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Abstract

We propose a new method, called curvature similar-
ity extractor (CSE), for improving local feature matching
across images. CSE calculates the curvature of the local 3D
surface patch for each detected feature point in a viewpoint-
invariant manner via fitting quadrics to predicted monocu-
lar depth maps. This curvature is then leveraged as an addi-
tional signal in feature matching with off-the-shelf matchers
like SuperGlue and LoFTR. Additionally, CSE enables end-
to-end joint training by connecting the matcher and depth
predictor networks. Our experiments demonstrate on large-
scale real-world datasets that CSE consistently improves
the accuracy of state-of-the-art methods. Fine-tuning the
depth prediction network further enhances the accuracy.
The proposed approach achieves state-of-the-art results on
the ScanNet dataset, showcasing the effectiveness of incor-
porating 3D geometric information into feature matching.1

1. Introduction
Local feature matching is a crucial component for many

geometric computer vision tasks, including visual local-
ization [50, 51, 52, 48, 14, 66], structure-from-motion
(SfM) [67, 53, 29], and simultaneous localization and map-
ping (SLAM) [38, 39, 10]. Given a pair of images ob-
serving a 3D scene, the task is to find reliable tentative
point-to-point correspondences in the two images. Form-
ing such feature matches is often a challenging task as
the images may undergo large viewpoint and illumination
changes, have occlusions or repetitive patterns.

The standard pipeline for local feature matching typi-
cally involves two steps: (1) keypoint detection and de-
scription and (2) point-wise feature matching. Traditional
approaches mainly focus on improving the robustness of

*Part of the work was done during the author’s visit to ETH zurich.
1Code and trained models are available at https://github.com/

AaltoVision/surface-curvature-estimator.
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Figure 1. Curvature-guided match selection: (a) Correct
matches in two views must share the same underlying surface cur-
vature, e.g., predicted from monocular depth. (b) Correspondences
from different surfaces are guaranteed to be incorrect.

keypoint detection and description through, for example,
extending the Harris [21] detector to handle affine transfor-
mations and multiple scales [35, 36] or using more discrimi-
native or efficient descriptors [32, 7, 34, 1, 3]. However, de-
spite their unbroken popularity, these algorithms often fail
to cope with the challenges that arise in real-world environ-
ments, leading to low accuracy.

Recent advances in deep learning-based feature match-
ing have made significant progress in addressing the lim-
itations of hand-crafted approaches, such as by jointly
training detectors and descriptors [69, 12, 15, 44, 63, 40]
with convolutional neural networks (CNNs), or combin-
ing hand-crafted and learning-based descriptors in a hy-
brid manner [41, 6]. SuperGlue [49] introduced the use
of transformer networks to learn the matching process and
formulate the problem as an optimal transport task [64].
LoFTR [55] and its recent variants [58, 8, 65] leverage both
the global and local context from raw images by jointly
learning the feature extraction and matching in a single net-
work. While these approaches have led to state-of-the-art
performance on several benchmarks, they work entirely in
the 2D image domain and ignore the underlying 3D ge-
ometry of the scene. As feature matching is, essentially,
finding the corresponding projections of an actual 3D point,
this could be a critical limitation in real scenarios where the
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matched pixels from different views must share the geome-
try of the underlying surface patch, as shown in Fig. 1.

In this paper, we focus on investigating and exploiting
3D geometry cues, e.g. coming from monocular depth pre-
dictions, for feature matching. The only prior work is [61],
which adopts depth priors to find planar image regions
that are then rectified to eliminate viewpoint changes. Fi-
nally, a handcrafted detector and descriptor are applied to
the rectified image regions. This, however, relies on the
heavy assumption that the images consist mostly of domi-
nant planes, which severely restricts its out-of-the-box ap-
plicability. In this work, we go further by exploring the lo-
cal surface geometry coming from depth priors. This addi-
tional geometric clue is coupled with any off-the-shelf fea-
ture matcher increasing its accuracy. Benefiting from ad-
vanced monocular depth predictors [42, 43, 16], obtaining
depth priors is easy and costs only a few milliseconds. We
use these depth predictions to extract curvature at the ob-
served feature points. Exploiting the fact that the curvature
is invariant to viewpoint changes (i.e., rotation, translation,
and scaling), we enforce that matched features must lie on
similar surfaces. Our contributions are as follows:

1. We propose an approach for feature matching, lever-
aging dense depth via utilizing local surface curvature
similarity, which is invariant to viewpoint changes.
This approach is a departure from traditional matching
methods that rely solely on image information.

2. The proposed curvature similarity extractor can be
seamlessly integrated with any recent feature matcher,
making it a versatile tool that can be easily adopted.
The experiments show that it improves several recent
algorithms on various benchmarks by 1− 3%.

3. The proposed algorithm can be used to train feature
matchers and monocular depth prediction networks
jointly in an end-to-end fashion. To demonstrate this,
we fine-tune the state-of-the-art MiDaS [42] depth pre-
dictor to increase the feature matching accuracy.

2. Related work
2.1. Local Feature Matching

Detector-based Matchers build sparse correspondences on
top of the detected keypoints. Therefore, robust keypoint
detection and feature extraction are essential for these ap-
proaches. Traditional hand-crafted descriptors, such as
SIFT [32] and SURF [7], follow a detect-then-describe
pipeline and have shown great success since the 2000s.
More recently, learned detectors and descriptors [6, 69, 12,
15, 44, 63, 60, 30] with convolutional neural networks show
their superiority in matching images with large viewpoint
and appearance changes. This traditional pipeline is further

developed to detect-and-describe [12, 15, 44] and describe-
to-detect [60, 30] strategies leveraging high-level image in-
formation for accurate and reliable matching in challeng-
ing conditions. Besides substituting the traditional detectors
and descriptors with their learned counterparts for image
matching, the recent SuperGlue [49] focuses on the match-
ing stage itself. It replaces the naive mutual nearest neigh-
bour search with Graph Neural Networks (GNN). Super-
Glue takes the sparse descriptors and their positional encod-
ing as inputs, then leverage a transformer-based [64] net-
work to create a more robust feature representation for the
optimal partial assignment. The follow-up work [54] fur-
ther improves the performance and efficiency by adaptively
clustering sparse features into different subgraphs and using
a coarse-to-fine paradigm. Although showing significant
improvements with the recent components, the detector-
based matchers are naturally limited by the accuracy of de-
tected keypoints coming from independent detectors.

Detector-free Matchers directly estimate the dense corre-
spondences from raw images without an independent key-
point detection stage. These approaches leverage low and
high-level image information with neural networks and can
distinguish indistinctive regions across images. The pio-
neer work of [46] constructs 4D cost volumes, significantly
increasing the matching accuracy. However, it is computa-
tionally expensive as the complexity is O(n2), where n is
the number of pixels or patches. [45, 26] alleviate the prob-
lem by applying either sparse convolutions or a coarse-to-
fine paradigm. More recently, transformer-based detector-
free matchers [55, 58, 65, 8, 24, 57] have received attention
due to their strong performance on local feature matching.
The most representative work, LoFTR [55], inherits the ad-
vantages of graph matching from SuperGlue and leverages a
linear transformer [64] for efficient dense matching. [58, 8]
utilise more efficient transformer structures to improve the
performance. Detector-free matchers show a promising di-
rection towards local feature matching by encoding rich im-
age information. We claim that extracting 3D geometric in-
formation could further enhance accuracy.

Correspondence Pruning approaches [17, 4, 5, 72, 70, 56]
apply a consensus mechanism to filter out the outliers from
putative correspondences coming from the feature matcher
procedure. RANSAC [17] and its follow-up works [4, 5]
are the most popular correspondence pruning algorithms.
In the era of deep learning, OANet [72] infers the prob-
abilities of correspondences being inliers with an order-
aware network. Other works improve the accuracy of cor-
respondence pruning by applying motion coherence con-
straints [31, 33], leveraging local-to-global consensus learn-
ing procedure [74, 11], and adopting the attention mecha-
nism [56]. These approaches provide inlier probability pre-
dictions for each putative correspondence that can be used
either to filter or order matches. Finally, least squares fitting
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or traditional robust estimation is applied to the matches.

2.2. 3D Geometric Priors to Image Matching

Incorporating 3D geometric priors into various vision
tasks has been widely explored in recent years. [23] lever-
ages the RGB-D reconstructions to learn view-invariant,
geometry-aware 2D representations for downstream tasks.
[71] introduces the predicted monocular depth to guide the
optimization of neural scene representation. The surface
curvature, a popular 3D geometric cue, is widely applied
to 3D vision tasks such as 3D point cloud registration [62],
multi-view stereo [68, 19]. However, integrating 3D geo-
metric cues into 2D image matching has received little at-
tention. [37, 18] assume that the underlying surface patch
is locally planar for feature detection and description, while
[61] uses prior depth information to improve feature extrac-
tion by rectifying large planar regions. None of the above
approaches considers the 3D geometric information in the
local region, and we are the first to include 3D surface ge-
ometry in general 2D feature matching.

3. Feature Matching with Surface Curvature
This section proposes an approach to improve any local

feature matcher by extracting information about the under-
lying local 3D surface predicted by a deep network. The
overview of our method coupled with LoFTR [55] is shown
in Fig. 2. Although the proposed algorithm is compati-
ble with any matcher, we demonstrate its effectiveness with
LoFTR. Combining it with other ones is straightforward.

3.1. LoFTR-style Matchers

This section provides a brief overview of LoFTR. Given
an image pair IA, IB ∈ RH∗W∗3, the end-to-end trainable
matcher, first, extracts coarse-level features Fc

A,Fc
B and,

then, fine-level ones Ff
A,F

f
B with a local feature CNN [28].

At the coarse level transformer module, the features are
flattened and processed by a transformer-based architecture
with multiple self- and cross-attention layers [64]. A match-
ing confidence map Pc is predicted at the end of this mod-
ule, and the matches Mc with high confidence are selected
from Pc to fine-tune the prediction of fine-level features
matching at the coarse-to-fine transformer module. The fi-
nal outputs are the fine-level matches Mf .

3.2. Curvature Similarity Extractor

In this section, we will discuss multiple potential ways of
extracting local surface curvature at detected features. This
curvature is then used for improving feature matching.

3.2.1 Curvature Similarity

For an at least two times continuously differentiable sur-
face S ∈ C2 in the 3D space, given a point p ∈ R3 and

a direction d ∈ R3 on S; the normal curvature kn ∈ R
measures how curved the surface is at this point along the
direction [13]. Since there are infinitely many directions
that travel through a point on the surface, there are also in-
finitely many normal curvatures at a given point. In differ-
ential geometry, the minimum normal curvature k1 and the
maximum curvature k2 at point p are defined as the prin-
cipal curvatures, where k1 ≤ k2, and the directions of the
principal curvatures are the smoothest and steepest direc-
tions on the surface. We also define the mean curvature H
and Gaussian curvature K as

H =
1

2
(k1 + k2), K = k1k2 (1)

A highly beneficial property of such curvatures is their
invariance to surface rotation and translation. Both are im-
portant when describing local surface patches centered on
features detected in 2D images. However, these measures
do not preserve scale invariance [13], which is essential in
our case due to using predicted relative depth maps instead
of a metric one. This means that, in each image, the depth
is only defined up-to-scale.

To seek the scale invariance of the curvatures for lo-
cal patch matching, we follow [47] for the idea of scale-
invariant curvature measure and define the curvature simi-
larity function S : R× R → R as follows:

S(k1, k2) =
min(|k1| , |k2|)
max(|k1| , |k2|)

, (0 ≤ S(k) ≤ 1), (2)

where k1 and k2 are the minimum and maximum curva-
tures, respectively. It is easy to see that S(k1, k2) is rota-
tion, translation and scale invariant. Case S(k1, k2) = 1 is
interpreted as the curvature of a point on a spherical surface.
In the case when k1 = k2 = 0, we define S(k1, k2) to be
0. Detecting points on planes is also straightforward from
k1 and k2 as they both will become ∞. Proof of the invari-
ances is provided in the supplementary material. Next, we
will discuss ways of obtaining curvature similarities.

3.2.2 Surface Curvatures Extraction

This section introduces our approximate form of principal
curvature estimation. Different from prior work [68, 19]
that extract the curvatures from image intensity, we esti-
mate the principal curvatures based on the depth map. This
3D geometric cue could be obtained either from the ac-
tive sensors (LiDAR, Kinect) or monocular depth predic-
tors [42, 43]. Since our target curvature similarity S(k1, k2)
is scaling invariant, the scaling ambiguity in monocular
depth estimation is neglected and the predicted relative
depth is sufficient for the curvature extraction.

In this work, we consider only a pair of RGB images
as input and leverage any off-the-shelf depth predictor, e.g.
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Figure 2. Overview of the CSE with LoFTR. For a pair of images, it follows the LoFTR [55] matching pipeline to extract the coarse and
fine level image features and generate a coarse matching confidence map Pc. In the meantime, the images are fed to a monocular depth
network to predict the depth map and extract the curvature similarity upon the depth map. We formulate a new curvature score matrix
Pcurv based on the pixel-wise L2 distance of the curvature similarities between two images and mix it with Pc. The mixed score matrix is
then processed by the coarse-to-fine transformer module together with the fine-level features to predict the final matches Mf .

MiDaS [42], to extract the depth map Zi : R × R → R for
each input image, i ∈ {1, 2}. Let ri(u, v, Zi(u, v)) be the
3D surface patch corresponding to the image region at co-
ordinates (u, v) with window size δ ∈ R+ in the ith image,
where Zi(u, v) is the depth of point (u, v).

Let us formulate a local point set Pi =
{(u, v, Zi(u, v)) | (u, v) ∈ Mi

f} ⊆ R3, where Mi
f

are the points detected in the ith image.
Principal Curvature via Surface Fitting. The most
straightforward approach is first applying the quadratic sur-
face approximation method [20] to estimate the surface
ri(u, v, Zi(u, v)) at all points in P , then employing the first
and second fundamental forms of a surface. The normal
curvature is calculated as follows:

kn =
II

I
=

Ldu2 + 2Mdudv +Ndv2

Edu2 + 2Fdudv +Gdv2
, (3)

where L = ruun, M = ruvn, N = rvvn, E =
ruru, F = rurv , G = rvrv; ru, rv, ruu, ruv, rvv are
the first and second-order derivatives of the surface patch
ri(u, v, Zi(u, v)), and n ∈ R3 is the normal.

kn =
L+ 2Mλ+Nλ2

E + 2Fλ+Gλ2
. (4)

Once we have the normal curvature kn, we then calculate
the partial derivative of kn w.r.t. λ to obtain the principal
curvatures k1, k2. The details are presented in the supple-
mentary. While this approach works accurately and effi-
ciently in practice, we observed that its gradients become
unstable during back-propagation. Therefore, we explore
another way as well for calculating the surface curvature.

Curvature Extraction via Quadrics. Another lightweight
procedure for estimating the curvature is via fitting quadric
surfaces, e.g. ellipsoid, locally to the neighborhood of the
observed point. Thus, instead of directly estimating a
quadratic surface from the given depth map, we constrain
the surface to be a quadric and, more specifically, an el-
lipsoid. An ellipsoid has the beneficial property that all its
curvatures are semi-positive. Its principal axes define three
directions which we can use the define the similarity. We
use the radii α, β, γ ∈ R+ along the three axes and define
the curvature similarity score as follows:

S(α, β, γ) =
min(α2, β2, γ2)

max(α2, β2, γ2)
. (5)

Similarity S is rotation, translation, scale and thus, view-
point invariant. The advantage from Eq. (5) is that the com-
putation of first and second-order gradients are no longer
required for the curvature similarity calculation.

The general constraint that a quadric imposes on a point
x ∈ Pi lying on the surface is

xQixT + PixT + Ri = 0,

where Qi, Pi, and Ri are the parameters in a matrix form.
This can be written as

ax2 + by2 + cz2 + 2dyz + 2exz+

2fyz + 2gx+ 2hy + 2iz + j = 0.
(6)

As described in [25], a sufficient condition that guarantees
the quadric surface to be an ellipsoid is

4M −N2 = 1,
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where

N = a+ b+ c,

M = ab+ bc+ ac− d2 − e2 − f2.

Also, since we aim at measuring the curvature of the surface
patch located on the observed point, we have to constrain
the ellipsoid so that the observed point p is on its surface. To
do so, we translate the point set P as P ′ = {q−p | q ∈ P}
and fix j = 0. The central point now is p′ = [0, 0, 0]T.

Substituting all these constraints into Eq. (6), we obtain

ax2 + by2 + cz2 + 2dyz + 2exz+

2fyz + 2gx+ 2hy + 2iz = 0.
(7)

From Eq. (7), only nine variables need to be estimated in
our case. For each point [u, v, z]T ∈ P ′, we define Xi as

Xi = [u2
i , v

2
i , z

2
i , 2vizi, 2uizi, 2uivi, 2ui, 2vi, 2zi]

T, (8)

and coefficient matrix C = [X1,X2,X3, ...,Xn]. Then, we
follow the method in [25] for the ellipsoid fitting and esti-
mate its radii R = (α, β, γ). The algorithms for fitting and
calculating the radii are shown in the supplementary.

3.3. Curvature-Guided Match Selection

The proposed curvature similarity extractor (CSE) is a
depth-based plug-in component that can be combined with
both detector-based [32, 49] and detector-free [55, 58, 8]
matchers. For an image pair (IA, IB), the monocular depth
predictor first estimates the depth map for each image inde-
pendently. CSE extracts the curvature map (SA, SB) on the
top of the depth maps. Note that LoFTR selects the candi-
date matches Mc at the coarse level of 1/8-resolution grids
where the ground truth matches are defined based on the re-
projection distance of the centers of the grid cells. Thus, it
is not necessary to extract the curvature similarity at each
pixel. It is calculated only at the center point of each cell,
i.e., SA, SB ∈ R(h∗w)∗1, where h = H/8, w = W/8.

Since the proposed curvature similarity is rotation, trans-
lation and scale invariant, SA at point pA in the first image
should be equal to the similarity SB of its corresponding
pair pB in the second image. The correct matches Mc, ide-
ally, have the same curvature values. To measure this, we
define the normalised curvature score matrix as

Pcurv = 1− L2(S(k)A, S(k)B), (9)

where L2(·, ·) is the L2-norm of S(k)A and S(k)B . Since
both S(k)A and S(k)B are in-between zero and one, the
curvature score is also normalized into range [0, 1].

The new matching score matrix is the linear combination
of Pcurv and LoFTR matching probability Pc as follows:

P = λPc + (1− λ)Pcurv, (10)

Figure 3. Multi-scale curvature extraction. We extract the cur-
vature similarity from ellipsoids centered on the observed point,
fitted with different window (i.e., 3D neighborhood) sizes.

where λ is the mixing parameter for balancing the two
matching scores. Since our Pcurv is an additional supporting
score for coarse-level matching selection, we set the param-
eter λ to 0.9 in all our experiments. We adopt the scheme
of LoFTR for the coarse-level match selection as

Mc = {(i, j) | ∀(i, j) ∈ MNN(P),P(i, j) ≥ θ}, (11)

where MNN is the mutual nearest neighbor operation, θ is a
threshold so that we only select the matches with confidence
higher than θ. Note that Pcurv can be similarly combined
with the matching score matrix of SuperGlue [49].
Multi-scale Curvature Similarity. Although the proposed
curvature similarity is scaling invariant in theory, it still de-
pends on the neighboring pixels of the points. Thus, the
multi-scale extraction of this geometric cue could also be
adopted for robustness to scale change in the images. For
detector-based approaches, such as SuperGlue [49], we use
a set of window size {δ1, δ2, ..., δn} with the window cen-
tered on detected keypoints. Hence, the curvature similarity
maps are S(k)A ∈ RA∗n and S(k)B ∈ RB∗n, A and B
are the detected keypoints at IA and IB , respectively. For
detector-free matchers, the multi-scale extraction is con-
ducted within the patch grid. Fig. 3 describes the curvature
similarity extraction at multiple scales.

3.4. Depth Prediction Fine-tuning

Since the proposed curvature similarity extraction is
fully differentiable, it is possible to use it to train feature
matching and depth prediction networks jointly end-to-end.
To demonstrate this, we fine-tune the depth predictor with
the curvature similarity extractor so that it takes the fea-
ture matching into account when being trained. The new
confidence matrix P is minimized with the negative log-
likelihood, similarly as in [49, 55], where the loss is

L = − 1

|Mgt
c |

∑
(i,j)∈Mgt

c

logP(i, j), (12)

and Mgt
c is the ground truth matches defined at the coarse-

level in [55]. Since the loss term focuses only on the
matched patches, long training time would crash the depth
prediction model. Thus, we fine-tune the depth predictor
with only a few epochs and small learning rates.
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Methods
YFCC100M [59] MegaDepth [27] ScanNet [9]

AUC@5◦ @10◦ @20◦ P(%) MS(%) AUC@5◦ @10◦ @20◦ P(%) MS(%) AUC@5◦ @10◦ @20◦ P(%) MS(%)

SuperGlue [49] 38.9 59.4 75.7 98.7 23.6 43.7 62.2 77.0 99.6 32.5 16.1 33.8 51.8 84.4 31.5

SuperGlue + CSE 40.0 60.1 76.3 95.6 26.5 46.2 64.8 78.7 98.3 35.7 16.2 34.0 52.2 80.7 31.7
LoFTR [55] 43.4 63.1 78.0 95.2 8.2 53.7 70.1 82.4 96.8 9.0 22.1 40.8 57.6 87.4 7.9

LoFTR + CSE 43.5 63.3 78.1 93.4 8.5 54.4 70.4 82.1 95.5 9.2 22.9 42.4 60.0 86.4 9.3

LoFTR + CSE (w/ FT) 43.9 63.5 78.1 93.3 8.5 54.3 70.4 82.2 95.5 9.3 23.9 43.5 60.5 86.1 9.5
QuadTree [58] 44.1 63.5 78.3 96.5 8.9 53.5 70.2 82.2 98.5 9.6 24.9 44.7 61.6 89.4 9.8

QuadTree + CSE 45.0 64.3 78.8 95.3 9.1 54.0 70.3 82.1 97.9 9.8 25.2 45.5 62.5 89.4 11.2

QuadTree + CSE (w/ FT) 45.0 64.4 78.9 95.5 9.1 54.5 71.1 82.9 98.0 9.7 25.8 46.1 63.4 89.2 11.5

Table 1. Results of relative pose estimation on YFCC100M, MegaDepth, and ScanNet datasets. We report AUC score of the translation
and rotation errors with different thresholds (5◦, 10◦, 20◦), precision (%), and matching score (%). Our methods and the best performance
are marked in bold. w/FT indicates the results with fine-tuning. Note that comparison among baselines is not straightforward as some
sensitive default parameters, e.g. input image size, are different.

In
do

or
O

ut
do

or

LoFTR LoFTR + CSE QuadTree QuadTree + CSE

Figure 4. Qualitative matching results. We add the curvature similarity extractor module to LoFTR [55] and QuadTree [58] and compare
the two approaches in both indoor and outdoor scenes. By adding the CSE module, we are able to obtain more correct matches (green
lines) and better pose accuracy while keeping similar matching precision. The matches are coloured by the epipolar error threshold in [55].

4. Experiments

We first demonstrate the effectiveness of the proposed
similarity curvature extractor on relative pose estimation
and the downstream visual localization tasks. Next, we
analyze the choice of architecture and hyper-parameters in
the ablation study. Finally, we provide qualitative results to
help understand the similarity curvature extractor.
Implementation Details. Our proposed CSE adopts Mi-
DAS + ViT [42] as the default depth predictor. For detector-
based approaches [55, 58], we extract the curvature similar-
ity at keypoint locations and use multi-scales {7 ∗ 7, 9 ∗
9, 11 ∗ 11}. For detector-free matchers, we use the default
grid patch size 8 ∗ 8 for curvature estimation.

For the depth predictor training, following the default
setting in LoFTR [55], we fine-tune the predictor with the
outdoor matching model on MegaDepth [27]. The model
is optimized using Adam with a fixed learning rate of r =
1e − 5 and batch size of 2. The indoor model is fine-tuned
on ScanNet [9] with r = 5e−6. In the training process, the

weights from the matcher are frozen, and only the weights
from refineNets in MiDAS + ViT are updated. Instead of
sampling 200 pairs from each scene, we reduce it to 10
pairs. The full training and evaluation process of the out-
door model is conducted on 2 Telsa-V100 GPUs with 32GB
of memory. We train and evaluate the indoor model on 2
RTX 2080 Ti GPUs with a memory of 12GB.

4.1. Relative Pose Estimation

Datasets. We evaluate our CSE on three popular datasets,
ScanNet [9], MegaDepth [27], and YFCC100M [59], for
the two-view pose estimation task. ScanNet is an indoor
RGB-D dataset consisting of 1,613 sequences with 2.5 mil-
lion views, and each view is associated with a ground
truth camera pose and depth map. Similar to the set-
ting in LoFTR [49], the images and depth maps are re-
sized to 640*480 for training and evaluation. MegaDepth
and YFCC100M are two outdoor datasets which consist
of multiple scenarios. We fine-tune the outdoor model on
MegaDepth with the longest dimension of the images re-
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sized to 840 and evaluate our method on MegaDepth-1500
from [55] and YFCC100M-4000 from [49].
Baselines. The proposed CSE is a plug-in module that
can be applied with both detector-based and detector-free
matchers. We add this module to detector-based SuperGlue
with SuperPoint [12] features, detector-free LoFTR, and its
recent variant QuadTree [58]. The experiments follow the
default setting from the original papers for all the baselines.
For all the experiments on ScanNet, the image resolution is
consistently 640×480. For evaluation on MegaDepth and
YFCC100M, the default input sizes are different among the
approaches. Thus, it is not reasonable to compare among
the baselines as the input image size significantly impacts
the final accuracy. We detail the default input sizes of dif-
ferent approaches in the supplementary material.
Metrics. Similar to the previous methods [49, 55], we re-
port the Area Under the recall Curve (AUC) of the transla-
tion and rotation errors with multiple thresholds (5◦, 10◦,
20◦). For each setting, we consider a pose to be correct
if the maximum error from translation and rotation error is
below the threshold. The estimated camera poses are recov-
ered from the essential matrix estimated by RANSAC [17]
with the inlier-outlier threshold set at 0.5 pixels. Besides,
we report the matching precision and score [69, 12]. To cal-
culate matching scores on detector-free matchers, we con-
sider the number of coarse-level features as the number of
detected keypoints, i.e., h ∗ w.
Results. We report the results of the CSE add-on on Su-
perGlue, LoFTR, and QuadTree in Tab. 1. For LoFTR and
QuadTree, we report the results of directly adding the CSE
module and adding CSE with fine-tuning. As the official
training code for SuperGlue is not publicly available, we
evaluated the SuperGlue + CSE without fine-tuning. How-
ever, we believe that fine-tuning would further improve
the results of SuperGlue as well. We also notice that the
MegaDepth-1500 is a part of the training set for Super-
Glue. However, this does not invalidate the fact that the
proposed method helps in finding better features. The pro-
posed CSE improves the pose AUC scores of all methods
on almost all datasets. Fine-tuning further increases the
accuracy, and QuadTree combined with the proposed CSE
method and fine-tuned on depth predictions achieves state-
of-the-art AUC scores on all tested datasets.

As for matching score and precision, we also visualize
the matching results of LoFTR and QuadTree in Fig. 4.
By adding CSE, we obtain more correct matches and better
pose accuracy on surface regions with distinctive geometry,
while keeping similar matching precision.

4.2. Visual Localization

Datasets and Metrics. We select the AACHEN DAY-
NIGHT v1.1 dataset [52] to demonstrate the effectiveness
of our proposed approach on the visual localization task.

Methods
Day Night

(0.25m, 2◦) / (0.5m, 5◦) / (5m,10◦)

SP [12] + SG [49] 89.8 / 96.1 / 99.4 77.0 / 90.6 / 100.0

SP + SG + CSE 90.7 / 96.5 / 99.4 75.9 / 91.1 / 100.0

Table 2. Visual localization. We report the pose recall at
(0.25m/2◦, 0.5m/5◦, 5m/10◦) on the Aachen Day-Night [52]
dataset with the HLoc [48] algorithm. The best results are bold.

AACHEN DAY-NIGHT is a challenging urban-scale outdoor
dataset which is collected by handheld devices with 6,697
reference images and 1,015 queries, including 191 night-
time images. The ground truth 6DoF camera pose is ob-
tained by COLMAP [53] and refined by [73]. We follow
the evaluation protocols of the visual localization bench-
mark [52] reporting the translation and rotation error recalls
at 0.25m/2◦, 0.5m/5◦, and 5m/10◦.
Results. We add our CSE to the SuperPoint [12] + Super-
Glue [49] pipeline in HLoc [48, 49] without fine-tuning any
models. The matching pairs are provided by HLoc with
top-50 candidate images from NetVLAD [2]. Tab. 2 reports
the pose error recalls. We observe that the plug-in CSE im-
proves the SP + SG pipeline on all thresholds on the Day
sequences. On the Night sequence, it improves at threshold
(0.5m/5◦) and (5m/10◦). We believe the slight decrease at
(0.25m/1◦) stems from the inaccuracies of depth prediction
on nighttime images. Overall, by adding the CSE module,
the localization accuracy is improved.

4.3. Ablation Study

We analyse the impact of different design components
on our curvature similarity extractor in this section. We
evaluate two main design choices: (1) multi-scale curvature
extraction, (2) choice of depth predictors, and (3) mixing
parameter value λ selection. All experiments are conducted
with the Quadtree [58] matcher.

Multi-Scale
ScanNet [9] MegaDepth [27]

Time (ms)
AUC@5◦/ AUC@10◦/ AUC@20◦

4*4 24.4 44.6 61.9 52.7 69.6 82.0 113

6*6 25.3 45.6 62.8 53.3 69.9 81.8 115

8*8 (default) 25.2 45.5 62.5 54.0 70.3 82.1 112

4*4+6*6+8*8 25.6 45.2 62.4 54.0 70.0 82.1 338

Table 3. Multi-scale and different grid sizes. The AUC scores
and average CSE run-times (ms) of Quadtree [58] + CSE with
different grid sizes and on multi-scale estimation.

Multi-scale. As described in Sec. 3.3, we conduct multi-
scale curvature similarity extraction on a 8 ∗ 8 patch grid
with QuadTree by default. In Tab. 3, we show the results
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Depth Predictors CSE FT AUC@5 @10 @20 Model

Ground Truth Quadric % 25.1 45.0 62.0 153 MB

MiDAS (Res101) Quadric ! 25.5 45.5 62.5 575 MB

MiDAS (Real-time) Quadric ! 25.5 45.4 62.9 239 MB

MiDAS (ViT) Quadric ! 25.8 46.1 63.4 1.6 GB

MiDAS (ViT) Surface Fit % 24.8 44.7 61.6 1.6 GB

Table 4. Depth study. The AUC scores of QuadTree [58] with the
proposed CSE using the GT depth or MiDaS [42] with different
models. Quadric and surface fitting results are also shown.

when using 4 ∗ 4, 6 ∗ 6, and multi-scale grids without fine-
tuning. Even though the proposed CSE is robust to the grid
size and the accuracy is similar, it slightly increases together
with the grid size. Size 4 ∗ 4 leads to the worst solutions on
average, while 8∗8 leads to the best ones. As expected, cur-
vature similarity extraction with multi-scale shows the best
performance. However, it increases the average run-time by
three times.
Depth Predictors and Curvature Extractors. We then ex-
plore the impact of different depth predictors on the final
pose accuracy and model size. We select the ground truth
depth, MiDAS with ResNet101 [22] architecture and Mi-
DAS small (real-time) to compare with the default predictor
MiDAS with ViT [64]. Tab. 4 reports the pose accuracy of
these approaches on the ScanNet dataset. MiDAS with ViT,
which shows the best performance, has the largest model
size due to the heavy depth prediction network. When we
employ lighter models for depth prediction, we observe that
the performance has only a small drop, indicating that our
method is still effective when working with lightweight net-
works. We also notice that the pose accuracy with ground
truth depth is worse than the fine-tuned models. We believe
the reason for this is the missing depth regions in the ground
truth. We visualize the depth maps in different conditions at
supplementary material.

The last two rows of the table show the results with the
proposed ellipse and with quadratic surface fitting. The el-
lipse fitting performs more accurately in the experiments.
Mixing Parameter Value. We finetune our model with dif-
ferent values for λ in Eq. (10). The results are reported
in Tab. 5. The proposed model performs best with λ = 0.9
for outdoor and λ = 0.8 for indoor scenes. This is ex-
pected since the proposed CSE is additional guidance for
coarse-level matching that helps reduce the score of incor-
rect matches stemming from different surfaces. Assigning
a large mixing weight could degrade the performance.

4.4. Curvature Similarity Understanding

In Fig. 5, we visualize how the curvature similarity score
impacts the key points selection and matching results. We
first show in the curvature images that similar surfaces share
similar curvature values (more visualizations are presented

λ (AUC@5◦) 1.0 0.9 0.8 0.7 0.5 0.3

ScanNet [9] 24.9 25.8 26.1 23.8 21.0 17.8

MegaDepth [27] 53.5 54.5 52.8 47.0 45.5 39.8

Table 5. Mixing Parameter Value Selection. We finetune the
Quadtree + SCE with different λ values and report the AUC@5◦on
ScanNet and MegaDepth datasets.

(a) Points found by QuadTree alone (left) and when combined with CSE (right)

Quadtree
#Matches:54 
ΔR:9.20°, Δt:4.19°

Quadtree + CSE
#Matches:343, ΔR:1.93°, Δt:7.93°

Quadtree + CSE
#Matches:343, ΔR:1.93°, Δt:7.93°

(a) Matching visualization on Quadtree + CSE and Quadtree  with curvature map  

(b) Additional curvature map visualization on MegaDepth 

Quadtree + CSE
#Matches:154, ΔR:7.77°, Δt:5.41°

Quadtree
#Matches:19, ΔR:77.81°, Δt:54.27°

Epoch0
Quadtree + CSE
#Matches:115, ΔR:4.16°, Δt:2.86°

Quadtree + CSE
#Matches:284
ΔR:2.15°, Δt:0.51°

(b) Matches found by QuadTree alone (left) and when combined with CSE (right)

Figure 5. Keypoints (top row) and matches (bottom) found by the
QuadTree matcher [58] with and without the proposed CSE, over-
layed on the RGB (left) and extracted curvature images (right).

in the supplementary). Then, we observe that, after adding
CSE, more matches are detected from the same surface, as
we increase the matching confidence of those matches by
assigning a larger curvature similarity score. Besides, the
curvature score helps in lowering the matching confidence
of matches from different surfaces, e.g., the incorrect (red)
matches in Fig. 5 (b) left are eliminated in the right.

5. Conclusions

We present a curvature similarity extractor (CSE), a new
algorithm to leverage 3D geometric cues in local feature
matching. By fitting quadrics to depth maps obtained from
off-the-shelf monocular depth predictors, we extract curva-
ture similarity, which is invariant to translation, rotation,
and scaling. CSE can be seamlessly integrated with match-
ers to guide the match selection. Also, it allows training fea-
ture matches and monocular depth networks jointly mini-
mizing the matching loss in an end-to-end manner to further
improve the accuracy. Our experiments in Sec. 4 demon-
strate the effectiveness of the proposed CSE module, which
consistently improves the pose AUC scores of all meth-
ods on almost all datasets, achieving state-of-the-art perfor-
mance on all benchmarks when combined with QuadTree.
Limitations and Future Work. First, the integration of
depth prediction and curvature similarity extraction into
feature matching leads to increased memory consump-
tion and inference time. An alternative solution for time-
sensitive applications is to use a lightweight depth predic-
tor. As shown in Tab. 4, such an approach still increases the
accuracy. Second, the discussed invariance properties do
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not hold at depth discontinuities, and limitations may arise
in scenes lacking accurate depth or clear surfaces. Even
though this did not pose an issue in our experiments, this
is a potential future direction that might lead to further im-
provements.
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