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Abstract

The combination of Spiking Neural Networks (SNNs)
and Transformers has attracted significant attention due
to their potential for high energy efficiency and high-
performance nature. However, existing works on this topic
typically rely on direct training, which can lead to subop-
timal performance. To address this issue, we propose to
leverage the benefits of the ANN-to-SNN conversion method
to combine SNNs and Transformers, resulting in signifi-
cantly improved performance over existing state-of-the-art
SNN models. Furthermore, inspired by the quantal synap-
tic failures observed in the nervous system, which reduce
the number of spikes transmitted across synapses, we in-
troduce a novel Masked Spiking Transformer (MST) frame-
work. This incorporates a Random Spike Masking (RSM)
method to prune redundant spikes and reduce energy con-
sumption without sacrificing performance. Our experi-
mental results demonstrate that the proposed MST model
achieves a significant reduction of 26.8% in power con-
sumption when the masking ratio is 75% while maintaining
the same level of performance as the unmasked model. The
code is available at: https://github.com/bic-L/
Masked-Spiking-Transformer.

1. Introduction
Spiking neural networks (SNNs), considered as the next

generation neural networks [30], are brain-inspired neural
networks based on the dynamic characteristics of biological
neurons [31, 17]. SNNs have attracted significant attention
due to their unique properties in handling sparse data, which
can yield great energy efficiency benefits on neuromorphic
hardware. Due to their specialties, they have been widely
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Figure 1. Performance of MST and other SOTA SNN models re-
garding top-1 accuracy and time steps. The markers, represented
by circles and star shapes, denote the direct training (DT) and
the ANN-to-SNN (A2S) conversion method, respectively, where
the marker size corresponds to the model size. Results show that
the proposed MST model achieves higher accuracy than the other
SNN models.

utilized in various fields, such as classification [32, 18],
object detection [3] and tracking [51], etc. Nevertheless,
SNNs currently can hardly realize a comparable perfor-
mance to that of artificial neural networks (ANNs), espe-
cially for complex tasks such as ImageNet [40].

In order to improve the performance of SNNs, various
training methods have been proposed, broadly categorized
as the direct training method and the ANN-to-SNN con-
version method. Direct training methods leverage a con-
tinuous relaxation of the non-smooth spiking mechanism to
enable backpropagation with a surrogate gradient function
for handling non-differentiability [36], but this can lead to
unstable gradient propagation and relatively low accuracy
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compared to leading ANNs [38]. Alternatively, ANN-to-
SNN conversion methods convert pre-trained ANNs into
SNNs for better performance while requiring more time
steps, with increased power consumption to reduce con-
version errors [46, 25, 2, 7]. Our focus is on implement-
ing the ANN-to-SNN conversion method to narrow the per-
formance gap between leading ANNs and SNNs, but the
required long time steps pose challenges in reducing en-
ergy consumption. Therefore, identifying strategies to de-
crease power consumption while maintaining excellent per-
formance is crucial.

The biological nervous system offers valuable in-
sights for addressing the challenges of implementing high-
performance Spiking Transformers using the ANN-to-SNN
conversion method. The quantal synaptic failure theory
suggests that missing information during neuronal signal
transmission may not impact the computational informa-
tion transmitted to a postsynaptic neuron under certain con-
ditions, but can reduce energy consumption and heat pro-
duction [23]. Likewise, in the ANN-to-SNN conversion
process, missing spikes can possibly be compensated for
by leveraging the correlations between signals in the space
and time domains during the information propagation over
multiple time steps. In addition, neural network models
possess lots of redundant connections: prior works reveal
that the redundancy in the self-attention module of Trans-
formers can be pruned without significantly impacting per-
formance [34, 49]. Therefore, eliminating redundant in-
formation during the transmission of neuronal signals can
possibly reduce overall energy consumption in the Spiking
Transformer model while preserving high performance.

In our work, we propose a Masked Spiking Trans-
former (MST), which incorporates a Random Spike Mask-
ing (RSM) method designed specifically for SNNs. The
RSM method randomly selects only a subset of input spikes,
significantly reducing the number of spikes involved in the
computation process. We evaluate the MST model on both
static and neuromorphic datasets, demonstrating its supe-
riority over existing SNN models. Our experiments show
that the RSM method can reduce energy consumption on the
self-attention module and the MLP module in Transformer,
enabling the SNNs to take advantage of energy efficiency
and high performance. Furthermore, the proposed RSM
method is not limited to Transformer, but can be extended to
other backbones such as ResNet and VGG, highlighting its
potential as a general technique to improve SNN efficiency.
Our results demonstrate the potential of this approach to
provide a new direction for developing high-performance
and energy-efficient SNN models.

The main contributions of this paper can be summarized
as follows:

• We propose a Masked Spiking Transformer (MST) us-
ing the ANN-to-SNN conversion method. To the best

Figure 2. Overview of our MST. (a) Schematic of the model ar-
chitecture of the Swin Transformer, which is the backbone of our
model. (b) Schematic of the proposed Transformer blocks, where
BN layers replace the original LN layers. (c) Conceptual illustra-
tion of the RSM method, which involves randomly masking the
input spike. (d-e) The RSM method in self-attention and MLP
module.

of our knowledge, it is the first exploration of applying
the self-attention mechanism fully in SNNs utilizing
the ANN-to-SNN conversion method.

• The MST model is evaluated on both static and neuro-
morphic datasets, and the results show that it outper-
forms state-of-the-art (SOTA) SNNs on all datasets.
In specific, the top-1 accuracy of the MST model is
1.21%, 7.3%, and 3.7% higher than the current SOTA
SNN model on the CIFAR-10, CIFAR-100, and Ima-
geNet datasets, respectively.

• We design a Random Spike Masking (RSM) method
for SNNs trained with the ANN-to-SNN conversion
method to prune the redundant spikes during inference
and save energy consumption.

• Extensive experiments show that our proposed RSM is
a versatile and general method that can be utilized in
other spike-based deep networks, such as ResNet and
VGG SNN model variants.

2. Related Work

Spiking Neural Networks SNNs have gained popular-
ity in the field of brain-inspired intelligence due to their
compatibility with neuromorphic hardware and biologi-
cal properties. With the increasing interest in larger-scale
and higher-performance SNNs, recent research has focused
on developing novel training algorithms and architectures.

1762



Zheng et al. proposed a threshold-dependent batch normal-
ization (tdBN) method based on spatiotemporal backpropa-
gation to train a large-scale SNN model with 50 layers [56].
Besides, Fang et al. proposed the SEW ResNet architecture
for residual learning in deep SNNs to overcome the gradient
vanishing problem [10]. Later, they introduced a training al-
gorithm that learns the threshold of each spiking neuron to
improve the performance of SNNs [11]. However, these
methods mainly discuss the SNN models that are domi-
nated by convolutional layers, such as the SNN variants of
VGG [42] and ResNet [15]. Despite their improvements,
the performance of these methods still struggles to match
their ANN counterparts, limiting the application of SNNs.
In this context, our proposed work focuses on implementing
the self-attention mechanism in SNNs to design a Spiking
Transformer that improves the performance of SNNs.

Transformer Transformer [47] was first introduced in
Natural Language Processing (NLP) and quickly gained
popularity for its remarkable capabilities in capturing long-
range dependencies. Its success in NLP has inspired re-
searchers to explore its potential in computer vision. Vi-
sion Transformer (ViT) [8] was the first attempt to apply
the Transformer to image classification. ViT has achieved
impressive results on various computer vision benchmarks,
demonstrating the effectiveness of the self-attention mech-
anism in image understanding. Following the success of
ViT, a series of works [29, 14] proposed improvements to
the original ViT architecture. Motivated by the success of
Transformers and its variations, this paper proposes a new
architecture for SNNs that leverages the capacities of the
Transformer and the energy efficiency of SNNs.

Spiking Transformer The combination of the Trans-
former and SNNs can achieve better performance, which
has been discussed in prior studies, including STNet [54]
and Spike-T [55]. These models utilized separate branches
of SNNs and Transformers for feature extraction, leading to
the inability to run independently on neuromorphic hard-
ware and failing to exploit the energy efficiency benefits
of SNNs fully. In addition, Mueller et al. [35] proposed
a Spiking Transformer using the ANN-to-SNN conversion
method, but they did not implement the self-attention mod-
ule in SNNs. The recently proposed Spikformer [57] di-
rectly trained the Transformer in SNNs, but still struggles
to achieve comparable performance to leading ANNs. To
address these limitations, we apply the self-attention mech-
anism fully in SNNs by utilizing the ANN-to-SNN con-
version method and propose the RSM method to improve
both the performance and energy efficiency of the Spiking
Transformer. Our model offers a new direction for develop-
ing high-performance SNNs using the ANN-to-SNN con-
version method.

3. Methods

3.1. Spiking Neuron Model

For ANNs, the input al−1 to layer l is mapped to the out-
put al by a linear transformation matrix W l and a nonlinear
activation function f(·), that is (l = 1, 2, 3, · · · , L):

al = f
(
W lal−1

)
(1)

where f(·) is often set as the ReLU activation function.
In SNNs, the Integrate-and-Fire (IF) spiking neuron

model is commonly used in ANN-to-SNN conversion [25,
2, 7]. The dynamics of the IF model are described by:

vl(t) = vl(t− 1) +W lθl−1sl−1(t)− θlsl(t) (2)

where vl(t) denotes the membrane potential of neurons in
layer l at time step t, which corresponds to the linear trans-
formation matrix W l, the threshold θl, and the binary out-
put spikes of neurons in the previous layer l− 1, denoted as
sl−1(t). The sl(t) is defined as follows:

sl(t) = H
(
ul(t)− θl

)
(3)

where ul(t) = vl(t − 1) + W lθl−1sl−1(t) denotes the
membrane potential of neurons before the trigger of a spike
at time step t, H(·) denotes the Heaviside step function. The
neurons generate output spikes whenever the membrane po-
tential ul(t) exceeds the threshold value θl, and the mem-
brane potential is reset by subtracting the threshold value to
reduce information loss [41].

3.2. ANN-to-SNN conversion

To achieve the ANN-SNN conversion, a relationship is
established between the rectified linear unit (ReLU) activa-
tion of analog neurons in ANNs and the firing rate or post-
synaptic potential of spiking neurons in SNNs. This is ob-
tained by summing Eq. 2 from time step 1 to T dividing T
on both sides, resulting in the following equation:

vl(T )− vl(0)

T
=

∑T
t=1 W

lθl−1sl−1(t)

T
−

∑T
t=1 θ

lsl(t)

T
(4)

The linear relationship between ϕl(T ) and ϕl−1(T ) is es-

tablished by defining ϕl(T ) =
∑T

t=1 θlsl(t)

T as the average
postsynaptic potential:

ϕl(T ) = W lϕl−1(T )− vl(T )− vl(0)

T
(5)

The equivalence between Eq. 1 and 5 holds only as T goes
to infinity, resulting in a conversion error. To address this is-
sue, we replace the ReLU activation function with the quan-
tization clip-floor-shift (QCFS) [2] function in the ANNs.
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3.3. Model Architecture

An overview of the MST is depicted in Fig. 2, where the
Swin Transformer [29] is adopted as the backbone network.
To convert the original network into a fully-spiking manner,
we incorporate the QCFS activation functions after each lin-
ear or regularization layer during the training phase, which
are replaced with Integrate-and-Fire (IF) neurons in the in-
ference process, resulting in more efficient computation.

The entire computation process in the spiking self-
attention module can be formulated as:

Qspk[t] = IF(X[t] ∗Wq)

Kspk[t] = IF(X[t] ∗Wk)
(6)

where Qspk, Kspk denote the spike matrices of the query
and key at t time step, IF(·) is the IF neuron function, Wq ,
Wk denote the corresponding weight matrices. Attention
score is defined as:

Aspk[t] = IF(
Qspk[t] ∗KT

spk[t]√
d

) (7)

where Aspk represents the spike matrix of the attention
score calculated by the dot product of the query spike ma-
trix and the key spike matrix, and d is a scaling factor equal
to the feature dimension of a given attention head.

The calculation of LN and BN can be expressed by:

y =
x− E[x]√
Var[x] + ϵ

∗ γ + β (8)

where x denotes the input tensor to be normalized, E[x] and
Var[x] represent the mean and variance of x, ϵ is a small
constant added to the variance for numerical stability, γ and
β are trainable scaling and bias parameters respectively, and
y is the normalized output of the layer.

In LN, the mean and variance are calculated across the
features of each sample in a batch. Therefore, each sample
in the batch has its normalization parameters. On the other
hand, BN calculates the mean and variance across all sam-
ples in a batch for each feature, which means the normal-
ization parameters are shared across all samples in a batch.

Normalization is important for ensuring the feasibility
of ANN-to-SNN conversion. As illustrated in Fig. 3, differ-
ent normalization approach results in vastly different mem-
brane potential in the inference process. Normalizing along
the channel dimension (LN) cause a distribution mismatch
between ANN and SNN, which leads to performance degra-
dation, while normalizing along the batch dimension (BN)
preserves a similar result. Replace all LN layers with BN
layers is a straightforward approach to normalize the post-
activation distribution of ANNs during the conversion pro-
cess, but for large datasets like ImageNet, there are conver-
gence issues. We resolve this problem by simply adding

Figure 3. Illustration of distributions of (a) post-activation distri-
bution in ANN, and (b-c) cumulative membrane potential distribu-
tions of SNN model with BN and LN, respectively. The heatmap
shows a similar distribution between ANN and SNN(BN) models,
while the widely varying distribution between ANN and SNN(LN)
models leads to performance degradation.

a BN layer after each linear layer in the MLP module, in-
spired by [53]. Mathematically, the first layer of the modi-
fied MLP module is formulated as follows:

MLP(x) = IF(Linear(BN(x))) (9)

where x represents the input tensor, Linear denotes the lin-
ear layer, BN represents the batch normalization layer. No-
tably, the MLP module consists of two linear layers, each
followed by a BN layer and an IF neuron function.

3.4. Random Spike Masking Method

Implementing the Transformer in SNNs using the ANN-
to-SNN conversion method presents a challenge due to the
high power consumption demand. To address this issue,
we propose the Random Spike Masking (RSM) method for
reducing redundant spikes during inference.

Traditional ANN pruning methods remove weights with
low magnitudes, which are believed to have little impact
on the final output of the model [58]. In contrast, our
RSM method prunes input spikes randomly according to the
masking ratio, where each spike (s = 1) has the probability
of turning into a failure state (s = 0) that can be imple-
mented using binary mask matrices.

It is important to note that our proposed RSM method
for spike pruning in SNNs differs from Dropout [44] used
in ANNs. Dropout is a regularization technique that ran-
domly masks some neurons during training, but all neurons
are used for inference, and the output needs to be scaled by
the retained probability used during training. This means
that Dropout cannot directly reduce the number of spikes
in the network. Unlike Dropout, the RSM method reduces
the computational cost of SNNs by randomly pruning input
spikes in both training and inference, explicitly removing
redundancy in input spikes while obtaining excellent per-
formance.

The RSM method, illustrated in Fig. 2(c-e), randomly
generates a binary mask with the same shape as the input
spike matrix based on the masking ratio. This determines
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Dataset Model Method Achitecture # Param (M) Time Steps Accuracy (%)

CIFAR-10

ANN [29] Direct Training Swin-T (BN) 27.6 / 98.14

Diet-SNN [39] Direct Training VGG-16 39.9 10 93.44
tdBN [56] Direct Training ResNet-19 12.6 4 92.92
TET [6] Direct Training ResNet-19 12.6 6 94.50

DSR [32] Direct Training PreActResNet-18 11.2 20 95.40
Spikformer [57] Direct Training Spikformer-4-384 9.3 4 95.51

RMP [13] ANN-to-SNN VGG-16 39.9 2048 93.63
RNL [7] ANN-to-SNN PreActResNet-18 11.2 256 93.45

QCFS [2] ANN-to-SNN RestNet-18 11.7 512 96.06

MST (ours) ANN-to-SNN Swin-T (BN) 27.6
64 96.32

128 97.06
256 97.27

CIFAR-100

ANN [29] Direct Training Swin-T (BN) 27.6 / 88.72

Diet-SNN [39] Direct Training VGG-16 39.9 5 69.67
tdBN [56] Direct Training ResNet-19 12.6 4 70.86
TET [6] Direct Training ResNet-19 12.6 6 74.72

DSR [32] Direct Training PreActResNet-18 11.2 20 78.50
Spikformer Direct Training Spikformer-4-384 9.3 4 78.21

RMP [13] ANN-to-SNN VGG-16 39.9 2048 70.93
RNL [7] ANN-to-SNN PreActResNet-18 11.2 256 75.10

QCFS [2] ANN-to-SNN RestNet-18 11.7 512 79.61

MST (ours) ANN-to-SNN Swin-T (BN) 27.6
64 85.40

128 86.73
256 86.91

ImageNet

ANN [29] Direct Training Swin-T (BN) 28.5 / 80.51

Diet-SNN [39] Direct Training VGG-16 39.9 5 69.00
tdBN [56] Direct Training SEW-ResNet-34 21.8 4 67.04
TET [6] Direct Training SEW-ResNet-34 21.8 4 68.00

DSR [32] Direct Training PreActResNet-18 11.2 50 67.74
Spikformer [57] Direct Training Spikformer-8-768 66.3 4 74.81

RMP [13] ANN-to-SNN VGG-16 39.9 2048 73.09
QCFS [2] ANN-to-SNN RestNet-18 11.7 1024 74.32

MST (ours) ANN-to-SNN Swin-T (BN) 28.5
128 77.88
256 78.37
512 78.51

Table 1. Performance comparison between the proposed model and the SOTA models on different static datasets, where Swin-T (BN) refers
to the self-implemented ANN baseline replacing LN with BN [29].

which spikes are transmitted for calculation in subsequent
neurons, enabling high matrix sparsity. With a masking ra-
tio of 50%, for example, each spike has a 50% chance of
being masked, reducing the number of spikes and power
consumption. Hence, combining both the SNN-based self-
attention mechanism with the RSM approach promises a
balance between performance and energy efficiency.

4. Experiments
We conduct extensive experiments on both static datasets

including CIFAR-10 [22], CIFAR-100 [21], and Ima-
geNet datasets [5], and neuromorphic datasets including

CIFAR10-DVS [24], N-Caltech101 [37], N-Cars [43], Ac-
tionRecognition [33], and ASL-DVS [1] datasets, to val-
idate the effectiveness of the MST model. In addition,
we evaluate the effect of the RSM approach on accuracy
and energy efficiency using the SpikingJelly framework [9].
More details of the training can be found in the supplemen-
tary.

4.1. Performance on Static Datasets

Tab. 1 presents a comprehensive comparison of the MST
model with the current SOTA SNN models on the CIFAR-
10/100 and ImageNet datasets. The results show that the
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Figure 4. Model Architecture for Neuromorphic Datasets.

proposed MST model outperforms all other models in terms
of top-1 accuracy on all three datasets.

Direct training models, such as Diet-SNN [39],
tdBN [56], TET [6], and DSR [32], require lower time steps,
but their top-1 accuracy is relatively low, compared to that
of the MST model, in which tdBN [56] is 10% less accurate
on the CIFAR-100 and ImageNet datasets.

Conversely, models employing the ANN-to-SNN con-
version method typically necessitate a greater number
of time steps to reach optimal performance, including
RMP [13], RNL [7], and QCFS [2]. The MST model also
employs this method but requires only 64 time steps to
achieve superior performance, which is far fewer than RMP
[13]. This suggests that the MST model can achieve the
highest accuracy in a reasonable number of time steps.

Compared to transformer-based SNN models such as
Spikformer [57], the MST model achieves higher top-1 ac-
curacy on all three datasets. Specifically, the top-1 accuracy
of the MST model is 1.8%, 8.7%, and 3.7% higher than
Spikformer on the CIFAR-10, CIFAR-100, and ImageNet
datasets, respectively. Moreover, the MST model has sig-
nificantly fewer parameters compared to the 8-layer Spik-
former [57] model.

4.2. Performance on Neuromorphic Datasets

We showcase the suitability of the MST model for pro-
cessing event-based data by evaluating its performance on
neuromorphic datasets. Fig. 4 shows the framework for the
MST model to process the neuromorphic datasets. We uti-
lize a frame-based representation for preprocessing, where
the event streams are transformed into a sequence of high-
rate frames. Each event in the stream consists of four di-
mensions, including two spatial coordinates (x, y), times-
tamp, and polarity. The frames are integrated into an in-
put tensor of size (n×C, H, W), where n is the number
of frames, C is the number of original channels (which
equals two, representing polarity), and H and W represent
the height and width of the input, respectively. To align
the input dimension with the model, an additional reduc-
tion layer is added to the first layer of the entire model,
which reduces the channel dimension to 3. This enables us

Dataset Model Time Steps Accuracy (%)

CIFAR10-DVS

Swin-T (BN) / 88.98

TA-SNN [52] 10 72.00
PLIF [11] 20 74.80

Dspkie [26] 10 75.40
DSR [32] 10 77.30
TET [6] 10 83.17

NDA [27] 10 81.70
Spikformer [57] 10 80.90

MST (ours)
128 86.60
256 87.20
512 88.12

N-CALTECH101

Swin-T (BN) / 92.00

SALT [19] 20 55.00
NDA [27] 10 83.70

MST (ours)
64 84.71
128 89.42
256 91.38

N-CARS

Swin-T (BN) / 97.14

CarSNN [48] 10 86.00
NDA [27] 10 91.90

MST (ours)
32 94.67
64 96.58
128 97.28

Action Recognition

Swin-T (BN) / 90.14

STCA [12] 10 71.20
Mb-SNN [28] 10 78.10

MST (ours)
64 84.76
128 86.92
256 88.21

ASL-DVS

Swin-T (BN) / 99.90

Meta-SNN [45] 100 96.04

MST (ours)
64 98.04
128 98.51
256 99.10

Table 2. Performance comparison between the proposed model
and the SOTA models on different neuromorphic datasets.

to leverage pre-training weights from the ImageNet dataset,
accelerating the training convergence. Data augmentation
for SNNs [27] is also applied to improve the accuracy. The
ensuing experimental results demonstrate that the proposed
fine-tuning approach for ANN-to-SNN conversion achieves
remarkably high accuracy.

The experimental results presented in Tab. 2 demonstrate
the effectiveness of the proposed MST model in process-
ing neuromorphic datasets. We compare the MST model
with several SOTA SNN models on five popular neuromor-
phic datasets, including CIFAR10-DVS, N-Caltech101, N-
Cars, Action Recognition, and ASL-DVS dataset. The ex-
perimental results show that the MST model achieves the
highest top-1 accuracy on all datasets.

CIFAR10-DVS, N-Caltech101, and N-Cars datasets are
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constructed by converting the static datasets into event data
by using event-based cameras. Tab. 2 shows that the MST
model outperforms other SOTA SNN models significantly,
achieving improvements of 4.95%, 7.68%, and 5.38% on
CIFAR10-DVS, N-Caltech101, and N-Cars, respectively.
The Action Recognition dataset consists of a series of hu-
man actions captured by event-based cameras. By adopt-
ing the data preprocessing method of [20], our MST model
achieves a top-1 accuracy of 88.21%, which is far higher
than other models. Additionally, the ASL-DVS dataset is a
large 24-class dataset of gestures and the experimental re-
sults demonstrate that our MST model outperforms other
SOTA models by 3.06%.

These results highlight the effectiveness of our proposed
MST model in processing various types of neuromorphic
datasets.

4.3. Effectiveness of the Random Spike Masking
Method

The ANN-to-SNN conversion method typically involves
a large number of time steps, leading to high power con-
sumption. To address this issue, we propose the RSM
method for spike pruning, and we demonstrate its effective-
ness in the following section.

Drawing inspiration from knowledge distillation [16],
we use the model without masked as a teacher model, and
the model after masked as a student model. By fine-tuning
the student model, the masked model achieves high perfor-
mance comparable to the original model without masking
in terms of accuracy. This finding highlights the efficacy
of the knowledge distillation technique in training masked
models without compromising their performance. Conse-
quently, we employ the fine-tuning approach as the training
method for our subsequent comparative analysis.

We evaluate the RSM method in two critical modules
in the Transformer: the self-attention (SA) module and
the Multi-layer Perceptron (MLP) module. As shown in
Fig. 2(d-e), we apply the RSM method to the Query, Key,
and Attention matrices in the SA module, as well as the
output spike matrix of the first fully connected layer within
each block of the MLP module.

Fig. 5(a) and (b) depict the variation in accuracy for dif-
ferent masking ratios on the CIFAR-10 and CIFAR-100
datasets, respectively. The experimental results demon-
strate that the accuracy decreases with the increasing mask-
ing ratio for both the SA and MLP modules, but their sen-
sitivity to masking ratio changes differs. Specifically, the
accuracy of the SA module remains stable over a certain
range of masking ratios. In contrast, the accuracy of the
MLP module declines more sharply and is more sensitive
to masking ratio changes. Consistent with prior research
[34, 49], the redundancy in the SA module enables the MST
to withstand the losses caused by missing input spikes with-

Figure 5. The effectiveness of the RSM method in (a) SA and
(b) MLP modules of the MST model, as well as in Spiking (c)
ResNet-18 and (d) VGG-16 models, with varying masking ratios.
The inset photographs show the standard deviation of accuracy in
10 runs.

Figure 6. Comparison of the accuracy of masking different num-
bers of blocks on the CIFAR-100 dataset.

out significantly affecting the overall performance of the
SNN.

In addition to the variation in sensitivity to changes in
the masking ratio between different modules, our experi-
ments also demonstrate that the sensitivity can vary depend-
ing on the dataset used. The CIFAR-10 dataset is relatively
less sensitive to changes in the masking ratio, with only a
0.1% decrease in accuracy when the masking ratio reaches
80%. In contrast, the CIFAR-100 dataset is more sensitive
to changes in the masking ratio, experiencing a more sub-
stantial accuracy decline as the masking ratio increases.

We also investigate the potential of the RSM method as
a general approach for reducing power consumption in the
context of ANN-to-SNN conversion. By applying the RSM
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Model Random Ratio P (α Watts) Accuracy (%)

MST
0% 3.9G (×1) 97.27 (+0)

50% 3.2G (×0.82) 97.25 (-0.02)
75% 2.9G (×0.74) 97.29 (+0.02)

ResNet-18
0% 58.2M (×1) 96.48 (+0)

50% 40.7M (×0.70) 92.88 (-3.60)
75% 34.1M (×0.58) 82.68 (-13.80)

VGG-16
0% 24.4M (×1) 95.46 (+0)

50% 18.9M (×0.77) 89.56 (-5.90)
75% 16.7M (×0.68) 79.09 (-16.37)

Table 3. Comparison of power consumption and accuracy between
models with a Masking ratio of 0%, 50%, and 75% on the CIFAR-
10 dataset, respectively. (· · ·) in the table denotes the power con-
sumption/accuracy compared to the unmasked model (with 0%
random ratio).

method to other SNN models like Spiking ResNet-18 and
VGG-16 and introducing a masking ratio to each convolu-
tion layer, we aim to decrease the transmitted spikes. Our
results, presented in Fig. 5, demonstrate that the redundancy
of these models can also be leveraged to maintain perfor-
mance while reducing power consumption within a specific
range. This indicates the potential of the RSM method for
widespread applications in various SNN models for improv-
ing energy efficiency.

Fig. 6 illustrates the impact of masking different num-
bers of blocks on the accuracy of the MST model. Our
results indicate a non-linear, positive relationship between
the number of masked blocks and performance loss. No-
tably, masking the first 2-5 blocks causes a slight perfor-
mance loss, and the loss increases with more masked blocks
until saturation at around 9-10 blocks. These observations
provide valuable insights for designing partially masked
blocks.

To better evaluate the effects of the RSM method on
energy consumption reduction, we utilize theoretical esti-
mates of energy consumption on neuromorphic chips based
on previous studies [4, 7]. Assuming that a spike activity
consumes α Joules and 1 time step takes 1 ms. Then the
power model is defined as:

P =
total spikes
1× 10−3

× α(Watts) (10)

Tab. 3 presents the power consumption and accuracy
of the MST, ResNet-18, and VGG-16 at 0%, 50%, and
75% masking ratios on the CIFAR-10 dataset. The RSM
method is applied to the SA module in the MST and each
block in ResNet-18 and VGG-16. The results demonstrate
that the RSM method has a direct effect on the number of
spikes transmitted, which in turn reduces power consump-
tion. In specific, applying the RSM method to the MST

Figure 7. Comparison of attention maps between the MST model
with 0%, 50%, and 75% masking ratio (from top to bottom) with
5 different time steps.

model can reduce power consumption by 26.8% without
any loss in performance when the masking ratio reaches
75%. This finding suggests that there exist substantial re-
dundant spikes in the SA module that can be pruned for
better energy efficiency. As for ResNet-18 and VGG-16,
the RSM method also yields significant power reduction.
For instance, ResNet-18 can reduce power consumption by
30.1% with a moderate accuracy loss of 3.6%. However,
excessive masking leads to a significant drop in accuracy.

In summary, our results demonstrate that the proposed
RSM method is effective when applied to the SA module
in the Transformer, as well as other SNN models. By elim-
inating redundant spikes, the RSM method reduces power
consumption while preserving performance, making it a
promising approach for energy-efficient ANN-to-SNN con-
version.

To visualize the impact of different masking ratios on
attention maps, we compared the models with 0%, 50%,
and 75% masking ratios using the Spike Activation Maps
(SAM) method. The results, shown in Fig. 7, demonstrate
that the models with different masking ratios concentrate on
similar areas of the object at the same time step, with the red
parts outlining the object. Comparison with the ANN model
using the ScoreCAM method [50] reveals that both models
focus on similar key information. These results suggest that
the proposed RSM method preserves the regions of interest
within the model, contributing to accuracy preservation.

5. Discussion
In this paper, we proposed the Masked Spiking Trans-

former (MST) with the Random Spike Masking (RSM)
method. By pruning input spikes, the proposed RSM
method effectively reduces power consumption while main-
taining the performance of the model within a certain range.

Though our experiments highlight the superiority of the
MST model over state-of-the-art SNN models, our model
still has limitations that need addressing. A key constraint
is the relatively long time steps needed by the ANN-to-SNN
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conversion method, limiting the suitability of the proposed
model for real-time applications with strict timing demands.

Furthermore, even though the RSM method reduces the
number of spikes and energy consumption, the experi-
ment in this article merely investigates its applicability of
ANN-to-SNN conversion, thus exhibiting relatively high
energy consumption compared to direct-trained SNN mod-
els, which take fewer time steps. Consequently, future
research could apply the RSM method to direct training
methods to optimize energy consumption further and make
SNNs more practical for real-world applications. Addition-
ally, adopting different masking ratios across layers may
achieve a better balance between performance and energy
efficiency.

6. Conclusion

In this work, we propose a Masked Spiking Transformer
(MST) framework that combines the energy efficiency of
SNNs with the high-performance self-attention mechanism
of Transformers using the ANN-to-SNN method. Addition-
ally, we introduce a Random Spike Masking (RSM) method
to prune input spikes, thus reducing power consumption.
The experimental results demonstrate that the MST model
outperforms current SOTA SNN models on both static and
neuromorphic datasets. Furthermore, the proposed RSM
method shows significant power reduction while maintain-
ing performance in different modules of the Transformer
and other SNN models. Our work opens up new possibili-
ties for developing high-performance SNN models, paving
the way for future research in this area.
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