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Abstract

Prototypical part network (ProtoPNet) methods have

been designed to achieve interpretable classification by

associating predictions with a set of training prototypes,

which we refer to as trivial prototypes because they are

trained to lie far from the classification boundary in the

feature space. Note that it is possible to make an anal-

ogy between ProtoPNet and support vector machine (SVM)

given that the classification from both methods relies on

computing similarity with a set of training points (i.e., triv-

ial prototypes in ProtoPNet, and support vectors in SVM).

However, while trivial prototypes are located far from the

classification boundary, support vectors are located close to

this boundary, and we argue that this discrepancy with the

well-established SVM theory can result in ProtoPNet mod-

els with inferior classification accuracy. In this paper, we

aim to improve the classification of ProtoPNet with a new

method to learn support prototypes that lie near the classi-

fication boundary in the feature space, as suggested by the

SVM theory. In addition, we target the improvement of clas-

sification results with a new model, named ST-ProtoPNet,

which exploits our support prototypes and the trivial pro-

totypes to provide more effective classification. Experi-

mental results on CUB-200-2011, Stanford Cars, and Stan-

ford Dogs datasets demonstrate that ST-ProtoPNet achieves

state-of-the-art classification accuracy and interpretability

results. We also show that the proposed support prototypes

tend to be better localised in the object of interest rather

than in the background region.

1. Introduction

Deep convolutional neural networks (CNN) [28, 30, 16]

have had remarkable achievements in various visual tasks,

e.g., image recognition [16] and object detection [39]. De-

spite the excellent feature extraction and discrimination

ability, CNNs are generally treated as black-box models

due to their complex architectures, high-dimensional fea-
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Figure 1. The difference between the learning of trivial and sup-

port prototypes. (a) Trivial prototypes: the separation loss pushes

the prototypes of different classes as far as possible from the clas-

sification boundary. (b) Support prototypes: our new closeness

loss enforces the prototypes of different classes to be as close as

possible to the classification boundary.

ture spaces, and the enormous number of learnable param-

eters. Such lack of interpretability hinders their successful

application in fields that require understandable and trans-

parent decisions [40], e.g., disease diagnosis [47, 13], finan-

cial risk assessment [33], and autonomous driving [23].

Recently, increasing attention has been dedicated to the

development of interpretable deep-learning models [25, 1,

4, 3]. A particularly interesting strategy is the prototype-

based gray-box models, e.g., prototypical part network

(ProtoPNet) [4, 11]. These methods are inherently in-

terpretable since they can explain the model’s decisions

by showing image classification activation maps associated

with a set of class-specific image prototypes. These proto-

types are automatically learned from training samples, with

classification score being computed by comparing testing

image parts to the learned training prototypes.

ProtoPNet [4] is trained to learn a classifier from a set of

class-specific prototypes by minimising the cross-entropy

classification loss and two additional regularisation losses,

namely: 1) a clustering loss that pulls together training

image patches to at least one prototype of its own class;

and 2) a separation loss that pushes apart training image
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Two-moon results. (a) Trivial prototypes and training

samples in the feature (top) and data (bottom) spaces from the

original ProtoPNet [4]. (b) Support prototypes and training sam-

ples in the feature (top) and data (bottom) spaces from our method.

(c) Support vectors and training samples from a Radial Basis Func-

tion (RBF) kernel based SVM [7]. In (a) and (b), each prototype

is projected onto the nearest training sample in the feature space.

patches from all prototypes of other classes. The combi-

nation of these two losses pushes the prototypes as far as

possible from the classification boundary, but still within

the class distribution, so we call them trivial prototypes, as

shown in Fig. 1(a). We also display the trivial prototypes,

learned with a feed-forward neural network1, for the two-

moon problem in Fig. 2(a). Notice that these trivial proto-

types are located far from the classification boundary. In

fine-grained visual classification, the trivial prototypes can

mistakenly focus on background regions instead of on the

object of interest [42, 41], particularly for those classes with

subtle foreground (object) differences but large background

variations, as shown in Fig. 3. Different from ProtoPNet’s

trivial prototypes, the support vector machine (SVM) [7]

classifier relies on a set of support vectors that are close

to the classification boundary, as in Fig. 2(c). These sup-

port vectors are often treated as hard samples. Motivated by

SVM, we propose the derivation of support (i.e., hard-to-

learn) prototypes for ProtoPNet methods.

In this paper, we propose an alternative learning strat-

egy for ProtoPNet, which forces the learned prototypes to

resemble SVM’s support vectors and to be located as close

as possible to the classification boundary. The strategy is

formulated by a new closeness loss that minimises the dis-

tance between prototypes of different classes. As shown

in Fig. 1(b), our new loss enforces the prototypes to move

closer to the classification boundary, as also demonstrated

by Fig. 2(b) revealing that the support prototypes produced

by the introduction of our new closeness loss are indeed

more similar to the support vectors of SVM in Fig. 2(c).

Furthermore, to improve the classification accuracy, we pro-

pose a new ST-ProtoPNet method that integrates both the

support and trivial prototypes. The ST-ProtoPNet leverages

the two distinct and complementary sets of prototypes to

capture both hard (i.e., close to the boundary) and easy (i.e.,

far from the boundary) visual features for classification.

1The network has an input layer of 2 nodes, a hidden layer of 256 nodes

(activated by tanh), and an output layer of 2 nodes (activated by sigmoid).

Sooty Albatross Summer TanagerFlorida Jay

Figure 3. Example prototypes sampled from a VGG19-based Pro-

toPNet [4]. In each class, the left prototype focuses on object fea-

tures while the right one captures background.

The major contributions of this work are:

1. We provide the first study that makes an analogy be-

tween the prototype learning from ProtoPNet and sup-

port vector learning from SVM, where we propose

support (i.e., hard-to-learn) prototypes that can im-

prove classification accuracy and interpretability.

2. We present a new ST-ProtoPNet method to exploit both

support and trivial prototypes for interpretable image

classification, where the two sets of prototypes can

provide complementary information to improve clas-

sification accuracy.

3. We conduct extensive experiments on three bench-

marks, showing that our ST-ProtoPNet outperforms

current state-of-the-art (SOTA) methods in terms of

classification accuracy and interpretability.

In our experiments, we also demonstrate that the trivial and

support prototypes have different characteristics, where the

trivial prototypes tend to focus on both local parts of the

visual object of interest and the background, while the sup-

port prototypes mainly focus on object parts belonging to

the visual class of interest.

2. Related Work

2.1. Classification Interpretability

The interpretation of classification results produced by

deep neural networks can be achieved by a variety of

post-hoc explanation techniques, e.g., explanatory surro-

gates [34, 56, 44], counterfactual examples [15, 46, 19],

and saliency visualisation [45, 55, 59, 43]. Alternatively,

prototype-based interpretable techniques can access the

model’s inner computations. ProtoPNet [4] is the orig-

inal work that uses class-specific prototypes for inter-

pretable image classification. Similar to ProtoPNet, Tes-

Net [53] constructs class-specific transparent basis concepts

on Grassmann manifold for the interpretable classification.

Derived from ProtoPNet, Deformable ProtoPNet [11] em-

ploys spatially-flexible and deformable prototypes to adap-

tively capture meaningful object features. In ProtoPShare

[42], a data-dependent merge-pruning method is presented

to share prototypes among classes, which can reduce the

number of prototypes used for classification. In contrast,

ProtoPool [41] introduces a fully differentiable prototype

assignment strategy to reduce the number of prototypes. In
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Proto2Proto [20], a knowledge distillation method is de-

signed to transfer interpretability from a teacher ProtoPNet

to a shallow student ProtoPNet. ProtoTree [35] integrates

the prototype learning into a binary neural decision tree

that can explain its predictions by tracing a decision path

throughout the tree. ViT-NeT [24] further establishes the

prototype neural tree structure on visual transformers [12].

Because of the ability to self-explain classification re-

sults, prototype-based interpretability (e.g., ProtoPNet) has

been widely utilised not only in the computer vision appli-

cations above, but also in medical imaging [2, 22, 51] and

face recognition [48]. However, an open question faced by

these methods is if the prototypes being learned are the ideal

ones in terms of classification and interpretability.

2.2. SVM vs Prototypebased Classification

To better understand the role of prototypes, we con-

sider the support vector machine (SVM) [7] classifier that

finds support vectors to represent classes. More specifi-

cally, SVM learns the maximum-margin classifier defined

by a classification boundary that maximises the distance to

the closest training samples, which are the support vectors

for the classes. The testing of SVM consists of comput-

ing a weighted similarity between a testing sample and the

support vectors. It is interesting to note that the testing of

prototype-based classifiers is also based on measuring the

similarity between a testing image and a set of class-specific

prototypes learned from the training process. Although the

testing of SVM and prototype-based classifiers are similar,

their training procedures are different. First, the training of

a prototype-based classifier learns a fixed number of proto-

types [4, 11], while the SVM classifier learns to weight a

variable number of support vectors from the training set.

Second, in prototype-based classifiers, the learned proto-

types tend to be far from the classification boundary, which

is contrary to the SVM training objective mentioned above.

The study of deep learning methods from an SVM the-

oretical perspective is a rich area of research [9, 38, 6], but

there are many practical questions that need to be addressed,

e.g., how to scale the kernel computation for large-scale

datasets, how to shorten the training process [38], and how

to integrate deep-learning features with the learning of the

SVM classifier. In this paper, our focus is on adapting the

learning of ProtoPNet’s prototypes to make them similar to

SVM’s support vectors, by forcing prototypes to be as close

as possible to the classification boundary.

2.3. Interpretable Ensemble Classification

Ensemble classification [10] is a classical machine learn-

ing approach that combines the results from multiple clas-

sifiers, with the goals of improving learning generalisation

and classification calibration. The use of interpretable en-

semble strategy has been explored in [4, 53, 35, 11, 41],

which is achieved by summing the classification logits

of multiple prototype-based classifiers (e.g., ProtoPNets

trained with different CNN backbones). In this work, we

propose an interpretable ensemble classification by combin-

ing the predictions of two ProtoPNets with highly distinc-

tive prototypes (i.e., support and trivial prototypes), which

is different from previous studies where the type of proto-

types produced by each classifier is very similar given that

the same training objective is used for each classifier.

3. Preliminaries

We assume to have a training set D = {(xn,yn)}
|D|
n=1,

where x ∈ X ⊂ R
H×W×R is an image with R colour

channels and y ∈ Y ⊂ {0, 1}C is a one-hot vector rep-

resentation of the image class label. The interpretable

ProtoPNet [4, 11] is trained to learn a set of prototypes

P = {pm}Mm=1, where pm ∈ R
ρ1×ρ2×D, with each of

the C classes containing M/C prototypes. Without loss

of generality, we assume ρ1 = ρ2 = 1, but the extension

to general values is trivial. A typical ProtoPNet comprises

four components: a CNN backbone, add-on layers, a pro-

totype layer, and a fully connected (FC) layer. An input

image x is fed to the CNN backbone fθ : X → F (pa-

rameterised by θ ∈ Θ, where F ⊂ R
H̄×W̄×D̄) and then

passed on to the add-on layers, denoted by fω : F →
V (parameterised by ω ∈ Ω), to produce a feature map

V ∈ V ⊂ R
H̄×W̄×D. The prototype layer computes

the similarity between the feature map V and the M D-

dimensional prototypes {pm}Mm=1 to generate M similarity

maps S
(i,j)
m = sim(V(i, j, :),pm), where i ∈ {1, ..., H̄},

j ∈ {1, ..., W̄}, and sim(·, ·) represents a similarity mea-

sure, e.g., cosine similarity [11] and projection metric [53].

The prototype layer outputs M similarity scores from max-

pooling S =
{

max
i∈{1,...,H̄},j∈{1,...,W̄}

S
(i,j)
m

}M

m=1
, which are

fed to the FC layer fφ : S → ∆, parameterised by ϕ ∈ Φ,

to produce the classification prediction ŷ ∈ ∆ ⊂ [0, 1]C ,

where ∆ denotes the probability space for C classes.

4. ST-ProtoPNet

An overview of our proposed ST-ProtoPNet method

is illustrated in Fig. 4, which comprises a shared CNN

backbone fθ(·), two interpretable ProtoPNet classification

branches, namely: 1) the support ProtoPNet represented by

add-on layers fω(s)(·), prototype layer with support proto-

types P(s), and FC layer fφ(s)(·) which outputs the classi-

fication probability distribution ŷ(s) ∈ ∆; and 2) the trivial

ProtoPNet branch with its add-on layers fω(t)(·), trivial pro-

totypes P(t), and FC layer fφ(t)(·) that generates probabil-

ity predictions ŷ(t) ∈ ∆. The final classification is obtained

by combining the classification logits from both the support

and trivial ProtoPNets. In our implementation, we construct

the support and trivial ProtoPNet mainly based on the orig-
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Figure 4. The architecture of our proposed ST-ProtoPNet method

for the interpretable image classification.

inal ProtoPNet [4] and TesNet [53], as explained below.

4.1. Support ProtoPNet

The support ProtoPNet is designed to produce support

prototypes that are as close as possible to the classification

boundary, as shown in Fig. 1(b) and 2(b). The loss function

to optimise the support ProtoPNet branch is defined as:

θ∗,ω(s)∗,P(s)∗, ϕ(s)∗ =

arg min
θ,ω(s),P(s),φ(s)

∑

(x,y)∈D

ℓspt(x,y, θ, ω
(s),P(s), ϕ(s)).

(1)

The loss for each training sample (x,y) ∈ D in Eq. (1)

above is represented by:

ℓspt(x,y, θ, ω
(s),P(s), ϕ(s)) = ℓce(x,y, θ, ω

(s),P(s), ϕ(s))

− λ1ℓct(x,y, θ, ω
(s),P(s))

+ λ2ℓsp(x,y, θ, ω
(s),P(s))

− λ3ℓcls(P
(s))

+ λ4ℓort(P
(s)),

(2)

where λ1, λ2, λ3, and λ4 are hyper-parameters to balance

each term, ℓce(·) denotes the cross-entropy classification

loss, ℓct(·) and ℓsp(·) represent the clustering and separa-

tion losses, respectively, which are introduced to regularise

the ProtoPNet’s training, as follows:

ℓct(x,y, θ, ω
(s),P(s)) = max

p∈P
(s)
y

max
v∈V(s)

sim(v,p), (3)

ℓsp(x,y, θ, ω
(s),P(s)) = max

p/∈P
(s)
y

max
v∈V(s)

sim(v,p), (4)

where V(s) = fω(s)(fθ(x)) is the feature map extracted

from the input image x, v represents one of the H̄ × W̄
feature vectors in V(s) obtained by matrix vectorisation, p

is a normalised prototype (i.e., unit vector) in P(s), sim(·, ·)

is one of the similarity functions defined in Sec. 3, and P
(s)
y

denotes the set of prototypes of class y. The clustering loss

in Eq. (3) and separation loss in Eq. (4) aim to learn a

meaningful feature space in which the image features of a

certain class are clustered around the prototypes of the class,

and also well separated from those of other classes.

As mentioned in Sec. 1, the effect of the clustering

and separation losses above tend to push the prototypes

of different classes as far as possible from the classifica-

tion boundary, resulting in trivial prototypes, as displayed

in Fig. 1(a) and Fig. 2(a). In order to learn the proposed

support prototypes, we introduce the following novel close-

ness loss ℓcls to explicitly enforce the prototypes of different

classes to be close to each other, which is formulated as:

ℓcls(P
(s)) =

C−1
∑

c1=1

C
∑

c2=c1+1

min
pm∈Pc1

,pn∈Pc2

p⊤
mpn. (5)

During training, this closeness loss ℓcls maximises the

pair-wise prototype similarity, in the form of dot product

p⊤
mpn between different classes in Eq. (5) above, with the

goal of pulling the prototypes close to the classification

boundary. On the one hand, as the prototypes move grad-

ually towards the classification boundary, they are able to

capture harder visual features from training samples. On

the other hand, since the prototypes are located near the

classification boundary, they can put pressure on the support

ProtoPNet’s feature learning (i.e., enforce it to learn highly

discriminative feature representations for accurate classifi-

cation), which is beneficial to extract more meaningful se-

mantic information from training samples.

Ideally, each prototype of a class should focus on unique

object parts of the training images (e.g., head, tail, and claw

of birds), so that the prototypes can represent rich and di-

verse visual patterns. However, there is no particular con-

straints to guarantee such prototype diversity and the issue

of prototype duplication [11] often occurs in the ProtoPNet

family of models. To encourage the intra-class prototype di-

versity, we employ an orthonormality loss [53] so that pro-

totypes within a class can represent dissimilar visual pat-

terns of training samples, which is defined as:

ℓort(P
(s)) =

C
∑

c=1

∥Pc
⊤Pc − IM/C∥

2
F , (6)

where ∥ ·∥2F represents Frobenius norm, Pc ∈ D×R
(M/C)

stands for a matrix composed of the prototypes of class

c (prototypes in each column of Pc are normalised), and

IM/C is an identity matrix of size M/C ×M/C.

4.2. Trivial ProtoPNet

As described in Sec. 4.1, the support ProtoPNet is de-

veloped to learn support (i.e., hard-to-learn) prototypes by
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forcing them to be close to the classification boundary. Con-

sidering that training samples contain not only hard visual

features but also important easy ones that the support pro-

totypes cannot completely capture, we propose to also learn

trivial prototypes to provide complementary classification

information, and exploit both the support and trivial proto-

types for improved interpretable classification.

The loss objective to optimise the trivial ProtoPNet

branch is defined as follows:

θ∗,ω(t)∗,P(t)∗, ϕ(t)∗ =

arg min
θ,ω(t),P(t),φ(t)

∑

(x,y)∈D

ℓtrv(x,y, θ, ω
(t),P(t), ϕ(t)).

(7)

The loss for each training image (x,y) ∈ D in Eq. (7) above

is represented by:

ℓtrv(x,y, θ, ω
(t),P(t), ϕ(t)) = ℓce(x,y, θ, ω

(t),P(t), ϕ(t))

− λ1ℓct(x,y, θ, ω
(t),P(t))

+ λ2ℓsp(x,y, θ, ω
(t),P(t))

+ λ3ℓdsc(P
(t))

+ λ4ℓort(P
(t)),

(8)

where λ1, λ2, λ3, and λ4 are hyper-parameters, ℓce(·) is the

cross-entropy loss, the clustering loss ℓct, separation loss

ℓsp, and orthonormality loss ℓort are the same as in the sup-

port ProtoPNet defined in Eq. (3), (4) and (6), respectively.

The trivial ProtoPNet targets the learning of easy proto-

types that are far from the classification boundary and have

a good discrimination ability. To help achieve this, we in-

troduce a new discrimination loss ℓdsc to facilitate the inter-

class separability between prototypes of different classes.

This is formulated by minimising the pair-wise prototype

similarities of different classes, as follows:

ℓdsc(P
(t)) =

C−1
∑

c1=1

C
∑

c2=c1+1

max
pm∈Pc1

,pn∈Pc2

p⊤
mpn. (9)

4.3. Training and Testing

Training. Following the training strategies in [4, 11],

the training procedure of our ST-ProtoPNet consists of 3

stages: 1) optimisation of the CNN backbone, add-on lay-

ers, and prototype layer, using a fixed FC layer initialised

with +1.0 and -0.5 for correct and incorrect connection

weights, respectively. A warm-up of 5 epochs is involved in

this stage by updating only the parameters of add-on layers

and prototype layer, with a frozen pre-trained CNN back-

bone. 2) prototype projection by updating each prototype

with its nearest latent training image patch; and 3) opti-

misation of the FC layer, with an additional L1 regulari-

sation on the incorrect connection weights (initially fixed at

-0.5). In each stage, we alternate the optimisation of each

branch of the ST-ProtoPNet between mini-batches. Notice

that our method only brings marginal extra model parame-

ters, computational complexity, and training time since the

CNN backbone is shared and optimised by both branches.

Testing. To exploit the complementary results from both

branches of ST-ProtoPNet, its final classification is obtained

from the summed logits predicted by the two branches. It

is worth noticing that this ensemble strategy introduces no

loss of interpretablity but improved accuracy.

5. Experiments

We perform experiments on three fine-grained classifi-

cation benchmark datasets: CUB-200-2011 [50], Stanford

Cars [27], and Stanford Dogs [21]. To achieve fair com-

parison, we follow previous studies [4, 53] by applying of-

fline data augmentations (e.g., random rotation, skew, shear,

and left-right flip) on the cropped CUB and cropped Cars

datasets (using the bounding boxes provided). We also vali-

date our method on the full (i.e., uncropped) CUB and Dogs

datasets, and employ the same online data augmentation

methods (e.g., random affine transformation and left-right

flip) as used in Deformable ProtoPNet [11]. All images are

resized to 224× 224 pixels as network input.

5.1. Experimental Settings

The proposed ST-ProtoPNet method is evaluated on the

following CNN architectures: VGG-16, VGG-19, ResNet-

34, ResNet-50, ResNet-152, DenseNet-121, and DenseNet-

161. All CNN backbones are pre-trained on ImageNet [8],

except for ResNet-50, which is pre-trained on iNatural-

ist [49] for the experiment on full CUB [11]. The add-on

layers include two 1× 1 convolutional layers. For simplic-

ity, we utilise the same prototype dimension D = 64 for all

CNN backbones on the three datasets. For cropped CUB

and Cars datasets, following [53], we use 10 prototypes (5

support and 5 trivial) per class and the projection metric

in the similarity function sim(·, ·). In full CUB and Dogs

datasets, to ensure comparison fairness with Deformable

ProtoPNet [11] that uses 10 2× 2 (full CUB) and 10 3× 3
(full Dogs) deformable prototypes per class, we utilise the

same total number of prototypes, i.e., 40 1 × 1 (20 support

and 20 trivial) for full CUB and 90 1×1 (45 support and 45

trivial) for full Dogs. Also, we employ the cosine similarity

in sim(·, ·) and obtain 14×14 (H̄ = W̄ = 14) feature maps

by upsampling the original 7×7 feature maps via a bi-linear

interpolation step, as in [11]. Following previous prototype-

based methods [4, 53, 11], we set λ1 = 0.8, λ2 = 0.48 and

0.08 for the support and trivial ProtoPNet branches respec-

tively, λ4 = 0.001. We choose λ3 = 1.0 with an ablation

provided in the supplementary material.
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5.2. Interpretability Evaluation

Rather than performing user-based evaluations [60, 41],

whose results are often subjective and difficult to reproduce

[54], we leverage the annotated object masks to measure

interpretability based on the following metrics:

Content Heatmap (CH) [37]: quantifies the percentage of

an activation heatmap that lies within the annotated mask.

Hence, we expect this metric to be high.

Outside-Inside Relevance Ratio (OIRR) [29]: calculates

the ratio of mean activation outside the object to mean ac-

tivation inside the object. A low OIRR indicates a method

relies more on the object region and less on the context to

support its decision, we thus anticipate OIRR to be low.

Intersection over Union (IoU) [5]: measures the mean IoU

score, where a threshold of 0.5 is applied on the min-max

normalised heatmap to select foreground objects.

Deletion AUC (DAUC) [36]: estimates a decrease in the

probability of the predicted class as more and more impor-

tant/activated pixels are removed. The area under the proba-

bility curve is defined as DAUC. Consequently, a sharp drop

and a low DAUC mean better interpretation.

Average Inter-class Prototype Distance (AIPD), Average

Inter-class Feature Distance (AIFD): we had earlier stated

that support prototypes of different classes should be close

to each other and trivial prototypes should be far from each

other. Thus, we compute the average inter-class cosine dis-

tance for prototypes and their nearest local feature represen-

tations, respectively. We expect AIPD < AIFD for support

ProtoPNet and AIPD > AIFD for trivial ProtoPNet.

5.3. Classification Performance

Table 1 presents the classification accuracy (across 5

runs) of our proposed ST-ProtoPNet on cropped CUB and

cropped Cars, where the Baseline is represented by non-

interpretable black-box CNN models. As can be seen, our

ST-ProtoPNet outperforms other competing methods across

all backbones for the task of bird species classification.

Also, our method achieves the best results for the car model

identification task when using VGG and DenseNet archi-

tectures as the CNN backbone. In particular, our VGG19-

based ST-ProtoPNet reaches an average accuracy of 83.2%

and 91.7% on CUB and Cars, respectively, surpassing other

methods with the most improvements across all backbones.

Moreover, the support ProtoPNet generally performs better

than methods utilising only trivial prototypes (e.g., ProtoP-

Net, TesNet, and Trivial ProtoPNet), showing the impor-

tance of learning support prototypes for the interpretable

classification. It is worth noting that our ST-ProtoPNet

produces superior performance over the support ProtoPNet

method, indicating that both support and trivial prototypes

are useful and can provide complementary information for

achieving accurate and interpretable classification.

Table 2 shows the classification results on full CUB and

full Dogs. In both datasets, the classification accuracy of the

original ProtoPNet method is generally worse than the non-

interpretable counterpart (Baseline) for many CNN back-

bones. On the other hand, the accuracy by the trivial Pro-

toPNet and support ProtoPNet are substantially better than

those by Baseline, ProtoPNet, and Deformable ProtoPNet.

However, our ST-ProtoPNet achieves more significant per-

formance gains and exhibits the best accuracy across most

backbones, particularly when using a large number of pro-

totypes (i.e., 40 1 × 1 prototypes per class for CUB and

90 1 × 1 prototypes per class for Dogs), demonstrating the

effectiveness of utilising both the trivial and support pro-

totypes for the interpretable image classification. Addition-

ally, when using a smaller number of prototypes, i.e, 10 1×1
prototypes per class, our ST-ProtoPNet still has competitive

classification accuracy across multiple backbones.

We further compare our ST-ProtoPNet with other deep-

learning methods that can provide different levels of inter-

pretability on CUB, with results shown in Table 3, where

* and ** denote ensemble of models with different back-

bones. As evident, an ensemble of three ST-ProtoPNets can

achieve high accuracy (87.9% on cropped images, 88.2%

on full images), outperforming competing methods that are

also based on an ensemble of three models (e.g., ProtoTree,

TesNet, and ProtoPool). Moreover, the ensemble of five ST-

ProtoPNets outperforms all other competing methods and

obtains the best classification accuracy of 88.1% and 88.4%

on cropped and full CUB images, respectively. More results

on Cars and Dogs are given in the supplementary material.

5.4. Interpretability Comparison

We assess the model interpretabilty on full CUB using

the annotated bird segmentation mask2. Quantitative results

on the test set are given in Table 4, where all methods are

based on the VGG19 backbone. We use GradCAM [43] for

the non-interpretable baseline. For prototype-based meth-

ods, we average the activation map of all prototypes of a

class to compute the metrics. We can see our proposed sup-

port ProtoPNet can effectively improve the interpretaiblity

in all measures, showing the interpretations produced by our

support prototypes are more likely to be object-dependent

and focus less on context cues. Also, our ST-ProtoPNet

method shows better interpretaiblity results than the support

ProtoPNet in terms of CH, OIRR, and DAUC. Compared

with the original ProtoPNet [4], our ST-ProtoPNet obtains

significant interpretability improvements. We show some

example activation maps in the supplementary material, and

an experiment with prototype pruning is also provided.

Table 5 presents the computed AIPD and AIFD for

the support and trivial ProtoPNet on cropped CUB, using

VGG19 and ResNet34 as CNN backbones. As evident, the

AIPD is indeed smaller than AIFD for the support ProtoP-

2http://www.vision.caltech.edu/datasets/
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Method
CUB Cars

VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161 VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161

Baseline 73.3 ± 0.2 74.7 ± 0.4 82.2 ± 0.3 80.8 ± 0.4 81.8 ± 0.1 82.1 ± 0.2 87.3 ± 0.4 88.5 ± 0.3 92.6 ± 0.3 92.8 ± 0.4 92.0 ± 0.3 92.5 ± 0.3

ProtoPNet [4] 77.2 ± 0.2 77.6 ± 0.2 78.6 ± 0.1 79.2 ± 0.3 79.0 ± 0.2 80.8 ± 0.3 88.3 ± 0.2 89.4 ± 0.2 88.8 ± 0.1 88.5 ± 0.3 87.7 ± 0.1 89.5 ± 0.2

TesNet [53] 81.3 ± 0.2 81.4 ± 0.1 82.8 ± 0.1 82.7 ± 0.2 84.8 ± 0.2 84.6 ± 0.3 90.3 ± 0.2 90.6 ± 0.2 90.9 ± 0.2 92.0 ± 0.2 91.9 ± 0.3 92.6 ± 0.3

Trivial ProtoPNet 80.8 ± 0.2 81.2 ± 0.2 82.5 ± 0.2 83.1 ± 0.3 83.9 ± 0.3 84.6 ± 0.3 90.1 ± 0.2 90.7 ± 0.2 91.1 ± 0.2 91.5 ± 0.2 91.4 ± 0.3 92.4 ± 0.3

Support ProtoPNet 81.7 ± 0.2 81.8 ± 0.3 83.0 ± 0.1 83.6 ± 0.2 84.7 ± 0.2 85.2 ± 0.3 90.9 ± 0.2 90.8 ± 0.2 91.0 ± 0.2 91.8 ± 0.2 91.7 ± 0.2 92.7 ± 0.3

ST-ProtoPNet (ours) 82.9 ± 0.2 83.2 ± 0.2 83.5 ± 0.1 84.1 ± 0.2 85.4 ± 0.2 86.1 ± 0.2 91.1 ± 0.2 91.7 ± 0.2 91.4 ± 0.1 92.0 ± 0.2 92.3 ± 0.3 92.7 ± 0.2

Table 1. Classification accuracy (%) on cropped CUB-200-2011 and Stanford Cars by competing methods using different CNN backbones.

Method # Prototype
CUB

# Prototype
Dogs

VGG16 VGG19 ResNet34 ResNet50 ResNet152 Dense121 Dense161 VGG16 VGG19 ResNet34 ResNet50 ResNet152 Dense121 Dense161

Baseline – 70.9 71.3 76.0 78.7 79.2 78.2 80.0 – 75.6 77.3 81.1 83.1 85.2 81.9 84.1

ProtoPNet [4] 1×1p, 10pc 70.3 72.6 72.4 81.1 74.3 74.0 75.4 1×1p, 10pc 70.7 73.6 73.4 76.4 76.2 72.0 77.3

ProtoPNet [4] 1×1p, 40pc 72.9 74.2 74.1 84.8 76.0 76.6 78.5 1×1p, 90pc 73.9 75.3 76.1 78.1 79.7 75.4 78.8

TesNet [53] 1×1p, 10pc 75.8 77.5 76.2 86.5 79.0 80.2 79.6 1×1p, 10pc 74.3 77.1 80.1 82.4 83.8 80.3 83.8

TesNet [53] 1×1p, 40pc 77.6 79.2 76.5 87.3 80.1 80.9 81.3 1×1p, 90pc 78.5 79.6 81.2 83.3 84.5 82.1 85.2

Deformable ProtoPNet [11] 2×2p, 10pc 75.7 76.0 76.8 86.4 79.6 79.0 81.2 3×3p, 10pc 75.8 77.9 80.6 82.2 86.5 80.7 83.7

Trivial ProtoPNet 1×1p, 40pc 80.0 79.5 77.5 87.2 80.8 81.1 82.1 1×1p, 90pc 78.6 80.4 82.6 85.0 87.0 82.3 85.9

Support ProtoPNet 1×1p, 40pc 80.4 80.0 78.4 87.5 80.2 81.5 82.4 1×1p, 90pc 79.0 80.6 83.0 85.1 87.3 82.6 86.2

ST-ProtoPNet (ours) 1×1p, 10pc 76.8 77.6 77.4 86.6 78.7 78.6 80.6 1×1p, 10pc 74.2 77.2 80.8 84.0 85.3 79.4 84.4

ST-ProtoPNet (ours) 1×1p, 40pc 81.0 80.2 78.2 88.0 81.2 81.8 82.7 1×1p, 90pc 79.1 80.9 83.4 85.7 87.2 82.9 86.6

Table 2. Classification accuracy (%) on full CUB-200-2011 and Stanford Dogs datasets by competing approaches using different CNN

backbones, where ρ1×ρ2p denotes the spatial shape of prototypes and kpc represents k prototypes per class.

Interpretability level Method Accuracy (%)

None B-CNN [32] 85.1 (b) 84.1 (f)

Object-level attention
CAM [59] 70.5 (b) 63.0 (f)

CSG [31] 82.6 (b) 78.5 (f)

Part-level attention

PA-CNN [26] 82.8 (b) –

MG-CNN [52] 83.0 (b) 81.7 (f)

MA-CNN [57] – 86.5 (f)

RA-CNN [14] – 85.3 (f)

TASN [58] – 87.0 (f)

Part-level attention + Prototypes

Region [17] 81.5 (b) 80.2 (f)

ProtoPNet* [4] 84.8 (b) 81.1 (f)

ProtoTree* [35] – 86.6 (f)

TesNet* [53] 86.2 (b) 83.5 (f)

ProtoPool* [41] 87.5 (b) –

ST-ProtoPNet* (ours) 87.9 (b) 88.2 (f)

ProtoTree** [35] – 87.2 (f)

Deformable ProtoPNet** [11] – 87.8 (f)

ProtoPool** [41] 87.6 (b) –

ST-ProtoPNet** (ours) 88.1 (b) 88.4 (f)

Table 3. Classification accuracy and interpretability level of dif-

ferent methods on CUB-200-2011. “b” and “f” denote the model

is trained and tested on cropped and full images, respectively. *:

Ensemble of three models. **: Ensemble of five models.

Metric GradCAM [43] ProtoPNet [4] TesNet [53] DefProto [11] TrvProto SptProto ST-Proto

CH (%, ↑) 52.46 48.66 59.38 52.09 63.05 63.87 66.43

IoU (%, ↑) 39.91 38.03 36.92 40.77 37.74 42.04 41.05

OIRR (%, ↓) 37.01 37.26 38.97 28.68 34.48 28.69 28.09

DAUC (%, ↓) 7.01 7.39 5.86 5.99 6.06 5.80 5.74

Table 4. Quantitative interpretability results on full CUB test set.

DefProto = Deformable ProtoPNet, TrvProto = Trivial ProtoPNet,

SptProto = Support ProtoPNet, ST-Proto = ST-ProtoPNet.

Net while AIPD is larger than AIFD for the trivial ProtoP-

Net. This result indicates that the support prototypes of dif-

ferent classes lie closer than their local feature representa-

tions and are more inclined to focus on visually similar (i.e.,

hard-to-learn) object parts of different classes.

5.5. Visualisation Analysis

To explore the differences between the support and triv-

ial prototypes, we select 5 categories of birds with visu-

VGG19 ResNet34

Support ProtoPNet Trivial ProtoPNet Support ProtoPNet Trivial ProtoPNet

AIPD AIFD AIPD AIFD AIPD AIFD AIPD AIFD

0.7259 0.9264 0.9987 0.9232 0.6541 0.8573 1.000 0.9481

Table 5. Average inter-class prototype distance (AIPD) and aver-

age inter-class feature distance (AIFD) for the support and trivial

ProtoPNet trained on cropped CUB.

Sooty AlbatrossLaysan Albatross Brewer Blackbird Redwinged BlackbirdParakeet Auklet

Figure 5. The support (top) and trivial (bottom) prototypes from

cropped CUB. In each pair, the first column shows the original

image with a prototype marked in a yellow bounding box, the sec-

ond column is the prototype’s corresponding activation map.

ally similar features from cropped CUB to train the support

and trivial ProtoPNet methods, with the learned prototypes

shown in Fig. 5. We notice the support prototypes can cap-
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(b) Trivial Prototypes(a) Support Prototypes

Figure 6. T-SNE results of support and trivial prototypes. The pro-

totypes and their nearest latent training features are marked with

stars and dots, respectively. We show results before the prototype

projection stage to better visualise the relation between the proto-

types and features. Each colour represents a different class.

ture subtle and fine visual features of different classes and

they only focus on relevant bird parts, e.g., head and belly.

This is reasonable since our algorithm is designed to pro-

duce prototypes that are as close as possible to each other,

where the image prototypical parts should not only be dis-

criminative but also share visually similar features among

classes. By contrast, the trivial prototypes tend to focus not

only on the relevant bird parts but also the background re-

gions. For example, some trivial prototypes of the Laysan

Albatross and Sooty Albatross classes capture the sea sur-

face as they often appear with the sea background. We argue

that this is because the trivial ProtoPNet may treat the back-

ground as an easy pattern to learn, focusing less on the ob-

ject’s visual parts of the class. In Fig. 6, we show the t-SNE

result from the 5-category bird classification, where we note

the support prototypes of different classes are located closer

to each other, in comparison with the trivial prototypes.

Fig. 7 shows an example of the interpretable reasoning

for our ST-ProtoPNet in classifying a testing bird image.

As evident, each ProtoPNet branch calculates its own clas-

sification logits (weighted sum of similarity scores), which

is then combined to generate the final prediction. Specifi-

cally, when classifying a Parakeet Auklet, the support pro-

totypes are quite active on the bird’s beak and belly. Mean-

while, the trivial prototypes have high activations on the

bird’s lower surface and neck. In this case, the support Pro-

toPNet obtains a relatively higher similarity score (22.925),

compared with the trivial branch (20.313). Note that our

ST-ProtoPNet exploits both the support and trivial proto-

types to capture much richer representations of the object

from different perspectives, which enables the realisation

of complementary interpretations. More examples on Cars

and Dogs are shown in the supplementary material.

5.6. Ablation Study

The closeness and discrimination losses. To validate

the effectiveness of our proposed closeness loss in Eq. (5)

and discrimination loss in Eq. (9), we first conduct abla-

tion studies on full CUB and full Dogs by using ResNet50

and ResNet34 as the CNN backbone, respectively. Results

are listed in Table 6. We can observe that both the close-

Testing 
image

Prototype
Training image
 with prototype

Activation 
map

Similarity 
score

Connection 
weight

Individual
logits

Combined 
logits

5.142 0.989× 5.085=

4.901 0.957× 4.690=

4.368 0.975× 4.259=

4.206 0.978× 4.113=

Support ProtoPNet

Trivial ProtoPNet

...

...

...

...

43.238

...

...

...

...

...

...

...

...

...

...

22.925

20.313

Figure 7. An example of the interpretable reasoning of our ST-

ProtoPNet for classifying a testing Parakeet Auklet image.

Method ℓct ℓsp ℓort ℓdsc ℓcls
Accuracy (%)

CUB Dogs

Baseline ✓ ✓ ✓ 86.5 80.9

Trivial ProtoPNet ✓ ✓ ✓ ✓ 87.2 82.6

Support ProtoPNet ✓ ✓ ✓ ✓ 87.5 83.0

ST-ProtoPNet (ours) ✓ ✓ ✓ ✓ ✓ 88.0 83.4

Table 6. Ablation analysis of the closeness loss ℓcls in Eq. (5) to

learn support prototypes, and discrimination loss ℓdsc in Eq. (9) to

learn trivial prototypes on full CUB-200-2011 and Stanford Dogs.

ness and discrimination losses can improve the accuracy,

compared with the Baseline ProtoPNet method trained with

only clustering, separation, and orthonormality losses. Note

that the closeness loss introduces a larger performance im-

provement, which is attributed to the learning of support

(i.e., hard-to-learn) prototypes.

Combining Support and Trivial Prototypes. We also

investigate the importance of integrating the two comple-

mentary sets of support and trivial prototypes for improved

classification. To achieve this, we first train a two-branch

model where both branches learn the same type of proto-

types and the final result is produced by the ensemble of

them (Trivial Ensemble and Support Ensemble). Besides,

for our ST-ProtoPNet, we also provide results of its indi-

vidual branches (Trivial Branch and Support Branch). Ta-

ble 7 shows the experimental results on cropped CUB. We

can notice that combining the two different types of pro-

totypes (ST-ProtoPNet) achieves superior performance over

combining only the same type of prototypes (Trivial Ensem-

ble and Support Ensemble), indicating that our performance

improvements are from not only the ensemble strategy but

also the two complementary sets of prototypes. Also, ST-

ProtoPNet indeed exhibits higher accuracy than its individ-

ual branches, further verifying that the results from the two

branches are complementary, and the combination of them

is effective to improve the final classification accuracy.

6. Conclusion and Future Work

In this paper, we proposed the ST-ProtoPNet to exploit

both support (i.e., hard-to-learn) and trivial (i.e., easy-to-

learn) prototypes, where the two sets of prototypes can pro-
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Method VGG16 VGG19 ResNet34 ResNet152 Dense121 Dense161

Trivial Ensemble 81.4 ± 0.3 81.8 ± 0.2 82.7 ± 0.2 83.2 ± 0.3 84.4 ± 0.2 85.0 ± 0.3

Support Ensemble 82.1 ± 0.2 82.4 ± 0.3 83.0 ± 0.2 83.7 ± 0.3 84.8 ± 0.2 85.5 ± 0.2

Trivial Branch 81.0 ± 0.2 81.1 ± 0.3 82.4 ± 0.2 82.9 ± 0.3 84.1 ± 0.3 84.8 ± 0.3

Support Branch 81.5 ± 0.3 81.8 ± 0.3 82.8 ± 0.2 83.4 ± 0.3 84.6 ± 0.2 85.4 ± 0.2

ST-ProtoPNet (ours) 82.9 ± 0.2 83.2 ± 0.2 83.5 ± 0.1 84.1 ± 0.2 85.4 ± 0.2 86.1 ± 0.2

Table 7. Ablation study of the combination of support and trivial

prototypes for improved classification on cropped CUB-200-2011.

vide complementary results for the interpretable image clas-

sification. Our ST-ProtoPNet is a general approach that can

be easily applied to existing prototype-based interpretable

models. One limitation for our method is that we empir-

ically adopt the same number of support and trivial pro-

totypes and the same total number of prototypes for each

class. Considering the different learning difficulties and im-

balanced training samples among classes in other real-world

datasets, e.g., ImageNet [8], a better way to adaptively learn

a flexible number of support and trivial prototypes is needed

and deserves to be further investigated in our future work.

Moreover, given that we mimic the behaviour of the support

vectors of SVM classifier to obtain the support prototypes

by forcing them to be as close as possible to the classifi-

cation boundary, we plan to develop new methods to learn

prototypes with gradient-based kernel techniques, e.g., neu-

ral tangent kernel [18] and path kernel [9].

Acknowledgements. This work was supported by fund-

ing from the Australian Government under the Medical Re-

search Future Fund - Grant MRFAI000090 for the Trans-

forming Breast Cancer Screening with Artificial Intelli-

gence (BRAIx) Project, and the Australian Research Coun-

cil through grant FT190100525.

References

[1] David Alvarez Melis and Tommi Jaakkola. Towards robust

interpretability with self-explaining neural networks. Ad-

vances in Neural Information Processing Systems, 31, 2018.

[2] Alina Jade Barnett, Fides Regina Schwartz, Chaofan Tao,

Chaofan Chen, Yinhao Ren, Joseph Y Lo, and Cynthia

Rudin. A case-based interpretable deep learning model for

classification of mass lesions in digital mammography. Na-

ture Machine Intelligence, 3(12):1061–1070, 2021.
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