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Abstract

Due to the limited resolution of 3D sensors and the in-
evitable mutual occlusion between objects, 3D scans of real
scenes are commonly incomplete. Previous scene comple-
tion methods struggle to capture long-range spatial context,
resulting in unsatisfactory completion results. To alleviate
the problem, we propose a novel Dual-Scale Transformer
Network (DST-Net) that efficiently utilizes both long-range
and short-range spatial context information to improve the
quality of 3D scene completion. To reduce the heavy com-
putation cost of extracting long-range features via trans-
formers, DST-Net adopts a self-supervised two-stage com-
pletion strategy. In the first stage, we split the input scene
into blocks and perform completion on individual blocks. In
the second stage, the blocks are merged together as a whole
and then further refined to improve completeness. More
importantly, we propose a contrastive attention training
strategy to encourage the transformers to learn distinguish-
able features for better scene completion. Experiments on
datasets of Matterport3D, ScanNet, and ICL-NUIM demon-
strate that our method can generate better completion re-
sults, and our method outperforms the state-of-the-art meth-
ods quantitatively and qualitatively.

1. Introduction
Indoor 3D reconstruction is an essential part of many ap-

plications like AR/VR [19, 1], building information mod-
eling (BIM) [24, 32], automatic robot indoor navigation
[14] and so on [36, 38]. Due to the limited resolution of 3D
sensors and the inevitable occlusion between objects in the
scene, there always exist incomplete surfaces in the recon-
struction results.

Recently, scene 3D completion based on deep learning
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Figure 1: Indoor scene completion on one case in the Mat-
terport3D dataset. Comparison with the state-of-the-art
methods SG-NN [6] and SPSG [8].

has made great progress. Dai et al. [6] proposed a self-
supervised method called SG-NN to complete the indoor
scene with incomplete real-world scan data, which can get
a more complete result compared to the training data. Dai
et al. [8] further proposed SPSG to complete the 3D surface
and texture. Most of the current methods use convolutional
neural networks (CNN) for completion and achieve impres-
sive progress. Nonetheless, receptive fields in CNN remain
local at a certain resolution, limiting its ability to capture
long-range information. This is very important for the scene
completion task with incomplete inputs.

Recently, Vision Transformer (ViT) [27, 18, 10] has
made great stride in the computer vision field, owing
to its ability to sense long-range information. For the
task of single object 3D completion, some methods [30,
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33, 34] achieved better point cloud completion by using
transformer-based architecture to extract global information
with a spatial attention mechanism. However, there is few
attempt to apply transformer to the task of large-scale scene
completion, since the large-scale scenes contain complex
layouts and various objects.

In this work, to use long-range information to handle
large missing areas and precise completion of geometric
shape in the scene, we propose a Dual-Scale Transformer
Network (DST-Net) and apply it in a two-stage manner.
Specifically, in the first stage, we use DST-Net to complete
the blocks split from an incomplete scene, then merge the
complete geometric blocks to get the entire scene output.
However, the generated results still have some small holes
in local areas. To tackle it, in the second stage, we utilize
scene-level information to refine the output scene of stage
1. In this stage, we fuse the ground truth and the first stage
output as the supervision signal to focus on learning prob-
lematic areas and ensure the consistency of learning.

It is difficult to obtain satisfactory performance when ap-
plying transformer for scene completion, as the long-range
and sparse incomplete information is more difficult to learn.
To solve this problem, our proposed DST-Net involves spe-
cific transformer modules for different-level scene informa-
tion. Furthermore, we propose a contrastive attention train-
ing strategy to make the DST-Net efficiently learn similar
and distinguishable shape features. Our method includes a
structure loss to improve the accuracy of geometric struc-
ture, and a CIoT (Cube Intersection over Target) loss to en-
sure complete output voxels. One comparison case between
the state-of-the-art methods and ours is illustrated in Fig. 1.

In summary, our contributions are as follows :
1. We propose a novel Dual-Scale Transformer Network

(DST-Net) for indoor scene surface completion. We con-
duct completion operations from the block level to the scene
level to achieve better completion performance.

2. We propose a contrastive attention training strategy to
make the transformer work robustly in scene completion. In
addition, we propose a structure loss to improve the accu-
racy of geometric shapes and a CIoT loss to make the scene
more complete.

2. Related Work
Completing the 3D surface from the 2D or 3D sparse in-

puts is an ill-posed task. This task greatly relies on the prior
knowledge extracted from other similar scenes. We briefly
introduce related traditional methods and deep learning-
based methods in this field. More extensive reviews can
be found in two recent works [23, 16].

2.1. Traditional Completion

Due to lacking powerful 3D scene encoding and infer-
ring models, most of the early traditional methods used the

interpolating or optimization strategy. Davis et al. [9] pro-
posed a diffusion process with the SDF function to fill the
holes in the surface. Kawai et al. [15] proposed an en-
ergy minimization surface completion method, which could
complete indoor models with holes. Previtali et al. [22] de-
signed a flexible pipeline to perform outdoor and indoor re-
construction from occluded point clouds and proposed cor-
responding modules for outdoor and indoor scan comple-
tion. Silberman et al. [25] proposed a probabilistic model
of contour completion random fields, which could complete
the boundaries of occluded surfaces. Xiao et al. [31] inte-
grated point cloud completion and surface connectivity re-
lation inference to obtain complete 3D models and surface
connections. The traditional methods depend on certain as-
sumption and their generalization is poor when the prereq-
uisite is not met.

2.2. Deep Learning based Completion

Supervised based completion. With the increment of
3D data resources [2, 4] and the development of deep learn-
ing, more and more methods use deep learning neural net-
work to learn various priors to complete the scene. Some
methods [13, 17, 28] focus on depth completion to fulfill
surface completion. Surface completion is always com-
bined with semantic segmentation provides both geometry
and object label information. Song et al. [26] built up a syn-
thetic indoor dataset SUNCG with dense occupancy and se-
mantic annotation, and proposed a fully convolutional end-
to-end model to solve both tasks of semantic segmentation
and scene completion. Dai et al. [7] further proposed a
coarse-to-fine fully convolutional model called ScanCom-
plete based on SUNCG to solve semantic segmentation and
scene completion tasks for high-resolution indoor scenes.
However, it is difficult to have a complete ground truth for
3D indoor scenes due to device and data capturing imper-
fections.

Self-supervised based completion. Self-supervised
completion learns the geometric features from incomplete
3D surface ground truth and then expands such learned
completion principle to boost the incomplete 3D surface
ground truth itself [34, 37, 20, 35]. Dai et al. [6] pro-
posed a self-supervised fully convolutional approach SG-
NN that can be trained on incomplete, real-world scan data
and produced a better geometric model than the training tar-
get. SPSG [8] used a similar self-supervised idea to infer a
complete scene geometry with color and used 2D data to
supervise the color of the output 3D scene for generating a
complete color and more accurate scene. It is a promising
technical route, as it does not need a large amount of expen-
sive GT data. But it requires the model to have a more ro-
bust capacity to observe a wider scope and a stronger com-
pletion ability.
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Figure 2: Overview of our completion method. Stage 1 uses DST-Net to complete blocks of the incomplete input, and merge
them to get the coarse scene output. Stage 2 proceeds to refine the coarse scene. We use different colors to represent the
differences between the two-level network structures in DST-Net.

3. Method
3.1. Overview

The diagram of our proposed method is illustrated in
Fig. 2. Given a training dataset with a series of incomplete
indoor scans, our proposed method has two stages. Stage
1 trains DST-Net to learn completion rules on small blocks
split from the incomplete scene. Due to memory limitation,
in the test, the input and output of stage 1 are same-sized
voxel blocks split from a scene, then we merge the output
blocks to get the stage 2 input. Then stage 2 aims to address
the inadequate inferring result caused by the limited scope
of block-level completion by processing the scene-level in-
formation, while the training target is obtained by fusing the
output and target of stage 1.

In the training progress, we propose a contrastive atten-
tion training strategy that uses the information between dif-
ferent blocks to encourage the transformers to learn distin-
guishable features for better scene completion. We propose
the structure loss and CIoT loss to ensure completed scenes
precise and complete.

3.2. DST-Net Structure

Our DST-Net is an encoder-decoder structure, as shown
in the Fig. 3(a), The DST-Net basically consists of four

modules: geometry encoder, global structure extractor, re-
gion geometry generator, and local detail generator. The ge-
ometry encoder and local detail generator are similar to [6],
consisting of 3D Sparse Convolutions [11] (SP -Convs)
to encode and decode local geometry features. We pro-
pose a global structure extractor to extract and complete
global-level features, as well as proposing the region ge-
ometry generator to decode region-level geometry shapes
with long-range information. Considering the proportion of
valid data in the scene, the modules at the two ends of our
network process sparse voxels (shown in blue color), and
the middle module processes dense voxels (shown in green
color). Next, we will introduce the global structure extrac-
tor and region geometry generator in detail.

3.2.1 Global Structure Extractor

To extract similar high-dimensional features from similar
structures, we introduce a global structure extractor. The
global structure extractor has two branches, as shown in
Fig. 3(b). Inspired by PVT [29], we design a 3D multi-
layer transformer pyramid structure as one branch to re-
shape structured voxels into non-sequential voxels and en-
code them, which mainly focuses on long-range global in-
formation. In order not to lose details, we also reserve
CNNs as the other branch to encode local information.
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Figure 3: Network structure and details. (a) The diagram of our DST-Net structure and its four main modules. The input for
stage 1 are blocks and the input for stage 2 is a scene, respectively. Arrows indicate the flow of data in the network. The
difference in DST-Net between stage 1 and stage 2 lies in the global structure extractor and region geometry generator. (b)
Global structure extractor contains two branches of transformer and CNN. There is no transformer branch (marked with a dot
line rectangle) in stage 2. (c) The component of region geometry generator in stage 1 and stage 2. (d) The network structure
of two major components in region geometry generator : MR-CA (left column), and MR-VT (right column).

Then the two branches are decoded with CNNs. We use
skip-connection to connect the information of the same res-
olution in both branches. Finally, the global features com-
pleted by these two branches are fused by a linear layer. At
stage 2, we remove the transformer branch, as the scene is
relatively complete, and the need for long-range informa-
tion capture is reduced.

3.2.2 Region Geometry Generator

We propose a region geometry generator to hierarchically
generate accurate region shapes with long-range shape
similarity. The key components of this module are the
multi-resolution cross-attention (MR-CA) and the multi-
resolution voxel transformer (MR-VT). The organization
ways of region geometry generator in stage 1 and 2 are
shown in Fig. 3(c).

Multi-resolution cross-attention. We propose the MR-
CA module to connect shape features Y ∈ RN×C in the
geometry encoder to high-resolution features X ∈ RN×C

in the region geometry generator for shape completion, as
shown in the left column of Fig. 3(d). N is the number of
sparse voxel features, and C is the number of channels. In
this module, Q is obtained from X through 1×1 SP -Conv,
K and V are obtained from Y through 1×1 SP -Conv. We

conduct dot-product between Q and KT to get the attention
map A.

A stores the similarity of the shape information between
Y and X , we use A to select similar shape features from V :

Xattn = SP -Conv(A× V ) (1)

We add the result Xattn selected from Y and the input
feature X to get the completed feature Xout :

Xout = X +Xattn (2)

Multi-resolution voxel transformer. Unlike MR-CA,
which uses the encoder’s shape information, MR-VT is pro-
posed to perform region shape completion with the long-
range complete shape feature generated in the generator.
We first connect the sparse voxel features of the same res-
olution in the encoder and the decoder, to obtain the fea-
ture XC ∈ RN×C . Q is projected by XC . K and V are
projected by XC after down-sampling. The latter attention
operation and more details are shown in the right column
of Fig. 3(d). By using MR-VT, each voxel with incomplete
shape information can capture long-range information from
all other generated voxels for completion.
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Figure 4: The diagram of CAT working mechanism.

3.3. Contrastive attention training

Contrast learning enhances the performance of vision
tasks by contrasting samples against each other, which
learns common attributes from similar samples and discrim-
inative attributes from distinguished ones. Inspired by the
idea of contrastive learning, we propose a contrastive atten-
tion training (CAT) strategy to empower the transformers
for scene completion by efficiently learning common and
distinguishable shape features from the training samples.

Our method randomly takes a batch containing b blocks
as input in training, and the input XC for MR-VT is a voxel
set {Lj , j = 0, ...,mi − 1} processed from each block i,
where mi means the number of the voxels in block i and
each voxel Lj contains a shape feature within a cubic space.
Unlike the general self-attention approach, where the atten-
tion operation is done between {Lj , j = 0, ...,mi − 1}, we
further randomly select the voxels sets from other blocks,
and use all voxels in them to form a random voxel set
L : {Lj , j = 0, ...,

∑n−1
i=0 mi − 1}, where n means the

number of all the selected blocks. The physical meaning of
L is shown in Fig. 4. In brief, we use M to denote

∑n−1
i=0 mi.

Similar to MR-VT, the Qj , Kj and Vj are projected from
Lj . In this way, we perform a cross-attention operation
between n blocks in a training batch. For a certain voxel
Lj , we obtain the similarity set {Aj,k, k = 0, ...,M − 1}
between Lj and all M voxels in L by computing the dot-
product of Qj and Kk and then normalized via softmax
function:

Aj,k =
exp(Qj ·Kk)

M−1∑
k=0

exp(Qj ·Kk)

, (3)

After obtaining the similarity set {Aj,k, k = 0, ...,M − 1},
we can use it to select features Vk derived from Lk in L to
complete the voxel Lj :

Xattn = SP -Conv(

M−1∑
k=0

Aj,k · Vk) (4)

The underlying motivation is that unlike self-attention
applied to individual blocks with a single layout, our con-
trastive attention operation requires the transformer to ex-
tract useful information from a set of random other blocks.
Due to the randomness when selecting blocks in a training
batch, the blocks with different layouts may share similar
properties or have different attributes, which may be use-
ful or detrimental. By explicitly adding extra information,
transformers are required to identify whether the extra in-
formation is useful or not by attention scores. The learning
strategy enables transformers to learn geometric features
with a higher degree of discrimination, thereby improving
the completion ability. We evaluate different values for n
with 2, 4, and 8. The experimental results indicate that the
completion performance reaches its best for n equal to 8.

3.4. Loss Function and Data Generation

Geometry loss. We train the network with three geom-
etry loss items: depth loss LD, 3D normal loss LN , and
structure loss LS . Given a voxel v, depth loss LD is used
to calculate the difference between the predicted depth DP

v

and the target depth DT
v in v. The 3D normal loss LN con-

strains the predicted normal NP
v and the target normal NT

v

in v. V is the set of voxels to be calculated:

LD =
1

V

∑
v∈V

||DP
v −DT

v ||1 (5)

LN =
1

V

∑
v∈V

||NP
v −NT

v ||1 (6)

Normal loss is used to constrain the geometry structures
by calculating local depth variations. However, for more
complex geometry structures, like various concave and con-
vex shapes, it is difficult to complete them well only with
normal loss. Inspired by normal loss, we introduce the
structure loss LS to further constrain the geometry struc-
tures by calculating local normal variations.
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Figure 5: Visual comparison of two different local struc-
tures.

As shown in Fig. 5, NP
i,j,k denotes the normal of a pre-

dicted voxel, NP
i+1,j,k, NP

i,j+1,k, and NP
i,j,k+1 denote the

normals of its three adjacent voxels, where i, j, k represent
voxel coordinates in three directions respectively. The GT
normals are represented in a similar fashion. In a brief,
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we use NP
v , NP

vx, NP
vy and NP

vz to denote NP
i,j,k, NP

i+1,j,k,
NP

i,j+1,k and NP
i,j,k+1, as well as the GT normals. The nor-

mal loss of a single predicted voxel is small when calculated
with GT, while the local structures of the predicted case and
GT are totally different due to the accumulation of normal
variations. Therefore, we use the dot-product similarity be-
tween NP

v and NP
vx, NP

vy , and NP
vz to get SP

vx, SP
vy , and

SP
vz as structure descriptors, as shown in Equation (7), to

describe the local variation of normals. The structure de-
scriptors of GT are calculated in the same way. The loss
LS between predicted and target structure descriptors en-
able the whole predicted geometry structure to represent GT
more accurately.

SP
vx = NP

vx ·NP
v

SP
vy = NP

vy ·NP
v

SP
vz = NP

vz ·NP
v

(7)

LS =
1

V

∑
v∈V

{1
3
(||SP

vx − ST
vx||1+

||SP
vy − ST

vy||1 + ||SP
vz − ST

vz||1)}
(8)

CIoT loss. Considering incomplete real-world data, we
propose CIoT (Cube Intersection over Target) loss to make
output voxel distribution fit the target. Due to the voxel
sparsity, the same IoT may represent a completely different
distribution. To address it, we divide the entire output into
N small cubes of the same size. In a cube, CP

i and CT
i

represent the number of predicted voxels and the number of
target voxels, respectively. We only calculate the loss in the
cube where CT

i > 0. CIoT loss is defined as:

LCIoT = 1− 1

N

N∑
i=1

CP
i ∩ CT

i

CT
i

(9)

Data Generation. Both input and target in training are
the representation of sparse TSDF voxel with depth infor-
mation, obtained from RGB-D frames by the method of
voxel fusion [3]. Following the self-supervised learning ap-
proach of SG-NN [6], the training target (GT) in stage 1 is
generated using all RGB-D frames, while a certain propor-
tion is used in getting input. The training target in stage 2 is
obtained by fusing the output and target of stage 1. To focus
on learning problem regions and minimize error accumula-
tion, we select the TSDF value of target 1 voxel as the value
for target 2 voxel when the coordinates of output and target
of stage 1 coincide.

4. Experiments and Results
To validate our proposed method, we use the Matter-

port3D [2] dataset as the training data and conduct the com-
parison experiments on both real-world data and synthetic

Method CD(×10−1)↓ Recall↑ Precision↑

ConvOccNet 1.48 0.51 0.54
SG-NN 0.65 0.69 0.62
SPSG 0.35 0.74 0.53
Ours 0.23 0.78 0.61

Table 1: Quantitative comparison results on Matterport3D.

data. The training dataset includes 1788 rooms. We train
our method on a single NVIDIA GeForce RTX 2080. The
learning rate is 0.001, and the batch size is 8. The reso-
lution of all voxels is 2 cm. The training blocks are all
128 × 64 × 64 size cutting from the scene, and parame-
ter n in contrastive attention training strategy is 8. The four
terms in the loss function have equal weights. Our stage 1
model training takes about 72 hours, and the stage 2 model
training takes about 24 hours. Three state-of-the-art meth-
ods of ConvOccNet [21], SG-NN [6] and SPSG (only with
geometry) [8] are used to compare with ours on the metrics
of Chamfer Distance (CD) in metric space, Recall, and Pre-
cision. For real-world unobserved space, we ignore it for
the CD evaluation.

4.1. Completion on Matterport3D

First, we compare four methods on 394 other rooms from
the Matterport3D dataset. We provide the same incomplete
TSDF input, except for ConvOccNet, which requires the
corresponding mesh to be pre-computed as input. Some
scene completion results are shown in Fig. 6(a). In visual
effect, our method completes more parts in the scenes than
the other three methods, which is consistent with the recall
metric in Tab. 1. The highest score on CD proves that our
method’s shape accuracy is the best. As the GT is incom-
plete and the more completion areas from our method have
no corresponding GT, our precision is less than the SG-NN
under this special condition.

4.2. Completion on Synthetic Data

The synthetic dataset ICL-NUIM [12] has 3D surface
ground truth so that it can provide a more comprehensive
evaluation. As the scan frames are indoors, we only select
the mesh of the surface inside the room to evaluate. Qual-
itative and quantitative evaluations are shown in Fig. 6(b)
and Tab. 2. Owing to the full GT, the results fairly reflect
our method’s superiority over the other three methods.

4.3. Completion on ScanNet

To validate the generalization of our proposed method,
we also conduct the comparison experiments on a more
challenging dataset ScanNet [5]. The Fig. 6(c) are the visu-
alization results, and Tab. 3 shows the quantitative results.
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(a) Matterport3D

(b) ICL-NUIM

(c) ScanNet

Figure 6: Qualitative comparisons with state-of-the-art methods on Matterport3D, ICL-NUIM and ScanNet.

4.4. Ablation Study

In this section, we demonstrate how the functional com-
ponents in our method affect the ultimate performance.

Stage 1 versus Stage 2. Stage 1 in our full model has
finished most of the completion. However, stage 1 may
generate some inaccurate areas due to block-level scope.
Stage 2 can further solve these problems by training with
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Input ConvOccNet SG-NN GT/TargetOursSPSG(only geo)

(a) Matterport3D

(b) ICL-NUIM

(c) ScanNet

Input SG-NN GT/TargetOursSPSG(only geo)

Figure 7: Qualitative comparisons with state-of-the-art methods on Matterport3D with 30% frames input.

Method CD(×10−1)↓ Recall↑ Precision↑

ConvOccNet 0.61 0.17 0.28
SG-NN 0.31 0.31 0.42
SPSG 0.25 0.35 0.39
Ours 0.18 0.39 0.45

Table 2: Quantitative comparison results on ICL-NUIM.

Method CD(×10−1)↓ Recall↑ Precision↑

ConvOccNet 0.65 0.79 0.43
SG-NN 0.36 0.85 0.50
SPSG 0.30 0.86 0.45
Ours 0.26 0.88 0.48

Table 3: Quantitative comparison results on ScanNet.

the fused target 2 and using the whole scan as input. The
qualitative and quantitative evaluation results of stage 1 and
the full model are shown in the Fig. 8 and Tab. 4. The re-
sults show that stage 2 accumulates a little distance error,
but completes and corrects the results of stage 1. Tab. 4 fur-
ther shows the quantitative results of training the full model
with GT and using only the stage 2 model that is trained
with stage 1 data to process input. The results indicate that
the fused target 2 works better than GT, and the two stages
are necessary.

Method CD(×10−1)↓ Recall↑ Precision↑

Stage1 0.22 0.77 0.60
Full model 0.23 0.78 0.61

Full model (train with only GT) 0.46 0.72 0.60
Only Stage2 0.49 0.72 0.57

Table 4: The improvement of the full model over stage 1,
the fused target 2 over GT. And the necessity of stage 1 .
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Figure 8: Completion improvement in the full model made
by stage 2 over stage 1.

Method CD(×10−1)↓ Recall↑ Precision↑

SG-NN (40%) 0.67 0.68 0.61
SPSG (40%) 0.36 0.73 0.53
Ours (40%) 0.23 0.77 0.60

SG-NN (30%) 0.73 0.67 0.61
SPSG (30%) 0.43 0.72 0.52
Ours (30%) 0.24 0.77 0.60

SG-NN (20%) 1.06 0.60 0.58
SPSG (20%) 0.73 0.65 0.49
Ours (20%) 0.47 0.72 0.56

Table 5: Quantitative comparison results on Matterport3D
with 30% frames input.

More incomplete inputs. To illustrate the long-range
advantage of our method, we use the model trained on the
input consisting of 50% proportion RGB-D frames to test
on the 40%, 30%, and 20% proportion input. The qualita-
tive and quantitative evaluation results are shown in Fig. 7
and Tab. 5. The results show that as the input information
gradually decreases, our method can also output a relatively
complete result.

The impact of contrastive attention training. We
validate the contribution of the contrastive attention train-
ing strategy (CAT) for training at stage 1. Its qualitative
and quantitative evaluation results are shown in Fig. 9 and
Tab. 6. We can find that CAT enhances the ability to restore
regional shapes.
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Figure 9: The visual effect of CAT on shape completion.

The effectiveness of modules. We replace the global
structure extractor (GSE) and region geometry generator
(RGG) with CNNs to evaluate their effectiveness. The
Tab. 6 shows the quantitative evaluation, and Fig. 10 dis-
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Method CD(×10−1)↓ Recall↑ Precision↑

Stage1 0.22 0.77 0.60
Stage1(w/o GSE) 0.32 0.74 0.57
Stage1(w/o RGG) 0.26 0.75 0.58
Stage1(w/o CAT) 0.24 0.75 0.59

Table 6: Quantitative evaluation of our proposed modules.

Method CD(×10−1)↓ Recall↑ Precision↑

w/o LCIoT 0.25 0.75 0.60
w/o LS 0.26 0.75 0.56
w/o LN 0.26 0.74 0.56
w/o LD 0.29 0.75 0.54
full loss 0.22 0.77 0.60

Table 7: Ablation results of loss items in stage 1.

plays how GSE and RGG improve the completion effect in
terms of global structure and region shape, respectively.

Input ConvOccNet SG-NN GT/TargetOursSPSG(only geo)

(a) Matterport3D

(b) ICL-NUIM

(c) ScanNet

Input SG-NN GT/TargetOursSPSG(only geo)

stage 1 input stage 1 w/o GSE stage 1 w/o RGG stage 1 output

Input ConvOccNet SG-NN GT/TargetOursSPSG(only geo)

Figure 10: Qualitative comparisons of how the completion
results are affected by RGG and GSE.

The impact of each loss item. We validate the effect of
LCIoT , LS , LN loss on our method, and validate the case
where only LD loss is applied. Tab. 7 shows the quantitative
evaluation of the loss items. Fig. 11 shows the qualitative
evaluation of the loss items. We can see that with LCIoT ,
the completeness of local scene completion has been im-
proved, while LS and LN effectively constrain the accuracy
of the shapes and planes, respectively. From the comparison
with the results of only using LD loss, we can find that vari-
ous losses acting on the connection between voxels improve
the completion accuracy and completeness.

5. Conclusion
In this work, we have proposed a dual-scale transformer

method with a two-stage completion strategy to generate
fairly complete scenes from real-world incomplete RGB-D
scans. Our proposed contrastive attention training strategy
encourages the transformers to learn distinguishable fea-
tures. We introduce two new losses to constrain geometric
accuracy and completeness. However, due to the limita-
tion of memory, currently, we only use geometric informa-
tion and solve the geometric completion. In the future, we
would consider scene completion with other priors such as
color and semantic information.

6. Limitation
First, our method only completes the geometric surface,

without including the texture. In some conditions, the tex-
ture is also necessary. In the near future, we will try to solve
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Figure 11: Effect of loss items by switching on/off them at
stage 1.

it. Second, surface completion mainly provides reasonable
inference for the missing parts, rather than replacing the ac-
curate reconstruction. When the geometric information of
the input scene is not enough to infer the entire scene, our
geometry completion result may not be accurate. Although
our method does not need the GT of the complete scene, it
still needs a large amount of indoor data to ensure its gener-
alization.
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