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Abstract

Neural Radiance Field (NeRF) is a promising approach
for synthesizing novel views, given a set of images and the
corresponding camera poses of a scene. However, images
photographed from a low-light scene can hardly be used
to train a NeRF model to produce high-quality results, due
to their low pixel intensities, heavy noise, and color dis-
tortion. Combining existing low-light image enhancement
methods with NeRF methods also does not work well due
to the view inconsistency caused by the individual 2D en-
hancement process. In this paper, we propose a novel ap-
proach, called Low-Light NeRF (or LLNeRF), to enhance
the scene representation and synthesize normal-light novel
views directly from sRGB low-light images in an unsuper-
vised manner. The core of our approach is a decomposition
of radiance field learning, which allows us to enhance the
illumination, reduce noise and correct the distorted colors
Jjointly with the NeRF optimization process. Our method
is able to produce novel view images with proper lighting
and vivid colors and details, given a collection of camera-
finished low dynamic range (8-bits/channel) images from a
low-light scene. Experiments demonstrate that our method
outperforms existing low-light enhancement methods and
NeRF methods.

1. Introduction

Neural Radiance Field (NeRF) [22] is a powerful ap-
proach to render novel view images through learning scene
representations as implicit functions. These implicit func-
tions are parameterized by multi-layer perceptrons (MLPs)
and optimized by measuring the colorimetric errors of the
input views. Consequently, high-quality input images are
the precondition for the high-quality results of NeRF. In
other words, training NeRF models typically requires the
input images to have high visibility, and almost all the pixels
to faithfully represent the scene illumination and object col-
ors. However, when taking photos under low-light condi-

* Joint corresponding authors.

Input LLE+NeRF LLFlow [29]

SNR [34] URetinexNet [31]
Figure 1.

LLNeRF (Ours)
A comparison of the baseline model (LLE+NeRF),
SOTA low light enhancement models, and our model.

tions, the quality of the images is not guaranteed. Low-light
images typically have low visibility. Noise from the camera
is also relatively amplified due to the low photons, which
further buries the scene details and distorts object colors.
Such characteristics of low-light images fail existing NeRF
models in producing high-quality novel view images.

We note that recently there are some methods proposed
to train NeRF models from degraded inputs [21, 32, 18].
Ma et al. [18] present a method to synthesize novel view
images from blurry inputs taken in normal-light scenes.
Mildenhall et al. [21] show that when training with high dy-
namic range RAW data, NeRF can be robust to zero-mean
noise of low-light input images. Huang ef al. [32] propose
HDR-NeRF, which produces high dynamic range (HDR)
novel views from a set of low dynamic range (LDR) input
images taken at different known exposure levels. The lat-
ter two methods take advantages of HDR information and
metadata (i.e., exposure levels) recorded in the RAW im-
ages to enhance the scene representations. However, these
methods do not work on camera-finished sSRGB images (8-
bits/channel) taken in low-light scenes. Unlike RAW data,
sRGB images are produced by the camera ISP process.
They are of low dynamic range and low signal-to-noise ra-
tio.

A straightforward solution to this problem is to first en-
hance the low-light input images and then use the enhanced
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results to train a NeRF model. However, while this may be
able to improve the brightness, existing low-light enhance-
ment models do not consider how to maintain consistency
across multi-view images. Besides, these learning-based
enhancement methods tend to learn specific mappings of
brightness from their own training data, which may not gen-
eralize well to in-the-wild scenes. These two reasons cause
NeREF to learn biased information across different views due
to the view-dependent optimization of NeRF, resulting in
unrealistic novel images. See examples in Fig. 1.

In this paper, we propose a new approach for render-
ing novel normal-light images from a set of 8-bit low-
light SRGB images without the supervision of ground truth.
Our key solution to this problem is that: the colors of 3D
points can be decoupled into view-dependent and view-
independent components within the NeRF optimization,
and the view-dependent component is dominated by the
effect of lighting. So the manipulations of the lighting-
related view-independent components are able to enhance
the brightness, correct the colors, and reduce the noise while
keeping the texture and structure of the scene. Experi-
ments demonstrate that the proposed method outperforms
the state-of-the-art NeRF models and the baselines (i.e.,
combining NeRF with state-of-the-art enhancement meth-
ods).

In summary, we propose the first method to reconstruct
a NeRF model of proper lighting from a collection of LDR
low-light images. Our main contributions includes:

1. We propose to decompose NeRF into view-dependent
and -independent color components for enhancement.
The decomposition does not require ground truth.

2. We formulate an unsupervised method to enhance the
lighting and correct the colors while rendering noise-
free novel view images.

3. We collect a real-world dataset, and conduct extensive
experiments to analyze our method and demonstrate its
effectiveness in real-world scenes.

2. Related Work

Neural Radiance Field represents 3D scenes via parame-
terized implicit functions and allows to render high-quality
novel view images. However, NeRF is sensitive to the input
images as it relies on the colorimetric optimization of the in-
put images. Some methods focus on improving the robust-
ness of NeRF to dynamic scenes in the wild by using, e.g.,
time-of-flight data [4], latent appearance modelling [20],
camera self-calibration [16], depth estimation [30, 11], and
semantic labels [39].

Some other methods [21, 32, 18] propose to train NeRF
models from degraded inputs. Ma et al. [18] propose a de-
formable sparse kernel module for deblurring while synthe-

sizing novel view images from blurry inputs. Mildenhall et
al. [21] propose to train NeRF directly on camera raw im-
ages for handling the low visibility and noise of low-light
scenes. Huang et al. [32] proposes the HDR-NeRF to syn-
thesize novel view HDR images from a collection of LDR
images of different exposure levels, which implicitly han-
dles the exposure fusion using a tone mapper. Unlike the
above methods, in this paper, we aim to address the prob-
lem of training NeRF using a group of low-light SRGB im-
ages, which is more challenging due to the low visibility,
low dynamic ranges, large noise, and high color distortions.

Low-light Enhancement aims to improve the content vis-
ibility of images taken from low-light scenes. A line of
deep enhancement methods learns specific mappings from
low-light images to expert-retouched images or images cap-
tured with high-end cameras. These methods propose dif-
ferent priors and techniques aiming to enhance the capacity
of neural networks for learning such mappings, e.g., using
HDR information [12, 35, 27], generative adversarial learn-
ing [15, 10, 17, 25], deep parametric filters [23], and rein-
forcement learning [24, 36]. Some methods propose to de-
compose the images into illumination and detail layers [7],
layers of different frequency components [33], and regions
of different exposures [3, 14] for enhancement. Recently,
Xu et al. [34] propose to combine transformer and CNNss to
model long-range correlations for low-light enhancement.

Our work is closer in spirit to the Retinex-based en-
hancement methods [37, 6, 28, 38, 26, 31]. These methods
first decompose the input image into the illumination and
reflectance layers and then enhance the illumination layer
of the image. While these methods learn such decomposi-
tion from 2D images, which typically lack geometry infor-
mation, our method works in the radiance field, resulting in
a more realistic decomposition and enhancement.

3. Preliminary Knowledge and Analysis

We first summarize how neural radiance field (NeRF)
works under normal-light scenes and then explain the chal-
lenges for NeRF to handle low-light scenes.

3.1. NeRF Preliminary

Given a set of posed training images, NeRF [22] learns to
render the color of every single pixel c, for a ray 7, which
could be uniquely identified by the camera index and the
2D pixel coordinates. NeRF represents a scene by a radi-
ance field, which takes as input an arbitrary single ray cast
r(t) = o+td, where o, d, t are the ray origin, ray direction,
and the distance along the ray, respectively. The rendering
process has three steps: (1) NeRF samples n points along
the ray r(¢), i.e., t; € t where t is a n-D vector, between the
near and far image planes using the hierarchical sampling
strategy; (2) NeRF applies an optional transform function
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¥(+) to the sampled coordinate vector t along the ray; and
(3) NeRF uses the MLPs Fiensity, Feolor to learn the volume
density and the color along the rays, denoted by ¢ and c,
from t and the view direction d as:

T, U) = Fdensily (1/J(7’(tz))7 d; ®Fdemily)7 et (1)
Cc= Fcolor(T; d; G)Fcolo,)a

where 7 is the intermediate features learned by the neural
network. Different NeRF implementations may have differ-
ent versions of the transform function ¢ (-). The original
NeRF implementation [22] uses the frequency positional
encoding function as v (-), while in Mip-NeRF [5], ¥(-) is
implemented as interval splitting and integrated positional
encoding. In this paper, we use the implementation of Mip-
NeRF [5], and the pixel colors are rendered as:

cr = Zwicz- = Z (1—e %) e Zi<i%%¢;,  (2)

%

where §; = t;1—t;. c, is the final rendered 3-channel pixel
color of the corresponding ray r(t). NeRF is then optimized
under the supervision of the ground-truth pixel colors ¢, of
the training images.

3.2. Challenges

Since the NeRF model directly optimizes its implicit ra-
diance field according to the 2D projected images, train-
ing a NeRF model using low-light sSRGB images has two
challenges. First, NeRF cannot handle the low pixel inten-
sity of low-light images, and can only produce dark im-
ages as novel views. Second, although [21] shows that
NeRF is robust to zero-mean noise in the raw domain due
to its essential integration process, the signal-to-noise ra-
tio of the camera-finished SRGB images is much lower than
that of the raw images. In addition, the camera ISP process
changes the linearity property of raw images and blends
scene radiance with noise together in the camera-finished
sRGB images. Hence, NeRF is not able to handle noise and
color distortion when training on low-light SRGB images.

To obtain a normal-light NeRF, combining low-light en-
hancement methods with NeRF (LLE+NeRF) may be a pos-
sible solution. However, as existing low-light enhancement
methods mainly learn a mapping from low light to normal
light based on specific training data. This mapping may not
generalize well to new scenes that are out of the distribu-
tions of the training data. Hence, using images enhanced by
these existing methods to train a NeRF model may produce
low-quality novel view images. On the other hand, taking
multi-view images of both low-light and normal light at the
same time as training data is not practical.

In this work, we aim to develop a method to produce
high-quality novel view images from low-light scenes in an
unsupervised manner.
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Figure 2. The 2D projection ¢, C,; of the same spatial point x is
not exactly identical but in the same color spectrum. The variance
of color across views, i.e., the view-dependent component of the
observed color, is dominated by the effect of lighting.

4. Our Unsupervised Approach

The main idea of our work is to decompose the im-
plicit radiance field of NeRF and then leverage priors to
enhance the lighting, reduce noise and correct the colors of
the novel-view images. Fig. 3(c) shows the pipeline of our
method.

4.1. Neural Radiance Field Decomposition

As shown in Fig. 2, when one 3D point x in a static scene
is projected to two pixels (C,; and ¢,;) of two views, the
colors of two pixels may appear differently, as the object
surface may not be isotropic and the lighting is not uni-
form. However, the colors of these two pixels are still in
the same range of the color spectrum. This suggests that the
color of one 3D point x can be decomposed into a view-
independent basis component and a view-dependent com-
ponent. The view-independent basis component represents
the intrinsic color, which determines the spectrum range of
the color of x. The view-dependent component accounts
for factors that may cause color differences across views (in
most situations lighting is the dominant factor, which varies
depending on the position and color of the light sources and
the orientation of the surface at x).

Inspired by this, we propose to decompose the color ¢
into the product of view-dependent component v that cap-
tures the lighting-related component and its reciprocal com-
ponent r that represents the color basis. We leverage NeRF
to constrain v to be view-dependent and further formulate
it to be a single channel representation that focuses on the
manipulation of lighting intensity.

Consider the rendering of a pixel c,. of image I in Eq. (2).
Since an arbitrary image pixel c, is the weighted accumu-
lation of the view-dependent color of all {c;}?_, along the
ray, we decompose each c along the ray into v and r, and
learn to enhance the color as:

3

v=F(r,d;Op) and r= Fy(7;0p,),
c=vor and &=¢(v)or,
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Figure 3.

The illustration of the NeRF [22] model (a), RawNeRF [21] model (b), and our proposed model (c). The data flow of our

unsupervised enhancement is shown inside the dashed line. Our model jointly learns the novel view images and enhances the output of all
samples along the ray. Each final enhanced pixel is rendered using the volume rendering equation as shown in Eq. (2).

where ¢ is the enhanced color, ¢ is an enhancement function
parameterized by a neural network, and o denotes the pixel-
wise multiplication. Fj and F5 are two MLPs. Thus, the
enhanced image I. can be obtained as:

I, = {&.},where & = Y w;p(v;)or;. (4)

Such a method enables the model to learn a reasonable
decomposition, which has a simple form but with strong
constraints when the unenhanced colors c are supervised
across views. We further demonstrate the effectiveness of
the decomposition design in Sec. 5.2.

Differences to the Image-based Decomposition. Image-
based low-light enhancement methods [28, 9, 31, 38] typi-
cally leverage the Retinex theory to decompose an image I
into the illumination map L and reflectance map R as:

I=LoR, )

where R is invariant to the lighting condition, affected by
the material and intrinsic color of objects in an image, and L
is the response of the illumination. Their decomposition is
typically guided with the normal-light ground truth images
during training. The enhanced image is obtained by:

Ie = ¢(L) © Ra (6)

where I, is the enhanced image, and ¢ is the enhancement
function (e.g., the tone-mapping curve or a deep CNN),
which is also supervised by GT.

In contrast, our method is unsupervised without ground
truth for training. It works in the 3D neural radiance field

with geometry information, and leverages reasonable prior
(Fig. 2) to constrain the decomposition process. We com-
pare the decomposition results of 2D-based method and
ours in Fig. 6.

4.2. Unsupervised Enhancement

In addition to the unsupervised decomposition, we pro-
pose an unsupervised enhancement method to enhance light
up NeRF model.

4.2.1 Denoising

Let x be a spatial point with a large density (i.e., the color
of x is dominant in the pixels) in a scene. It has multiple
projections Cx = {¢,} in the training images. We have
¢, = C, + n, where ¢, is the actual color and n is a small
permutation noise sampled from an unknown distribution.
During the training, the predicted color at x, i.e., cx, is su-
pervised by all pixels in Cx and the gradients are propagated
from different rays.

As the loss function of different rays is an unweighted
average, the model tends to learn the smallest average devi-
ation from the observations in Cy, and the learned c,. would
converge to the expectation of ¢, i.e.,

¢, ~E{&.} =¢, +E{n}. (7)

In RAW images, we could empirically assume the noise
in each training image is zero-mean [21], i.e., E{n} = 0.
However, the non-linear processes applied to RAW images
change the distribution of the raw noise, such that c,. is con-
verged to a biased value €, + E{n}. Accordingly, the pre-
dicted colors along the ray ¢ would converge to c+b, where

12635



Q1,71

Castaray and

its neighboring ray:
C

1
] VI

Ty

n
I o
een’e.

#channel: 3

#channel: 1

Weighted

Smooth loss Summation

Qry Yr <

Coefficiant map
(3-channel y and 1-channel a)

#channel: 3
Data loss

Low-light training image

{c

#channel: 3

#channel: 3
S

Color loss

I v R
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C is the ideal predicted color, and b is the bias introduced
by the noise.

This indicates that the multi-view optimization of the im-
plicit neural radiance field can still smooth the image and
reduce the noise in our problem. However, applying this
denoising scheme is not sufficient, as the converged pixel
values may be biased, leading to color distortions. We in-
troduce our color correction and enhancement method next.

4.2.2 The Enhancement of v

We use Eq. 4 to enhance the v along the ray for each spatial
coordinate and view direction, i.e., ¥ = ¢(v). We propose
to enhance v using a dynamic gamma correction under the
constraint of the rendered RGB value ¢, as:

1
v=ov)=(2)"7, ®)
!
where « is a scalar and v is a 3D vector. Both the two co-
efficients are the output of the enhancement network ¢ . g
is a fixed value to initialize the non-linear transform. « is
defined to be a scalar to adjust the lighting gain globally,
and v is defined as a three-dimensional vector for color dis-
tortion correction by applying a small permutation to v in
three color channels, under the constraint of the prior loss
functions.

By applying Eq. 8, v along the ray is enhanced while r
is not changed. Hence, our model can adjust the lighting
and the color of the scene while preserving its geometry in-
formation. Although our model allows more complicated
transformation functions to be applied, we find through ex-
periments that Eq. 8 works well with a good trade-off be-
tween performance and computational cost.

4.3. Optimization Strategy

We train our model in an end-to-end manner, as shown
in Fig. 4. While iteratively optimizing our model across
the rays of the training dataset, three kinds of supervision
signals are provided: gray-world prior-based colorimetric
supervision and smooth prior-based supervision are used to
optimize the enhancement network, and data supervision is
used to optimize the radiance field.

Gray-world Prior-based Colormetric Supervision. To
correct the bias mentioned in Sec. 4.2.1, we formulate a
simple but effective gray-world prior-based loss L. to con-
strain the learning of the enhancement network ¢ to produce
realistic images, as:

var.(&,)

L. =E[(& —e)?]+ME [,&—i—war(r)

}+AQWﬂb,<w

where e, 51, A1, A2 are hyper-parameters and var, denotes
the channel-wise variance. The first term of Eq. 9 is to im-
prove the brightness of the pixels (where e = 0.55). The
second term is to correct colors based on the gray world
prior, which pushes the distorted colors to the natural distri-
bution by reducing the variance across three channels. To
prevent the rendered pixels from converging to gray, we
further add a dynamic weight based on the color of the
weighted color basis r along the rays to relax the constraint
for highly saturated colors. The third term is the regulariza-
tion term to prevent overfitting.

Smoothness Prior-based Supervision. To preserve the
color and structure of the scene in the enhanced radiance
field and constrain the learning of the coefficients (« and
v), we expect the integrated coefficients to produce locally
smoothed maps. Hence, we constrain the gradient of the
weighted sum of these two coefficients with respect to the

integrated v, in the image space, as:
Oa, 2 87T 2
L;,=E . 10
l(avr) (avr) 1o

Lsa Lsg

+E

Since it is difficult to obtain the desired gradient infor-
mation directly from Eq. 10 due to the randomly sampled
rays in training, we formulate a discrete approximation L,
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Figure 5. Visual comparison of novel view synthesis results of our model, NeRF, and the baseline model (LLE + NeRF). Note that the input
scene image and the NeRF result are brightened for a better view. Our results have the best quality, with realistic color and fine details.
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of Eq. 10 as:

(ar - arv)z
(VT - Vrv)2 + €

1 (ap — app)?
Lsa =3
2 (Vr — V,ah)2 + €

)

(1)
where aup, Qpy, Vih, Vi are the integrated o and v of
neighboring rays in the horizontal and vertical directions in
the image space. To leverage the smoothness constraint, we
sample rays with their neighboring rays in each optimiza-
tion step, as shown in Fig. 4. L, is obtained in a similar
way to Lg,.

Data Supervision. To learn the scene geometry, we ap-
ply the data loss in [21], which is the linearization of
E [n(€.) — n(c,)], where n(y) = log(y + €2). Since the
majority of pixels in our training images have low intensity,
the tone mapping function 7 is used to amplify the errors in
the dark regions to facilitate the learning process.
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Figure 7. Intensity distribution and sample images of our dataset.

We collect low-light images from both indoor and outdoor scenes.

These images typically have low pixel intensity, obvious color dis-

tortion, and heavy noise.

5. Experiments
5.1. Our Dataset

We collect a real-world dataset as a benchmark for model
learning and evaluation. To obtain real low-illumination im-
ages with real noise distributions, we take photos at night-
time outdoor scenes or low-light indoor scenes contain-
ing diverse objects. Since the ISP operations are device-
dependent and the noise distributions across devices are
also different, we collect our data using a mobile phone
camera and a DSLR camera to enrich the diversity of our
dataset. We show some samples and statistics of our dataset
in Fig. 7. As illustrated, the average brightness of our
dataset is extremely low (most pixels’ intensities are below
50 out of 255). In addition, the noise and color distortion
in these images are of a very high level, making our task
extremely challenging.
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5.2. Results

We evaluate our model in three aspects. First, we eval-
uate the neural radiance field decomposition of our model
by comparing to the Retinex-based state-of-the-art method
URetinexNet [31]. Second, we evaluate the novel view syn-
thesis performance of our model by comparing it to the
baseline model (LLE + NeRF). Note that RawNeRF de-
grades to NeRF when RawNeRF is applied to handle sSRGB
images. Third, we evaluate the low-light enhancement per-
formance by comparing our model to existing state-of-the-
art LLE methods.

Visualization of V and R. We render v and r via volume
rendering to obtain V and R for visualization, as shown in
Fig. 4. Fig. 6 compares our decomposition to that of URe-
tinex [31]. We can see that the reflectance map of URetinex
tends to preserve all photometric information while its illu-
mination map tends to be over-smoothed, as it is agnostic to
the physical imaging process and 3D geometry information.
In contrast, our model produces a more reasonable lighting-
related component, and the view-independent color basis
component has few shadows and lighting information. This
demonstrates the effectiveness of our decomposition design
in Sec. 4.1.

Novel View Synthesis. For a fair comparison, we train our
model, NeRF, and the baseline model (LLE + NeRF) us-
ing the same images and compare the novel view results, as
shown in Fig. 5. We choose URetinexNet as the LLE model
in the baseline as it tends to produce better enhancement

ZeroDCE [13]

SNR [34]
il

i
]
i

SCI [19]

ZeroDCE [13]

SCI[19]

LLNeRF (Ours)

Figure 8. The visual comparison of the results of our model and the existing low-light enhancement methods. Our results have the best
quality, with realistic color and fine details.

results compared to other enhancement methods. We can
see that the results of NeRF are still low-light as there is no
enhancement process inside it. Although the results of the
baseline model are brightened, the image appears unrealis-
tic as the distorted color is not corrected. In contrast, our
model generates better details and natural colors.

Low-Light Enhancement. We further compare the results
of our model with state-of-the-art low-light enhancement
models. The comparison is shown in Fig. 8. It shows that
some methods (i.e., URetinexNet, SCI, ZeroDCE, SNR)
cannot handle the noise. While LLFlow brightens the in-
put and removes the noise, the visual quality is still low.
We also combine the URetinexNet and a denoising model
(NAFNet [8] trained on SIDD [1] dataset) for comparison.
While this strategy can produce images with good details,
the color is still distorted. In contrast, our model can en-
hance these images with better cleaner details and more
natural colors. Refer to the videos in the Supplemental for
more comparisons.

User Study. Due to the absence of ground truths for our
low-light dataset in real-world scenarios, we employ a user
study to assess the visual quality of the results of different
methods. We invite 80 participants to conduct a user study
to evaluate the perceptual quality of our results against those
of existing approaches. Specifically, we randomly chose 10
images from the test set for comparison with LLE methods
and compare the enhanced results using an AB test. For
each test image, our produced result is “A” whereas the re-
sult from one of the baselines is “B”. Each participant would
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LLE Method LLFlow [29] SNR [34] SCI[19] URetinex [31] ZeroDCE [13] Ours
PSNR/SSIM 16.46/0.702 17.04/0.575 | 12.67/0.122 19.18/0.289 13.38/0.110 20.50/0.758
NVS Method | LLFlow+NeRF | SNR+NeRF | SCI+NeRF | URetinex+NeRF | ZzeroDCE+NeRF Ours
PSNR/SSIM 16.44/0.702 17.02/0.687 | 13.08/0.505 19.93/0.746 14.17/0.612 20.50/0.758

Table 1. The quantitative comparison results between ours and existing methods on test scenes with paired normal-light images. We

compare novel view synthesis results (top row) and low-light enhancement results (bottom row). The best results are marked in bold.
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Figure 9. “Ours” is the ratio of test cases, in which the partici-
pant selected our results as better; “Other” is the percentage that
another method was selected to be better; and “Same” is the per-
centage that the user has no preference.

simultaneously see A and B (we avoid the bias by randomiz-
ing the left-right presentation order when displaying A and
B in each AB-test task) and select one from: “A is better”,
“B is better”, and “I cannot decide”. We ask the participants
to make decisions based on natural brightness, rich details,
distinct contrasts, vivid colors, and noise removal effects.

The comparison between ours and the baseline model,
i.e., LLE + NeRF, is conducted similarly, where “A” and
“B” refers to the rendered videos. For each participant, the
number of tasks is 7 methods x 10 questions, 70 in total. It
takes on average around 30 minutes for each participant to
complete the user study.

Fig. 9 summarizes the user study results, which shows
that our results are more preferred by the participants than
all other competing methods.

Quantitative Evaluation. We additionally evaluate three
scenes quantitatively with normal-light images of long ex-
posures. As shown in Tab. 1, our method performs better
than existing methods on both PSNR and SSIM. It also
shows that NeRF helps enhance image structures (better
SSIM), due to the implicit 3D information of its radiance
field optimization process.

Ablation Study. To investigate the effectiveness of our
training strategy, we conduct the ablation study of our loss
functions. By relaxing the constraints of loss functions, we
compare the visual results produced by different settings of
loss functions. Fig. 10 shows that removing terms from the
proposed loss function generally results in the degradation
of the results produced by our model.

Scene Editing. Our model allows different manipulations
of the scene’s illumination while producing realistic novel
view images, e.g., the scene’s color temperature can be

h

Ours w/o L¢1

3

Ours w/0 L¢o

Ours w/o L3 Ours w/o L Ours

Figure 10. Ablation study results. Lci, Lc2, L are three items
in L. respectively. The quality of results is degraded as we remove
any item. The dark images are brightened for a better view.

e

DeepWB (warm) [2]

Ours (cold) Ours (warm)
Figure 11. A possible application of our model besides the low-

light enhancement. By modifying v along the rays, our model is
able to produce realistic scenes with varying color temperatures.

DeepWB (cold) [2]

edited, as shown in Fig. 11. As a comparison, the existing
deep-learning-based color temperature editing method [2]
produces relatively unnatural editing results with artifacts
in the highlight regions.

6. Conclusion

In this paper, we propose a novel method to train a NeRF
model from low-light SRGB images to produce novel view
images of high visibility, vivid colors, and details. Based
on the observation of the imaging process, our model de-
composes the neural radiance field to the lighting-related
view-dependent component and view-independent color ba-
sis components in an unsupervised manner. Our model en-
hances the lighting without reference images under the su-
pervision of prior-based loss functions. We conduct exten-
sive experiments to analyze the properties of our method
and demonstrate its effectiveness against existing methods.
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