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Abstract

Text-driven human motion generation in computer vi-
sion is both significant and challenging. However, cur-
rent methods are limited to producing either deterministic
or imprecise motion sequences, failing to effectively con-
trol the temporal and spatial relationships required to con-
form to a given text description. In this work, we propose
a fine-grained method for generating high-quality, condi-
tional human motion sequences supporting precise text de-
scription. Our approach consists of two key components: 1)
a linguistics-structure assisted module that constructs ac-
curate and complete language feature to fully utilize text
information; and 2) a context-aware progressive reasoning
module that learns neighborhood and overall semantic lin-
guistics features from shallow and deep graph neural net-
works to achieve a multi-step inference. Experiments show
that our approach outperforms text-driven motion genera-
tion methods on HumanML3D and KIT test sets and gener-
ates better visually confirmed motion to the text conditions.

1. Introduction
Human motion generation is a crucial task in computer

vision with various applications in animation production,
gaming, robot control, and movie script visualization. Ob-
taining human motion sequences through traditional soft-
ware is a labor-intensive and tedious process, while motion
capture is complex and expensive. Recently, with the ad-
vancements in deep learning and computer vision, learning-
based human motion generation has emerged as a solution
to this problem, leading to the development of associated
generation methods based on multimodal data. The input
multimodal data include music [12, 15, 25, 27], motion cat-
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Figure 1: Our approach generates human motion sequences
that grasp fine-grained details.

egories [4, 9, 20], text [2, 3, 5, 7, 8, 16, 21, 23, 28, 33],
among others. Text-driven human motion generation has
been a popular research topic, because of its convenience
and human-friendliness. In particular, natural language
comprises nouns, verbs, adverbs, etc. The mutual connec-
tions among different words in a sentence establish its se-
mantics. Verbs define the action’s category, while adverbs
control the fineness of the action. The interaction between
words in syntax plays a vital role in determining the struc-
ture and meaning of a sentence. Failure to fully incorporate
these text features may result in inadequate text modeling,
causing the generated motion sequence to deviate from the
intended meaning of the original text.

Existing methods can be divided into two branches, in-
cluding 1) cross-modal alignment of motion and text [2, 3,
5, 7, 8, 16, 21]; 2) conditional diffusion models [28, 33]. In
the first methods, text sequences and motion sequences are
mapped onto separate feature spaces and forcibly aligned,
leading to a loss of original information from both domains.
In the second methods, the diffusion model incorporates
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text information as a conditioning factor to learn the proba-
bility mapping of human motions. However, the model in-
teracts with only one text feature at each time step of the in-
ference process, lacking a progressive approach. Moreover,
text modeling only involves simple manipulation, which
ignores the importance of certain fine-grained words and
leads to incomplete semantic understanding, making it chal-
lenging to learn focus points at each step. Overall, existing
methods only use text information to a limited extent, which
in turn affects the accuracy of motion generation based on
the corresponding text content, especially for the motion in
which texts contain fine-grained words. For instance, com-
prehending the sentence “A man is walking forward while
waving his right hand” can be a difficult task, and expecting
the model to grasp the fine-grained meaning of the terms
“while” and “right hand” is even more demanding.

To tackle the aforementioned issues, we propose a fine-
grained text-driven method for generating human motion
sequences that precisely align with text prompts in Figure 1.
Typically, people initially read a sentence to gain an overall
semantic understanding before focusing on the fine-grained
details of individual words. To replicate this process, our
method includes a linguistics-structure assisted module and
a context-aware progressive reasoning module to fully uti-
lize text information. Firstly, we utilize linguistics structure
to facilitate information exchange between each text word.
We use dependency parsing [19] to analyze the relation-
ships among words in each sentence and construct a depen-
dency tree, allowing each node to effectively communicate
based on its dependent nodes and relationships. Then, the
dependency tree nodes are passed to multi-layer graph neu-
ral networks to learn information aggregation. The multi-
layer graph neural networks allow shallow network to learn
neighborhood features as it can comprehend nearby details,
and allow deep network to grasp overall semantic features
because it is capable of aggregating information from en-
tire nodes. Additionally, our GAT captures rich inter-word
relationships while preserving the text linguistics structure
by designing adaptive weights for each part-of-speech and
dependency relation due to their distinctive role in the Text
to Motion (T2M) task.

Secondly, achieving the purpose of fine-grained interac-
tion, context-aware progressive reasoning module performs
a multi-step inference process with the progressive fusion
of global and local information between text and motion,
which is unprecedented in the T2M task. This involves uti-
lizing hierarchical semantic features to simulate the way hu-
mans comprehend sentences. We adopt the diffusion model
framework and stack the hierarchical semantic features ob-
tained from deep to shallow networks at each step to cap-
ture high-order relationships at different semantic levels.
We evaluate our method on HumanML3D dataset [7] and
KIT dataset [22]. Experiments show that our approach out-

performs the state-of-the-art methods and generates better
visual motion. Our main contributions include:

• To the best of our knowledge, we are the first to bring
NLP methods into T2M task. Utilizing the structured
understanding of the natural language prompts to help
T2M models achieve better reasoning skills, which
brings new ideas for the text-to-X community from a
textual perspective.

• We propose the Linguistics-Structure Assisted Module
(LSAM), which utilizes a dependency parsing tree and
graph networks to facilitate effective information ex-
change and data aggregation. It can obtain both neigh-
borhood and overall semantic linguistic features.

• We propose a Context-Aware Progressive Reasoning
Module (CAPR) that implements a multi-step pro-
gressive inference strategy within the diffusion model
framework, mimicking the human reading process by
moving from global to local relationships.

• Experimental results demonstrate that our proposed
method outperforms previous methods, and achieves
competitive performance on the HumanML3D and
KIT datasets.

2. Related Work
2.1. Motion generation model

Generative models play a crucial role in motion synthe-
sis by generating high-quality human motion. Generative
Adversarial Nets (GAN) [6] use two sub-models: a gener-
ator model that produces new samples, and a discrimina-
tor model that attempts to classify samples as either real or
fake. These two models compete against each other dur-
ing training. However, the interpretability of GAN is poor
because the learned data distribution lacks an explicit ex-
pression, resembling a black box mapping function.

Auto-Encoding Variational Bayes (VAE) [13] is a widely
used generative model in motion synthesis. Its primary ob-
jective is to generate new samples from the learned distri-
bution of objects by learning latent attributes from the prob-
ability distribution of the latent variable space, thereby con-
structing new examples. Despite its usefulness, the quality
of samples generated by VAE can be improved.

Recently proposed diffusion models [10, 18, 26] have
shown immense potential in modeling and present an excit-
ing opportunity to expand into text-driven motion genera-
tion. These models utilize the stochastic diffusion process
modeled in thermodynamics, which gradually adds noise
to the samples of the data distribution. The deep learning
model then learns the reverse process of denoising the sam-
ples gradually. Diffusion models have the advantage over
previous models as they do not make any assumptions about
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the target distribution, leading to a more diverse generation
and better suitability for our task. Therefore, we propose
a novel fine-grained human motion generation method that
employs the Denoising Diffusion Probability Model [10].

2.2. Text-driven human motion generation

The task of text-driven human motion generation in-
volves generating 3D human motion sequences that con-
form to a textual description. Several previous works
have tackled this task. Initially, Text2Action [1] proposed
short-text conditioned motion generation based on an RNN
model. Subsequently, Ahuja et al. [2] and Ghosh et al. [5]
focused on creating a joint representation of text and motion
by projecting both features into a shared latent space. How-
ever, these methods involve a one-to-one mapping between
text and motion, implying that given the same text, they can
only produce fixed motion sequence results.

To increase generated result diversity, TEMOS [21] in-
troduced a VAE architecture that finds a joint latent space
for motion and text under Gaussian distribution constraints.
Guo et al. [7] used a temporal VAE to autoregressively
generate motion sequences based on text features. How-
ever, these methods have a significant drawback of map-
ping text and motion sequences to separate feature spaces
and forcibly align them, leading to a loss of information
in both domains. Recently, diffusion models have shown
great potential in image generation and have inspired the
development of diffusion models for human motion gener-
ation. Tevet et al. [28] and Zhang et al. [33] encoded text
descriptions using pre-trained models and estimated Gaus-
sian noise or the original motion sequence at each reverse
diffusion step. However, their text modeling is often crude
and does not fully leverage linguistic structure for sentence
semantics. Also, they do not have a progressive process that
allows the diffusion model to focus on different content at
different time stamps, and they only interact with fixed text
features during the inference process.

3. Preliminaries

The diffusion process is a Markov process consisting of
a forward process and a reverse process. The forward pro-
cess starts with the real data X0 at step 0 and proceeds in a
Markovian manner by adding Gaussian noise at each step.
Over t steps, X0 is transformed into Xt, which is close to
the Gaussian distribution N(0, I). As a result, the original
motion sequence is converted into a complete noise distri-
bution, which can be expressed as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where βt is a hyper-parameter that controls the diffusion
rate. The entire diffusion forward process is formulated as:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (2)

where T denotes total steps in diffusion. The diffusion re-
verse process samples from the Gaussian distribution Xt as
the initial input and attempts to gradually remove the noise
on a reverse Markov-chain, which can be defined as follows:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

where µθ is the estimated item by model, t is the timestep
indicating where the denoising process has conducted.

4. Method
To enhance the modeling of fine-grained human motion

generation, we present our proposed method in Figure 2.
Previous methods [1, 2, 5] have adopted a coarse approach
to text modeling, leading to an underutilization of text in-
formation. Moreover, they treat all words equally without
considering their importance and uniqueness. In contrast,
we leverage linguistic structures in sentences to further en-
hance text encoding and differentiate between overall se-
mantic information and detailed features using a multi-step
progressive reasoning strategy.

Given a text prompt, W = {w1, w2, . . . , wn}, W ∈
RN×L where N represents the number of words and L is
the dimension of word vector. Our goal is to generate a hu-
man motion sequence, denoted as M = {m1,m2, . . .mt},
where M ∈ RT×D. Here, T refers to the sequence length
and D is the motion representation dimension. To achieve
this, we introduce Fg-T2M, a method that generates mo-
tion sequences that align well with the corresponding tex-
tual content. In the following, we provide an overview of
our approach in section 4.1, followed by the introduction of
the Linguistics-Structure Assisted Module (LSAM) in sec-
tion 4.2. Lastly, we present the Context-Aware Progressive
Reasoning (CAPR) module in section 4.3.

4.1. Overview

Figure 2 shows our pipeline for generating motion
sequences. We randomly sample xT from distribution
N(0, I), input xT , current step T , and text control condition
c to obtain xT−1, iterating T rounds until we get x0. In the
denoising process, the condition c is fed into our LSAM text
encoder. By leveraging dependency relationships between
words, we use graph neural networks to aggregate data and
extract hierarchical semantic features. The motion decoder
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Figure 2: Overall Pipeline of our proposed method Fg-T2M: (a) the reverse denoising process of the diffusion model from
XT to X0; (b) the text encoder with proposed linguistics-structure assisted module with dependency parsing in section 4.2;
(c) the motion decoder with introduced context-aware progressive reasoning module in section 4.3.

is stacked with CAPR. Multiple layers of these modules en-
hance the quality of the generated motion sequence.

To train the motion diffusion model, we optimize the ob-
jective to predict the original data, representing as follows:

L = Et∈[1,T ],x0∼q(x0),ϵ∼N (0,I)[∥ x0 − x̂0(xt, t, c) ∥22].
(5)

The regular L2 loss can improve performance for all geo-
metric losses mentioned above.

4.2. Linguistics-Structure Assisted Module

The current text modeling method is limited in its sen-
sitivity to fine-grained words, which hinders the effective-
ness of subsequent generations. To address this, we enhance
the context modeling of sentences by identifying the phrase
structure and syntactic relationships between phrases using
dependency parsing, as shown in Figure 3. Linguistic struc-
ture, which comprises phrase structure and syntax relation-
ships, helps us better understand the essence of text and
the differences and similarities between sentences. Depen-
dency parsing [19] precisely analyzes vocabulary and syn-
tax to identify the dependency relationships between words
in a sentence. In this approach, each word is treated as a
node, and the dependency relationships between words are
represented by edges that indicate syntactic connections.
The resulting node and edge features representing the de-
pendency relationships are input into a graph network to

Figure 3: Architecture of LSAM. The left panel illustrates
the process of obtaining node and edge features for one sen-
tence in dependency analysis feature extraction, while the
right panel demonstrates the workflows that utilize multiple
layers of Graph Attention Network to extract feature infor-
mation with varying degrees.

obtain multi-level semantics. In summary, given a sentence,
the dependency parsing analyses to build a text tree, nodes
for words, and links between nodes for their linguistic rela-
tionships. The text tree structure as the graph initialization
for graph topology and edge features provides GAT a bet-
ter prior. The GAT aims to capture inter-word relationships
while maintaining the linguistic structure of the text.

To extract word associations, we parse the dependency
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of phrase and obtain the hierarchical syntactic relationships
using Spacy1 for dependency parsing, as shown in the left
panel of Figure 3. Spacy is a natural language processing
software library for text processing, including lexical anal-
ysis, syntactic analysis, and more. In dependency parsing,
each word is treated as a node, and the edges represent the
labels of the dependency relationships between words, al-
lowing us to construct a tree of language structure for the
given text. We extract features using a graph attention net-
work (GAT) [31]. For the input nodes of the graph network,
we use word features obtained from the CLIP [24] model.
For the adjacency matrix, we set a value of 1 or 0 to repre-
sent the presence or absence of a dependency relationship
between nodes. Since the number of dependency relation-
ships is fixed, we use one-hot encoding to obtain a one-hot
label for each relationship, which is then fed into an embed-
ding layer. This can be described as:

ve = βi(φe(Fonehot(Ri))) (6)

where ve ∈ RDe , De is the dimension of edge feature, φe

denotes an embedding layer, βi is adaptive weight parame-
ters to be learned for every Ri, while Ri indicates the edge
relation between two nodes. Since each word may be adja-
cent to multiple nodes, and different nodes contribute differ-
ently to semantics, it is necessary to distinguish them during
the text feature extraction process. We achieve this by ap-
plying GAT [31], which extracts multi-level features from
the obtained node information, adjacency matrix, and edge
information. GAT [31] considers differences between nodes
during information aggregation and handles irregularities
between different nodes effectively, which is described as:

x′
i = αi,iΘxi +

∑
j∈N(i)

αi,jΘxj (7)

αi,j =
exp(F(ωT[Θxi||Θxj||Θeei,j]))∑

k∈N(i)∪{i} exp(F(ω
T[Θxi||Θxk||Θeei,k]))

(8)

We have x, α ∈ RN×L, where αi,j represents attention
coefficients, F denotes LeakyReLU, e is edge features, ω
and Θ represents the weight parameters to be learned, and
|| is the concatenation operation. GAT [31] can model high-
order dependency relationships by stacking multiple graph
attention layers to capture global and local graph topology
effectively. For example, stacking three layers of GAT [31]
results in x1

i , x2
i , and x3

i for each node xi, as follows:

xl+1
i = αl

i,iΘxl
i +

∑
j∈N(i)

αl
i,jΘxl

j (9)

The shallow network x1
i learns detailed features of the

neighborhood as it can only gather information from di-
rectly adjacent nodes in the first step of node aggregation.

1Spacy: https://spacy.io/

Figure 4: Architecture of CAPR. The left panel illustrates
inferring Xt−1 from Xt, t, and text features. The right panel
provides the detailed view of one context-aware progressive
reasoning module, which comprises two parts: sentence-
level feature fusion and word-level cross-attention.

This process captures more local and fine-grained informa-
tion. By comparison, the deep network x3

i can learn overall
semantic features by aggregating information from distant
nodes after multiple aggregation steps. This enables it to
capture more global and holistic information.

4.3. Context-Aware Progressive Reasoning Module

Guided by the Linguistics-Structure Assisted Module
(LSAM) in the previous section, we stack Context-Aware
Progressive Reasoning Modules to perform multi-step pro-
gressive reasoning in a structured manner. Unlike previ-
ous methods that learn fixed features [28, 33], our stacked
modules grasp features from global to local. Each block
receives distinct contextual information, with higher-level
blocks utilizing deeper context features from the LSAM,
and lower-level blocks utilizing shallower features. This re-
sults in the model perceiving hierarchical information dur-
ing the inference process, which greatly benefits its ability
to hierarchically comprehend the meaning of text content
and sense its fine-grained words.

The CAPR comprises two parts: Multi-Modal Sentence-
level Feature-Fusion and Multi-Head Word-level Cross-
Attention. Figure 4 shows that we start with the motion fea-
ture xt ∈ RT×D, text feature W ∈ RN×L, and timestep t.
To better capture the unique characteristics of each time step
in the diffusion model, we first perform sinusoidal time em-
bedding through linear layers to obtain timestep embedding
embt. We then add the motion and text features to embt to
incorporate different time information at each timestep.

Multi-Modal Sentence-Level Feature-Fusion module
fuses sentence-level text features and motions to obtain
multi-modal features, as shown in Figure 5. For the i-th
Context-Aware Progressive Reasoning Module block, the
text Wi is transformed to a sentence-level feature S using
convolution, which is derived from the i-th LSAM layer:

Si = Conv1d(Wi) (10)
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Figure 5: Illustration of Multi-Modal Sentence-Level
Feature-Fusion Module.

where Si ∈ R1×Ds , Wi ∈ RN×Dw , Ds and Dw denotes
the dimension of sentence feature and words feature, and
Conv1d is the 1d convolution. We then perform a matrix
multiplication to obtain an attention list A:

A = XtS
T
i (11)

where Xt ∈ RT×D and A ∈ RT×1. Here, Xt represents the
motion feature at timestep t, and A calculates the feature
relevance between the sentence and each frame on the fea-
ture map. The resulting cross-modal feature, X′

t, highlights
the sentence-relevant frame feature channels:

X′
t = Xt + λ(Xt ⊙ (σ(A))) (12)

where λ is a hyper-parameter, ⊙ is element-wise multipli-
cation and σ is a sigmoid activation function. To enhance
modeling the correlation between different fused informa-
tion, a self-attention mechanism [30] is added to strengthen
the connection between multiple frames. Multi-head self-
attention is conducted on the fusion feature X′

t as follows:

Q = Wq X′
t, K = Wk X′

t, and V = Wv X′
t (13)

where Wq , Wk and Wv are trainable weights to generate Q,
K and V, respectively. Obtain the attention scores using the
formula below, where ⊗ is the matrix multiplication.

Attention(Q, K, V) = softmax(
Q ⊗ K⊤
√
d

)V (14)

Multi-Head Word-Level Cross-Attention module
learns the cross-interaction between motion sequences and
multi-level contextual text features. It uses the formulas
mentioned in the self-attention module for calculation, but
modifies the motion features of K and V to text features.
Therefore, on the stacked Context-Aware Progressive Rea-
soning modules B1, B2, ..., Bi, Block Bi utilizes different
word-level semantic features by:

X̂t = X′
t +Attention(X′

t,Wi,Wi) (15)

where X′
t is motion features and Wi is the text features. X′

t

forms the query vector Q, Wi forms the key vector K and
value vector V . They pass through the process in Equa-
tion 14. Finally, several MLP layers further processes the
above features to output the predicted target Xt ∈ RT×D.

Methods R-TOP1 ↑ R-TOP2 ↑ R-TOP3 ↑ FID↓ MM Dist↓ Diversity↑ MModality↑

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -

Seq2Seq [16] 0.180±.002 0.300±.002 0.396±.002 11.75±.035 5.529±.007 6.223±.061 -
L2P [2] 0.246±.002 0.387±.002 0.486±.002 11.02±.046 5.296±.008 7.676±.058 -
T2G[3] 0.165±.001 0.267±.002 0.345±.002 7.664±.030 6.030±.008 6.409±.071 -
Hier [5] 0.301±.002 0.425±.002 0.552±.004 6.532±.024 5.012±.018 8.332±.042 -
MoCoGAN [29] 0.037±.000 0.072±.001 0.106±.001 94.41±.021 9.643±.006 0.462±.008 0.019±.000

Dance2Music [14] 0.033±.000 0.065±.001 0.097±.001 66.98±.016 8.116±.006 0.725±.011 0.043±.001

TEMOS [21] 0.424±.002 0.612±.002 0.722±.002 3.734±.028 3.703±.008 8.973±.071 0.368±.018

Temporal VAE [7] 0.455±.003 0.636±.003 0.740±.003 1.067±.002 3.340±.008 9.188±.002 2.090±.083

TM2T [8] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 8.589±.076 2.424±.093

MotionDiffuse [33] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 9.410±.049 1.553±.042

MDM [28] 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 9.559±.086 2.799±.072

T2M-GPT [32] 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 9.761±.081 1.856±.011

Fg-T2M 0.492±.002 0.683±.003 0.783±.002 0.243±.019 3.109±.007 9.278±.072 1.614±.049

Table 1: Comparison of text-conditional motion synthesis
on HumanML3D [7] dataset. Red and Blue indicate the
best and the second best result, respectively.

Methods R-TOP1 ↑ R-TOP2 ↑ R-TOP3 ↑ FID↓ MM Dist↓ Diversity↑ MModality↑

Real 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

Seq2Seq[16] 0.103±.003 0.178±.005 0.241±.006 24.86±.348 7.960±.031 6.744±.106 -
T2G[3] 0.156±.004 0.255±.004 0.338±.005 12.12±.183 6.964±.029 9.334±.079 -
L2P [2] 0.221±.005 0.373±.004 0.483±.005 6.545±.072 5.147±.030 9.073±.100 -
Hier [5] 0.255±.006 0.432±.007 0.531±.007 5.203±.107 4.986±.027 9.563±.072 -
MoCoGAN [29] 0.022±.002 0.042±.003 0.063±.003 82.69±.242 10.47±.012 3.091±.043 0.250±.009

Dance2Music [14] 0.031±.002 0.058±.002 0.086±.003 115.4±.240 10.40±.016 0.241±.004 0.062±.002

TEMOS [21] 0.353±.006 0.561±.007 0.687±.005 3.717±.051 3.417±.019 10.84±.100 0.532±.034

Temporal VAE [7] 0.361±.006 0.559±.007 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065

TM2T [8] 0.280±.005 0.463±.006 0.587±.005 3.599±.153 4.591±.026 9.473±.117 3.292±.081

MotionDiffuse [33] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

MDM [28] 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.19±.022 10.847±.109 1.907±.214

T2M-GPT [32] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.023 10.92±.108 1.570±.039

Fg-T2M 0.418±.005 0.626±.004 0.745±.004 0.571±.047 3.114±.015 10.93±.083 1.019±.029

Table 2: Comparison of text-conditional motion synthesis
on KIT [22] dataset. Red and Blue indicate the best and the
second best result, respectively.

5. Experiments
Our Fg-T2M framework is evaluated on text-driven mo-

tion generation task in this section. We first describe the
dataset used and the evaluation metrics in section 5.1. In
section 5.2, we provide implementation details. We com-
pare our framework with the current state-of-the-art meth-
ods in section 5.3. Finally, we present qualitative results and
visualization for comparison in section 5.4.

5.1. Datasets and Evaluation Metrics

Several datasets exist for conditional motion generation,
such as proposed in [7, 9, 11, 22]. However, datasets such as
[9] and [11] are based on action categories and do not pro-
vide complete text sentences as conditioning inputs, making
them unsuitable for our method. Instead, we use text-driven
datasets, specifically, HumanML3D dataset [7] and KIT
Motion-Language dataset [22], for our experiments.

The HumanML3D dataset [7] is a combination of the
HumanAct12 [9] and AMASS [17] datasets, comprising
14,616 motions and 44,970 text descriptions across various
human activities, such as daily activities, sports, acrobatics,
etc., with a total duration of about 28.59 hours. The KIT
Motion-Language dataset [22] consists of 3,911 motion se-
quences and 6,353 natural language descriptions, with a to-
tal duration of around 10.33 hours.
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Figure 6: Qualitative results: Our method is compared with two state-of-the-art methods: MotionDiffuse [33] and Temporal
VAE [7]. Motion frames are ordered from left to right. Those not matching with text prompt are marked with a box.

Evaluation Metrics are followed [7]. (1) R-precision.
For each inferred text-motion pair, 31 mismatched descrip-
tions are randomly selected from the test set. The aver-
age top-k precision is obtained by calculating and rank-
ing the Euclidean distance between the motion and each of
the 32 descriptions. (2) Frechet Inception Distance (FID).
FID measures the similarity between the feature distribu-
tions extracted from the generated motions and ground truth
motions. (3) Multi-Modal Distance. The multimodal dis-
tance is computed between the text feature and the relevant
generated motion feature, concerning the given description.
(4) Diversity. Diversity evaluates the dissimilarities among
all generated motions across all descriptions by computing
the mean pairwise Euclidean distance between randomly
partitioned groups of motions. (5) Multimodality. For a
given text description, 32 motion sequences are generated
randomly, and multimodality quantifies the dissimilarities
among these generated motion sequences. We primarily
value R-precision and FID as pivotal performance metrics,
which serve as important measures for evaluating the over-
all quality of generated motions.

5.2. Implementation Details

The diffusion model uses 1000 diffusion steps and a
linearly varying variance βt ranging from 0.0001 to 0.02.
LSAM employs a 3-layer GAT network with a correspond-
ing CAPR layer also set to 3. Hyper-parameter λ in CAPR
is 0.1. Training is performed with the Adam optimizer us-
ing a fixed learning rate of 5e-5, a batch size of 128, and
NVIDIA GeForce RTX 3090 hardware. The KIT dataset
is trained for approximately 40K iterations, while the Hu-
manML3D dataset is trained for about 80K iterations.

5.3. Comparison with State-of-the-arts

We compared our method with several state-of-the-art
models, including Lin et al. [16], Language2Pose [2],
Ghosh et al. [5], MoCoGAN [29], Dance2Music [14],
TEMOS [21], TM2T [8], Text2Gesture [3], Guo et al. [7],
MotionDiffuse [33], and MDM [28]. Quantitative com-
parisons of our method with these models on the Hu-
manML3D [7] and KIT [22] datasets are shown in Tables
1 and 2, respectively.

Our method achieves competitive performance between
text and motion features, as measured by MM Dist, to state-
of-the-art methods, while exhibiting significantly higher
scores in R-precision and FID. This demonstrates the abil-
ity of our method to generate high-quality motions that align
with the text prompts. On the other hand, other approaches
showcase remarkable competitiveness in diversity and mul-
timodality. However, these aspects should be grounded
in accuracy (R-precision) and precision (FID, MMDist) to
strengthen their persuasiveness. Otherwise, the diversity or
multimodality would be rendered meaningless if the gener-
ated motion fails to align with the desired outcome. There-
fore, based on our experiments, our method has achieved
advanced experimental results and demonstrates robustness
in terms of model performance on the two datasets.

Meanwhile, we design two experiments to evaluate fine-
grained control. The first one is conducted on a Harder-
HumanML3D dataset. We compress the HumanML3D test
set of 4382 data into a Harder-HumanML3D set with 2582
data, by searching for sentences that contain more fine-
grained words, like “left”, “right”, and so on. The compari-
son results are shown in Table 3. Our method exhibits sig-
nificantly higher scores, indicating a better ability to capture
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Figure 7: The result of user study.

Methods R-Precision ↑ FID ↓Top-1 Top-2 Top-3

MotionDiffuse [33] 0.439±.006 0.614±.004 0.725±.005 0.732±.021

Fg-T2M 0.460±.005 0.660±.004 0.763±.004 0.421±.013

Table 3: Experiment results on Harder-HumanML3D split
from the HumanML3D [7] test set.

fine-grained details. The second one is a user study in which
we collect user preferences with T2M-GPT [32] and Mo-
tionDiffuse [33]. The statistics of the user study are shown
in Figure 7. Compared with others, our method achieves
superior performance in R-Precision, MM Dist, and yields
competitive results in FID, which generates motions with
comparable quality. Furthermore, for both questions, es-
pecially in the fine-grained aspect, ours is preferred over
others and even competitive to the ground truth motions.

We present ablation results in Table 4 to further under-
stand the role of LSAM and CAPR in our method. The
results demonstrate that models without the CAPR and
LSAM modules exhibit performance degradation. And we
also show the comparison of some qualitative examples on
the ablation study of this two modules. Additionally, we ex-
periment with the impact of different GAT semantic layers
of text information. Since a common dependency tree of
motion-text prompt often has three or four depths, a three-
layer GAT is sufficient to capture overall nodes information.
Hence, a shallow or deep GAT layer hinders the global or
local semantic comprehension, resulting in diminished re-
sults. We further evaluate the proposed two parts in CAPR.
The results show that without CAPR-2 part remarkably re-
duces the results, which also reflects the importance of fine-
grained words for T2M tasks. Finally, the hyper-parameter
λ in CAPR controls the degree of text information fusion.
A larger λ dilutes the inherent properties of the motion fea-
tures, leading to a decrease in precision.

5.4. Qualitative Results

Visual results on the HumanML3D [7] dataset are pre-
sented in Figure 6, where our method is compared with the
state-of-the-art models of MotionDiffuse [33] and Tempo-
ral VAE [7]. As can be seen from the examples in the fig-
ure, our method generates human motions that more accu-
rately reflect the text prompts. In contrast, the methods of
MotionDiffuse [33] and Temporal VAE [7] often result in
unrealistic movements. Specifically, these methods tend to

Methods R-TOP3 ↑ FID↓

Fg-T2M 0.745±.004 0.571±.047

Fg-T2M (w/o LSAM) 0.722±.005 1.077±.101

Fg-T2M (w/o CAPR) 0.727±.007 0.943±.089

Fg-T2M (one layer) 0.729±.006 0.951±.092

Fg-T2M (two layers) 0.738±.003 0.692±.086

Fg-T2M (four layers) 0.740±.004 0.636±.102

Fg-T2M(w/o CAPR-1) 0.739±.006 0.652±.035

Fg-T2M(w/o CAPR-2) 0.732±.004 0.764±.039

Fg-T2M (λ = 0.2) 0.738±.008 0.686±.062

Fg-T2M (λ = 0.3) 0.732±.006 0.830±.074

Fg-T2M (λ = 0.5) 0.729±.011 1.086±.104

Table 4: Ablation analysis on KIT [22]. “layers” indicates
the number of layers of GAT in LSAM. “(w/o) CAPR-1”
means without multi-modal sentence-level feature-fusion.
“(w/o) CAPR-2” means without multi-head word-level
cross-attention. “λ” is the hyper-parameter of Multi-Modal
Sentence-Level Feature-Fusion module in CAPR.

only understand one motion within a long text prompt and
are not sensitive to specific numerical values, such as ’one’
or ’two’. As depicted in example one, MotionDiffuse [33]
only performed a backward motion without considering the
required number of steps. On the other hand, Temporal
VAE [7] successfully achieved the desired effect of walking
forward and then backward, but its backward motion step
count did not meet the expected requirement. Moreover,
They also make errors in spatial orientation, such as ’left’
or ’right’, and lack a thorough understanding of temporal is-
sues, such as ’while’ and ’then’, related to movement. Over-
all, our proposed method outperforms these models, espe-
cially in terms of the issues mentioned above. More diverse
samples are presented in the supplementary material.

6. Conclusion

We present a novel method for text-driven human mo-
tion generation using the diffusion model, which offers sev-
eral advantages over existing techniques. Specifically, our
method leverages two key modules - a linguistics-structure
assisted module and a context-aware progressive reason-
ing module - to effectively model fine-grained words in the
text. The former module extracts dependency parsing rela-
tionships in the text, while the latter performs hierarchical
effective information feature fusion based on graph neural
networks. Our quantitative and qualitative results demon-
strate that our method outperforms existing techniques in
text-driven motion generation tasks.
Acknowledgements. This work was supported by the Na-
tional Natural Science Foundation of China (Project Num-
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