)
with a random masking strategy and all of the pretraining
recipes as suggested in video MAE [27]. The only adapta-
tion we make is to sample each video with a probability pro-
portional to its temporal length, because of the long-form
property of egocentric videos. This ensures equal sampling
probability for any possible clip in the dataset.

Action Detector. After the egocentric finetuning stage
(Section 3.2) that trains the backbone representation to-
wards action detection, we apply an existing temporal ac-
tion localization algorithm to detect the actions. Specif-
ically, given the finetuned video backbone, features are
extracted from the frozen model with sliding windows,
following standard practice in temporal action localiza-
tion [73, 75]. Then, the action detector is trained on top of
a long sequence of frozen video features to produce tempo-
ral segments as outputs. There is a potential risk of overfit-
ting since our finetuning stage and action detection stage are
trained on the same training set, but empirically we do not
find this to be a significant issue in practice, probably be-
cause the detector takes as input a long-form video instead
of a clip and the detector loss differs from simply segmenta-
tion. For better performance, we choose ActionFormer [73]
as our default detector as it has demonstrated good accuracy
on temporal action localization benchmarks. As we work on
egocentric videos, we adopt the ActionFormer architecture
previously proposed for EPIC-Kitchens-100 [21].

3.2. Finetuning via Temporal Segmentation

Inspired by TSN [64] and SegTAD [74] that detect ac-
tions via temporal semantic segmentation, we finetune our
backbone features from MAE pretraining by predicting
class labels for each frame, as illustrated in Figure 4 (left).
This is akin to the task of image semantic segmenta-
tion [11, 12, 13, 14] which predicts class labels for each

pixel. Formally, given an input video clip with a certain
temporal span, a temporal segmentation model predicts out-
put logits L € RT*¢ where T denotes the temporal dimen-
sion of the logits and C'is the total number of action classes.

We follow a few principles in defining this simple fine-
tuning objective: (1) A video clip of a certain temporal span
is taken as the input instead of the full long-form video.
This temporal approximation enables us to train large-scale
models within the given GPU memory limit. (2) We em-
ploy a fixed temporal span which is consistent with both
MAE pretraining and detection feature extraction. This re-
moves potential domain gaps when models are trained and
inferred with different temporal spans. (3) The temporal
segmentation objective trains models to distinguish frames
of different classes within one video clip, especially when
a long temporal span is adopted. (4) We train with clips
uniformly sampled over the dataset, making full use of all
positive and negative samples in the dataset.

Note that our segmentation stage differs from TSN [64]
and SegTAD [74] mainly in the goal which is to finetune
the backbone representation instead of to detect actions di-
rectly from the output scores. In order to address unique
challenges (Section 1) in egocentric videos, we also adopt
critical techniques addressing loss and imbalance issues.

Next, we discuss the loss function that we choose to fine-
tune the backbone, how we address the egocentric imbal-
ance challenges, and how backbone features are extracted
for the subsequent action detection stage.

Loss function. Egocentric videos usually contain overlap-
ping actions of different classes. For example, a person
could be taking a photo while speaking on the phone. This
makes the finetuning stage a multi-label classification task.
Therefore, we employ a loss function independent for each
action class, i.e. the activation of one class does not suppress
another. Specifically, we adopt per-frame binary cross-
entropy (BCE) as the loss function on the logits, instead
of cross-entropy which suppresses non-maximum classes.
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Imbalance challenges. The long-tail imbalance in egocen-
tric videos (Section 1) poses a major challenge to our fine-
tuning stage, due to the less curated nature and the long-
form property of egocentric videos. Specifically, there are
usually (1) imbalanced numbers of videos across action
classes, (2) imbalanced action lengths within one class,
and (3) imbalanced numbers of foreground frames vs back-
ground frames within one class. Inspired by the literature
of one-stage object detection, we mitigate the imbalance is-
sue by adopting focal loss [49] in the BCE loss and bias-
ing the logits towards background at initialization. We also
reweigh each action instance by the inverse of the action
length, leading to a balanced loss for each instance.

Feature extraction. Once our video backbone is finetuned
on sampled clips, features are extracted using a sliding
window on both the training set and validation set for
training the detector on long-form videos and validating
the approach. According to temporal action localization
literature [73, 75], clip features are average-pooled spa-
tiotemporally following the exocentric classification prac-
tice [10, 28]. However, in our temporal segmentation
case on long-form videos, our spatially-pooled features are
trained to be temporally different within a video clip, en-
coding their own local context. Therefore, as illustrated
in Figure 4 (right), given the sliding windows of features,
we average-pool features at the same wall-clock timestamp
from all sliding windows. This enables the usage of a long
temporal span, such as 64 seconds (Figure 5), by extracting
temporally variable features from a window.

4. Experiments

We evaluate our Ego-Only approach by reporting main
results on the two largest egocentric video datasets,
Ego4D [30] and EPIC-Kitchens-100 [2 1], measured by av-
erage mAP at tloU {0.1, 0.2, 0.3, 0.4, 0.5} on the val
set (Section 4.1). Next, we study the application to ego-
centric action recognition and report video-level mAP on
Charades-Ego [56] and top-1 accuracy on EPIC-Kitchens-
100 [21] (Section 4.2). Then, we carefully ablate the effect
of each design choice in Section 4.3. Finally, we bench-
mark our model runtime cost in Section 4.4 and visualize
egocentric MAE reconstructions in Section 4.5.

4.1. Main Results on Action Detection

EgodD. We compare our results on the Ego4D [30] MQ
val set with state-of-the-art methods in Table 1, using ViT-
B and ViT-L. We notice that our Ego-Only performs signif-
icantly better than previous state-of-the-art but without any
extra exocentric data or labels needed. Specifically, with
ViT-B as the backbone, Ego-Only achieves an average mAP
of 16.3%, producing a relative improvement of 170% over
the Ego4D paper baseline [30] that pretrains on Kinetics-

400 [37] with 18x annotated clips. This strong result even
outperforms EgoVLP which has seen 4M language-narrated
video clips from Ego4D (i.e. in-domain) and 14M images
from IN-21K [22]. Finally, scaling Ego-Only to ViT-L
backbone yields an mAP of 17.9%, setting a new state-of-
the-art on this benchmark without any extra data or labels.

EPIC-Kitchens-100. Following the Ego4D exploration,
we validate our Ego-Only approach on the EPIC-Kitchens-
100 [21] Action Detection benchmark. We can see from Ta-
ble 2 that Ego-Only achieves much better results compared
with exocentric transferring. Specifically, compared with
previous state-of-the-art methods that adopt Kinetics [37]
SlowFast [28] features finetuned on EPIC-Kitchens-100
Action Recognition, our Ego-Only with a ViT-B backbone
already performs 4.6% better on both verbs and nouns.
Scaled to a ViT-L backbone, Ego-Only improves further and
sets a new state-of-the-art result of 29.0% mAP on verbs
and 28.1% mAP on nouns. By analyzing our results using
DETAD [I] (supplementary material), we find that Ego-
Only significantly reduces false positives on backgrounds,
compared with exocentric transferring, probably because
Kinetics contains mostly trimmed videos with foreground
actions only. This validates the benefit of Ego-Only.

4.2. Application to Action Recognition

Besides egocentric action detection, we further evaluate
our Ego-Only approach on the task of action recognition
on Charades-Ego [56] and EPIC-Kitchens-100 [21]. This is
simply achieved by skipping our last action detector stage
and averaging the temporal semantic segmentation model
output scores after the sigmoid activation in the BCE loss.
Results on action recognition allow us to compare Ego-
Only with a wider range of state-of-the-art methods.

Charades-Ego. In Table 3, we report recognition results on
Charades-Ego [56] by finetuning the existing Ego4D MAE
checkpoints on Charades-Ego, without exploiting any ego-
exo supervision or correspondence. Remarkably, Ego-Only
with a ViT-B backbone already significantly outperforms
state-of-the-art methods that exploit ego-exo alignment
(ActorObserverNet [56]), or semi-supervised domain adap-
tation (SSDA [18]), or ego-exo distillation (Ego-Exo [43]),
or egocentric video-language pretraining (EgoVLP [46]).
Furthermore, we compare LaVilLa that uses CLIP initial-
ization with 400M text-image pairs, 4M Ego4D narration-
clip pairs, as well as the large language model GPT-2 XL.
Our Ego-Only trained on only the egocentric subset of
Charades-Ego, matches this result with merely 33K labels
(around 0.01% of 404M) and a smaller ViT-L backbone. Fi-
nally, when we augment Ego-Only with the exocentric sub-
set of Charades-Ego, we observe a significant gain of 3.1%
absolute points over the LaViLa state-of-the-art.
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method ‘ backbone params extra data extra labels ‘ 01 02 03 04 05 ‘ avg # labels
Ego4D [30] |SlowFast [28] 63M Kinetics-400 [37] 240K 9.10 7.16 5.76 4.62 3.41| 6.03 254K
EgoVLP [46] | Frozen[3] 178M 1IN-21K [22]+ EgoClip [46] 18M 16.63 - 1145 - 6.57|11.39 18M
Ego-Only ViT-B 86M - - 22.5 193 16.0 13.1 10.6| 16.3 14K
Ego-Only ViT-L 304M - - 24.6 208 177 149 11.7|179 14K
Table 1. Ego4D action detection on MQ val set (see Table 5 and Table 6 for ablations).
method backbone extra extra verb noun # labels
data labels| 0.1 02 03 04 05 |avg|0.1 02 03 04 05 |avg| seen
BMN [47,21] | SlowFast K400 240K |10.8 9.8 84 7.1 56|84 103 83 62 45 34| 6.5 | 307K
G-TAD [71] | SlowFast K400 240K |12.1 11.0 94 81 65|94 |11.0 100 86 7.0 54| 84 | 307K

ActionFormer | SlowFast K400 240K |26.6 254 242 22.3 19.1|23.5|25.2 24.1 227 20.5 17.0|21.9| 307K

Ego-Only ViT-B - - 31.1 304 28.9 26.6 23.4|28.1[30.0 29.2 27.8 25.1 20.7[26.5| 67K
Ego-Only ViT-L - - 32.0 31.5 20.0 27.4 24.0|29.0|31.5 30.8 29.2 26.5 22.5[28.1| 67K
Table 2. EPIC-Kitchens-100 Action Detection val set (see Table 8 for ablations).

method ‘ backbone  params | mAP # labels method | S€lf-sup. sup.  sup. | EgodD  #labels
MAE exo ego mAP seen

ActorObserver [56] | ResNet-152  60M | 20.0 1.4M
SSDA [18] 13D 2M | 258 1.6M €x0-sup - K400 Ego4D | 13.9 254K (18x)
Ego-Exo [43] | SlowFastR101 75M |30.1 0.3M s | B o B | ) R
EgoVLP [46] TSF-B 178M | 32.1 18M
LaVilLa [76] TSF-B 178M | 33.7 404M
Ego-Only ViT-B 87 | 333 33K

. Table 5. Varying the pretraining stage. Ego-Only outperforms exo-
LaViLa [76] TSF_L 528M | 36.1  404M centric transferring with much fewer labels (14K vs. 240K+14K).
Ego-Only ViT-L 304M | 36.0 33K
Ego-Only' ViT-L 304M | 39.2 67K

Table 3. Charades-Ego recognition. "with full Charades-Ego data.

method variant verb noun
IPL [66] 13D, K400 68.6 51.2
ViViT [2] ViViT-L/16x2, IN-21k+K400 [66.4 56.8

MoViNet [40] MoViNet-A6, 120 frames 72.2 57.3
MTV [72] MTV-B, WTS-60M, 280p 69.9 63.9
MTCN [38] MFormer-HR, IN-21k+K400+VGG-Sound | 70.7 62.1
Omnivore [29] Swin-B, IN21k+IN-1k+K400+SUN |69.5 61.7
MeMVIiT [69] MeMViT, 32x3, K600, 105.6 sec|71.4 60.3
LaVilLa [76]  TSF-L, WebImageText+Ego4D |72.0 62.9

ViT-L, 32 frames, 3.2 sec 73.3 59.4

Ego-Only

Table 4. EPIC-Kitchens-100 action recognition top-1 accuracy.

EPIC-Kitchens-100. In Table 4, we report action recogni-
tion top-1 accuracies on EPIC-Kitchens-100 [2 1] by evalu-
ating the EPIC-Kitchens-100 temporal segmentation model
from Section 4.1. We compare Ego-Only with state-of-the-
art methods exploiting large-scale image data (ViViT [2]),
or web-scale text-image pairs (MTV [72], LaVilLa [76]), or
multimodal audio (MTCN [38]) depth (Omnivore [29]) su-

pervision, or 32x temporal support (MeMViT [69]). In
contrast, our Ego-Only using the 495 videos in EPIC-
Kitchens-100 as the only source of supervision achieves the
state-of-the-art results of 73.3% on verb classification, out-
performing the existing best result by 1.1%. This validates
the effectiveness of Ego-Only in capturing hand-object in-
teractions from egocentric videos.

4.3. Ablation Study

In order to analyze our Ego-Only approach, we compare
Ego-Only with common exocentric transferring solutions
and ablate the importance of each stage in Ego-Only. We
also scale the amount of data consumed, the model sizes, as
well as the number of pretraining epochs. We perform all
ablation studies on egocentric action detection benchmarks.

Varying the pretraining stage. Table 5 reports our results
with different pretraining stages. Compared with the com-
mon exocentric supervised baseline of 13.9% mAP, our
Ego-Only with exactly the same backbone, the same fine-
tuning, and the same detector, achieves the performance of
16.3% (+2.4%) mAP by using egocentric data only and with
merely 14K labels, instead of 240K labels used in the exo-
centric transferring method.
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self-sup.  sup. sup. Ego4D
method  backbone MAE x0 eg0 AP
exo-MAE ViT-B K400 - - 6.7
ego-MAE  ViT-B Ego4D - - 7.8
exo-FT ViT-B K400 K400 - 13.5
ours ViT-B Ego4D - Ego4D 16.3

Table 6. Varying the finetuning stage.

Next, we consider skipping the MAE pretraining and
train from scratch the model via temporal segmentation on
Ego4D. However, our best model learned from scratch only
reaches the mAP of 4.2% (vs. 16.3% with MAE pretraining
in Ego-Only), due to the limited number of labels available
on Ego4D, only 14K. This is smaller than the number of
labels in MNIST [42] or CIFAR [41] but the task of ego-
centric action detection is significantly more challenging.

In addition to the model trained from scratch, we also
compare with self-supervised MAE pretraining on Kinetics-
400. When this checkpoint is finetuned, it achieves 13.4%
mAP which is 2.9% worse than the counterpart pretrained
on Ego4D. This gap is reasonable since the model is pre-
trained on out-of-domain data but does not benefit from
the large-scale exocentric labels. Once the extra labels are
used, Kinetics finetuning yields performance on-par with
our much simpler Ego-Only approach.

Varying the finetuning stage. After varying the pretrain-
ing stage, we study the importance of finetuning. For this
purpose, we extract features from pretrained models, with-
out any form of finetuning on egocentric data. Contrary
to the strong linear probing results of MAE on ImageNet-
1K[22], we observe that frozen MAE features perform
poorly on egocentric action detection, leading to an absolute
drop of 8.5% points in average mAP. Kinetics-400 MAE
features perform even worse (as expected), but finetuning
on Kinetics with 240K labels is helpful, achieving a 13.5%
mAP which is 2.8% worse than Ego-Only. We also try con-
catenating frozen MAE features from multiple blocks [9],
but only observe a marginal gain (supplementary material).

Detectors and temporal spans. Next, we compare tempo-
ral action detector choices in Ego-Only and vary the tem-
poral span at the same time. As we use a consistent tem-
poral span for the whole pipeline, including MAE, finetun-
ing, and feature extraction (Section 3.2), we pretrain MAE
with each temporal span for 200 epochs only. Then, we de-
fine a simple baseline of a 1D blob detector [53] using the
Laplacian of Gaussian kernel. To our surprise, as shown in
Figure 5, this simple blob detection baseline achieves 8.2%
mAP which is already better than the Ego4D [30] paper
baseline of 6.0% mAP with pretrained SlowFast [28] fea-
tures and VSGN [75], thanks to the effectiveness of Ego-
Only features. We also notice that the blob detector and
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Figure 5. Varying detectors and temporal spans. The blob detector
performs surprisingly well and perfers a long temporal span, while
ActionFormer and VSGN prefer short spans due to their trans-
former or graph neural network based architectures.
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Figure 6. Scaling models and pretraining epochs. At around 800 or
1600 epochs, our Ego-Only starts to match exocentric transferring.

the frozen MAE feature prefer a longer temporal span of 16
or 32 seconds, demonstrating the importance of long-term
context in egocentric videos. On the other hand, VSGN [75]
and ActionFormer [73] prefer short feature spans probably
because the graph neural network or the transformer cap-
tures long-term relations internally, benefiting more from
local features that represent dense temporal motion. Finally,
ActionFormer with finetuned features achieves the best re-
sult of 12.9%, outperforming VSGN by 4.0% consistently.

Scaling models and pretraining epochs. In addition to
ablating the three stages in our Ego-Only pipeline, we also
scale the model size from ViT-B to ViT-L and benchmark
results under different computation budgets. We keep the
relatively cheap finetuning of 20 epochs unchanged, but
vary the MAE pretraining epochs. As shown in Figure 6,
both ViT-B and ViT-L results improve consistently when
they are pretrained longer. At around the budget of 800 or
1600 epochs, our Ego-Only models start to match Kinetics-
400 pretrained models with both ViT-B and ViT-L. The Ki-
netics baselines, before transferred to egocentric data, are
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ego MAE pretrain (hours)  ego finetune | mAP

Ego4D MQ clips (195h) 195h 14.5
Ego4D MQ videos (487h) 195h 14.8
Ego4D EM videos (838h) 195h 14.7

Ego4D ALL videos (3560h) 195h 15.5

Table 7. Scaling the amount of pretraining data. MQ clips: all MQ
training clips [30]. MQ videos: all videos in the MQ task train-
ing set. EM videos: all videos in the Episodic Memory bench-
mark training set. ALL videos: all Ego4D videos except MQ val
and test videos. Our Ego-Only results improve with respect to the
amount of data consumed in the pretraining stage.

self-sup. sup. sup. | verb noun # labels

method MAE exo ego |mAP mAP seen

exo-FT | K400 K400 EPIC| 28.0 28.3 307K
exo-FT | K600 K600 EPIC|27.1 28.6 457K
ours EPIC - EPIC|29.0 28.1 67K

Table 8. Scaling exocentric pretraining data.

pretrained with 800/1600 epoch MAE and 150/100 epoch
exocentric finetuning that consumes not only more data and
labels but also more computation resources than Ego-Only.

Scaling egocentric pretraining data. Beyond standard
ablations on pretraining epochs, an intriguing dimension for
study offered by the massive scale of Ego4D is the different
amounts of large-scale unsupervised video data. Specifi-
cally, given the fixed amount of finetuning data, we select
four subsets and amounts of unsupervised data in Ego4D
to study the data scaling property of the Ego-Only pretrain-
ing stage. Note that in all cases, we exclude val and test
videos of the MQ task from the pretraining set. All mod-
els are pretrained for 200 epochs instead of 800 epochs to
save computation resources. From the results in Table 7,
we see that the performance of Ego-Only improves as more
unsupervised data is provided for MAE pretraining.

Scaling exocentric pretraining data. Besides scaling ego-
centric data, we study the common practice of scaling ex-
ocentric pretraining from K400 (240K videos) to K600
(390K videos). As shown in Table 8, scaling exocentric
data improves noun mAP marginally and hurts verb mAP
by 0.9%, compared with transferring from K400. This is
probably due to the bias of Kinetics towards scene and ob-
ject classification. When we evaluate on verbs, Ego-Only
shows a significant absolute gain of 1.9% over K600 trans-
ferring that requires much more labels. This observation is
also consistent with the action recognition results in Table 4,
where Ego-Only achieves the state-of-the-art verb accuracy.

self-sup. sup. sup. Ego4D
method ‘ MAE exo ego mAP
exo-MAE K400 - Ego4D 13.4
joint-MAE | K400 & Ego4D - Ego4D 16.0
ours Ego4D - Ego4D 16.3

Table 9. Joint ego-exo pretraining.

self-sup. sup. sup. | verb noun # labels
MAE exo ego |mAP mAP seen

joint-FT | EPIC - KEEC| 284 279 515K
ours EPIC - EPIC | 29.0 28.1 67K

method

Table 10. Joint ego-exo finetuning. KEEC: joint finetuning on
Kinetics-600, Ego4D, EPIC-Kitchens-100, COIN.

FLOPs (G) training time (hours)
method MAE exo ego | MAE exo ego total
exo-sup - 598 598 - 2009 10.0 2109
exo-FT | 81 598 598 |100.5 502 10.0 160.7

ours 81 - 598 | 100.5 - 10.0 110.5

Table 11. Inference FLOPs and training time for each stage. Our
Ego-Only method reduces the total training cost by a large margin.

Joint ego-exo pretraining. In Table 9, we study the effect
of joint ego-exo pretraining by building a joint-MAE vari-
ant that trains the MAE model on both K400 and Ego4D,
instead of K400 or Ego4D individually. We observe that
the results are greatly improved compared with the out-of-
domain K400 transferring, but lags behind our Ego-Only.

Joint ego-exo finetuning. In Table 10, we explore joint
ego-exo finetuning with a shared model backbone on four
large-scale video datasets, including Kinetics-600, Ego4D,
EPIC-Kitchens-100, and COIN [58]. This joint dataset con-
tains 515K labeled clips, 7x more than our default finetun-
ing data of 67K, but does not lead to any performance gain
probably due to the domain gap between these datasets.

4.4. Runtime

Table 11 reports inference FLOPs and training time for each
stage, on 64 V100s with ViT-L and 800-epoch MAE. Our
MAE stage is identical to Video MAE [27]. We see that
Ego-Only accelerates training significantly.

4.5. Visualization of MAE Reconstructions

In Figure 7, we visualize MAE [32, 27] reconstruction
results on Ego4D [30] with a ViT-B [24] trained for 200
epochs without per-patch normalization. We notice that
egocentric MAE learns human-object interactions (a,b,c,d)
and temporal correspondence across frames (e.f), even in
cases with strong head/camera motion (g,h,i,j).
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Figure 7. MAE [32, 27] reconstruction results on Ego4D [30] MQ val set. For each sample, we show the original video (top), the randomly
masked video (middle), and the MAE reconstruction (bottom). We visualize 8 frames [27] out of 16 with a temporal stride of 2. The
model predicts RGB pixels without patch normalization with a masking ratio of 90%. We notice that egocentric MAE learns human-object
interactions (a,b,c,d) and temporal correspondence across frames (e,f), even in cases with strong head/camera motion (g,h,i,j).

5. Conclusion munity to rethink the trade-off between training in-domain
with ego-only data and transferring from out-of-domain ex-
ocentric learning. We also hope that our Ego-Only results
provide a strong baseline for future research that aims to
improve egocentric learning by leveraging exocentric data.

In this work, we have shown for the first time that we
can train a state-of-the-art egocentric action detector with-
out any exocentric transferring. Our proposed Ego-Only

simplifies the current learning pipeline by removing the pre- Acknowledgments. We would like to thank Christoph Fe-
vious need for supervised pretraining on large-scale exocen- ichtenhofer for sharing Video MAE code and models. We
tric video or image datasets before transferring to egocen- thank Effrosyni Mavroudi, Gene Byrne, Mandy Toh, Tri-
tric videos. We hope our such attempt inspires the com- antafyllos Afouras, Yale Song, for their advice and help.
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