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Abstract

Conditional diffusion models have demonstrated impres-
sive performance in image manipulation tasks. The gen-
eral pipeline involves adding noise to the image and then
denoising it. However, this method faces a trade-off prob-
lem: adding too much noise affects the fidelity of the image
while adding too little affects its editability. This largely
limits their practical applicability. In this paper, we pro-
pose a novel framework, Selective Diffusion Distillation
(SDD), that ensures both the fidelity and editability of im-
ages. Instead of directly editing images with a diffusion
model, we train a feedforward image manipulation network
under the guidance of the diffusion model. Besides, we pro-
pose an effective indicator to select the semantic-related
timestep to obtain the correct semantic guidance from the dif-
fusion model. This approach successfully avoids the dilemma
caused by the diffusion process. Our extensive experiments
demonstrate the advantages of our framework. Code is re-
leased at https://github.com/AndysonYs/Selective-Diffusion-
Distillation.

1. Introduction
In recent years, diffusion model [10, 14, 28, 34, 36, 38, 40–

43] has attracted great attention in both academic and in-
dustrial communities. It models the Markov transition from
a Gaussian distribution to a data distribution to generate
high-quality images sequentially. The elegant formulation
achieves state-of-the-art performance in various image gener-
ation benchmarks. Meanwhile, text-to-image diffusion mod-
els [28,34,36,38] also demonstrate their impressive capacity
in controllable image synthesis, enabling a wide range of
practical applications. Among them, one of the most inter-
esting applications is image manipulation.

A typical text-guidance manipulation pipeline is to invert
the input image to a noisy latent and then denoise this latent
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Figure 1. Editability and fidelity trade-off of diffusion-based
image manipulation. The leftmost is the input image. For each
manipulation, we add increasing noise levels from left to right and
then denoise the image. Different semantics require different levels
of noise to manipulate.

with a given text prompt. The inversion process can be the
simple noise adding [25] or the DDIM inversion [41, 44].
There is an editability-fidelity tradeoff in such pipelines, as
shown in Fig. 1. Adding a lot of noise to the original image
gives the diffusion model more freedom to manipulate the
image, but it also makes it harder to retain original semantics
when denoising back, and vice versa.

More importantly, this trade-off can lead to unsuccessful
manipulations, such as “white hair” in Fig. 1. This is because
the diffusion model processes different semantics at different
stages [6]. If our manipulation corresponds to the semantics
in the early stages, we have to add more noise, hence losing
much information from the original image. To overcome the
failure caused by the trade-off, existing methods attempt to
incorporate more guidance information, such as using masks
to limit the manipulation region [1, 2, 24]. This is useful for
local image manipulation, but for some global structures,
such as changing the pose of a human face, it still fails to
solve the problem.

In this work, we take a different viewpoint to leverage
a diffusion model for image manipulation. Unlike existing
methods that directly manipulate images progressively with
diffusion models, we train an efficient image manipulator
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supervised by a pretrained diffusion model. Specifically, our
model takes a feedforward model (e.g., latent space image
manipulation model [29]) as the manipulator, and a text-
guided diffusion model (e.g., latent diffusion [36]) as the
supervisor. During training, the manipulated image is dif-
fused and fed to the diffusion model, and the diffusion model
produces gradient supervision based on the text condition.
In this sense, it is expected that the manipulator could mimic
the promising generation capacity of the diffusion model.

To learn such a manipulator, using correct semantic guid-
ance is also crucial, as shown in Fig. 1. Intuitively, the diffu-
sion model at the timestep in the red box has a better ability
to guide the image manipulator in changing the hair color.
In contrast, other timesteps do not provide useful semantic
guidance. Therefore, we propose the hybrid quality score
(HQS), an effective indicator that helps to select appropri-
ate timesteps. This indicator is built upon the entropy and
L1 norm of the gradient from the diffusion model and is
shown to be highly correlated with the manipulation qual-
ity. As such, our model could learn with the most effective
guidance. In addition to solving the trade-off problem of
diffusion-based image manipulation, we have another bonus:
our image manipulator requires only one forward for ma-
nipulation, and by learning in a specific domain, our image
manipulator can manipulate images over the entire domain,
which offsets the cost of training. Extensive experiments
demonstrate the effectiveness of our methods.

Our contributions are summarized as follows:

• We propose a novel image manipulation approach with
a well-trained diffusion model to supervise another im-
age manipulator. This avoids the trade-off problem of
manipulating images with a diffusion process.

• We propose the hybrid quality score to detect semantic-
related timesteps. Only during these timesteps can the
diffusion model guide the image manipulator to per-
form accurate manipulations.

• Our experiments demonstrate our method’s effective-
ness and efficiency in both the qualitative and the quan-
titative aspects.

2. Related Work
Image manipulation [1–5,7,13,16,19,21,22,25,29,37,47]

aims to modify an input image to a guiding direction. The
direction can be a scribble, a mask, a reference image, etc.
Recently, text-driven image manipulations [1, 2, 11, 13, 19,
21, 22, 29, 37] have become very popular because textual
prompts are intuitive and easily accessible. These methods
[2, 11, 20–22, 29] usually utilize a joint image-text semantic
space to provide supervision.

One of the famous image-text semantic spaces is CLIP
[32], a multi-modal space that contains extremely rich seman-

tics as it is trained using its millions of text-image pairs. It has
demonstrated significance on different tasks, such as latent
space manipulation [29], domain adaptation [11], and style
transfer [22]. Another multi-modal model that has gained
much attention is the text-image generative model. Several
large-scale text-image models have advanced text-driven im-
age generation, such as Imagen [38], DALL-E2 [34], and
latent diffusion [36]. The diffusion model contains the strong
mode-capturing ability and the training stability [14, 40].
Some scholars have begun to study how to utilize its pow-
erful capabilities in image manipulation tasks. Most image
manipulation methods with diffusion models aim to “hijack”
the reverse diffusion process and introduce kinds of guidance
and operation [1, 2, 5, 10, 15, 24, 25, 47]. For example, some
methods [2, 10, 15, 47] update the intermediate result with
the gradient from some conditional models. Some methods
also use auxiliary information, such as a mask, to limit the
region of the generation [2, 24]. Some method [5] directly
replaces the low-frequency information of the intermedi-
ate result with that of the reference image and obtains an
image with the same structural details. Some method [25]
conditions the output image with a stroke image by adding
intermediate noises to the image and then denoising it. Some
method [20] applies domain adaptation to diffusion models
using the CLIP model. In summary, the diffusion process
gradually perturbs the data distribution to gaussian noise dis-
tribution, while the reverse diffusion process progressively
recovers data distribution from the noise.

Meanwhile, another methods [12, 30] uses the diffusion
model as prior knowledge in many applications. For ex-
ample, some scholars [12] mix it with conditional models,
e.g., differentiable classifier, and generate specific classes
of samples. On the other hand, DreamFusion [30] utilizes
differentiable image parameterization [27] and defines this
conditional model as a 3D rendering process [26] to gen-
erate 3D assets from the text. They can not involve its use
in the inference stage [30]. We also take the perspective
to use the diffusion model as guidance to avoid the itera-
tive process in the inference stage. Different from utilizing
fixed conditional models [12, 30], we define this conditional
model as an image-to-image translation model and explore
a new scenario where we are optimizing this conditional
model. This model, after optimization, can be independent
of the diffusion model, thus enabling more efficient image
manipulation.

3. Preliminary

3.1. Diffusion Models

Diffusion models are latent-variable generative models
that define a Markov chain of diffusion steps to add random
noise to data slowly and then learn to reverse the diffusion
process to construct desired data samples from the noise
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[14, 40].
Suppose the data distribution is q(x0) where the index

0 denotes the original data. Given a training data sample
x0 ∼ q(x0), the forward diffusion process aims to produce
a series of noisy latents x1, x2, · · · , xT by the following
Markovian process,

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI),∀t ∈ [T ], (1)

where T is the step number of the diffusion process, [T ] =
{1, 2, · · · , T} denotes the set of the index, βt ∈ (0, 1) repre-
sents the variance in the diffusion process, I is the identity
matrix with the same dimensions as the input data x0, and
N (x;µ, σ) means the normal distribution with mean µ and
covariance σ.

To generate a new data sample, diffusion models sample
xT from the standard normal distribution and then grad-
ually remove noise by the intractable reverse distribution
q(xt−1 | xt). Diffusion models learn a neural network pθ
parameterized by θ to approximate the reverse distribution
as follows,

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (2)

where µθ and Σθ are the trainable mean and covariance
functions, respectively.

In [14], Σθ is simply set as a fixed constant, and µθ is
reformulated as a function of noise as follows,

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, (3)

where ϵθ is used to predict noise ϵt from xt.
Finally, the diffusion model is trained with simplified

evidence lower bound (ELBO) that ignores the weighting
term for each timestep t as follows,

Lt(θ) = Ex0,t,ϵ

[
∥ϵt − ϵθ(xt, t)∥22

]
. (4)

3.2. Diffusion Models as Prior

According to [12], diffusion models can also be used as
off-the-shelf modules in some scenarios, where it p(x) may
serve as a prior for another conditional model c(x, y), i.e. we
can deduce p(x | y) given p(x) and c(x, y). When c(x,y)
is a hard and non-differentiable conditional model, say a
deterministic function x = f(y). We optimize y to minimize
1 ∑

t

Eϵ∼N (0,I)[
∥∥ϵ− ϵθ(

√
ᾱtf(y) +

√
1− ᾱtϵ, t)

∥∥2
2
]. (5)

For example, f() is a latent-variable model that takes latent
y as input and generates a sample x. We can regard this equa-
tion as sampling y instead of directly sampling images using
1Please refer supplementary for detailed derivation process.

Distillation

Selection

𝒇𝝓

Figure 2. Core concept of SDD. Our method involves two steps:
1) selecting the semantically-related timestep and 2) distilling the
appropriate semantic knowledge into an image manipulator, fϕ.

diffusion models, and inputting y to this conditional model,
we will get a sample from the diffusion model. An example
of a successful implementation of this idea is DreamFu-
sion [30], where y represents the parameters of a 3D volume
and f() represents a volumetric renderer. This method can
be used to generate 3D assets from text. In practice, optimiz-
ing simultaneously for all t makes it difficult to guide the
sample toward a mode. Thus existing methods eighter anneal
t from high to low values [12], or random select t [30]. So
the actual optimization process is slightly changed to

Eϵ,t[
∥∥ϵ− ϵθ(

√
ᾱtf(y) +

√
1− ᾱtϵ, t)

∥∥2
2
]. (6)

4. Method
In this section, we introduce Selective Diffusion Distilla-

tion. The core concept is shown in Fig. 2. First, we introduce
how to distill knowledge from a diffusion model into an
image manipulation model in Sec. 4.1. Then, we introduce
how to select the appropriate timestep in Sec. 4.2.

4.1. Distillation: Learning image manipulator with
Diffusion Models

We aim to take the diffusion model as a source of se-
mantic guidance to train a lightweight image manipulator.
We first define our problem according to the definition in
Sec. 3.2. Training the image manipulator with diffusion prior
can also be categorized as an optimization problem with a
hard constraint. The hard constraint f(y) becomes the image
manipulator in this situation. The difference between our
formulation and the previous formulation is the optimized
target. We use equation (7) to optimize parameters ϕ of our
image manipulator fϕ as shown in Fig. 3.

min
ϕ

Eϵ,t[
∥∥ϵ− ϵθ(

√
ᾱtfϕ(y) +

√
1− ᾱtϵ, t)

∥∥2
2
]. (7)

When optimizing this equation, we follow the approach
of skipping the U-Net Jacobian in [30]. The gradient after
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Figure 3. General framework of Selective Diffusion Distillation (SDD). Top: selection stage. We build an HQS indicator to select
appropriate timesteps. Bottom: distillation stage. We use the selected timesteps and the pretrain diffusion model pθ to train the image
manipulator fϕ.

skipping is equivalent to the noise predicted at the current
timestep (based on the diffusion model) minus a random
noise. According to the relationship between diffusion mod-
els and score-based models [42, 43], this predicted noise
from the diffusion model contains the direction from the
current distribution to the target distribution. Therefore, we
can consider optimizing this equation as guiding our image
manipulator by the diffusion model to output results in the
target distribution.

This paradigm benefits us from two aspects. Firstly, no
matter what semantics we manipulate, we can always ensure
fidelity. For general diffusion-based image manipulation,
the success of manipulation and the fidelity of the manip-
ulated image are both determined by the noise level, but
they conflict with each other. However, for our image ma-
nipulator, this conflict does not exist. It is natural to add
or tweak regularization terms in the training of our image
manipulator so that we can ensure fidelity under different
manipulations. Secondly, our method improves inference
efficiency. After optimizing the image manipulator, we can
perform fast image manipulation through only one forward
pass without requiring the diffusion model. Not to mention
the manipulator network is lighter than the U-net in the dif-
fusion model. Moreover, our manipulator also demonstrates
scalability. Our manipulator finds common knowledge when
translating images in the same domain to a specific seman-
tic direction. Once the manipulator is trained, it is easy to
reuse this network for manipulating other images without

any retraining. Compared to the efficiency improvement, our
extra training cost is little. As described in Sec. 5, when
training the manipulator, we only optimize a 4-layer MLP
mapper model. This significantly reduces our training costs.
When manipulating more images, our method shows faster
speed even if we include our extra training time. Detailed
quantitative discussion can be found in Sec. 5.3.

4.2. Selection: selecting timestep with the Hybrid
Quality Score (HQS)

Assuming fidelity is ensured, the key is to obtain correct
semantic guidance from the diffusion model. To achieve this,
we need to identify the timestep at which the diffusion model
most effectively guides the image manipulator to produce a
successful result. We first analyze the gradients provided by
the diffusion model. We input the image y into the diffusion
model conditioned on textual description γ at every timestep
t ∈ {T, · · · , 1}, and then compute the gradient on the input
image using diffusion training loss:

dt(y, γ) = ∇y

∥∥ϵ− ϵθ(
√
ᾱty +

√
1− ᾱtϵ, t, γ)

∥∥2
2
, (8)

where dt(y, γ) ∈ R1×H·W ·C represents the direction that the
input image y should move to, given the target distribution
γ at the timestep t. If a timestep t is more important, its
direction d should have higher quality than other timesteps.

To measure its quality, we have empirically observed that
treating this gradient as a confidence map and computing
its entropy gives us a good metric. We first convert dt into
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Input

Figure 4. Effect of our Hybrid Quality Score (HQS). Left: The
curve of HQS at different timesteps when the prompt is “angry”.
Right: Gradient visualization of the corresponding timestep and
editing results of training our image manipulator using only this
timestep.

a confidence score map pt through the softmax operation.
Each score of the confidence map represents the degree of
necessity of the corresponding gradient when modifying the
image. Next, for the whole confidence map, we calculated
its entropy:

Ht = −
∑
i

pit log p
i
t, (9)

where pit is the i-th element of pt. The intuition is that the
lower the entropy, the more the dt(y, γ) contains the neces-
sary gradient, so the t is more important. Then, we found
this metric susceptible to extreme cases, such as when only
a very small part of the gradient map has value. This will
result in a very high value of Ht, but the gradient contributes
little to the image. Therefore, we introduce the L1 norm of
the gradient dt(y, γ) to avoid this situation:

Nt =
∑
i

|dit|, (10)

where dit is the i-th element of dt. This metric ensures the
magnitude of the overall information of the gradient, thereby
avoiding the misjudgment of the entropy metric caused by
the local large value. To combine these two metrics, we
firstly transform H = [H1, · · · , HT ] to H̄ = [H̄1, · · · , H̄T ]
by using min-max normalization as follows:

H̄t =
Ht −min(H)

max(H)−min(H)
, (11)

and we also do the same to N to get N̄ . Significantly, given
manipulation target γ, we consider timestep t with lower H̄t

and higher N̄t to be optimal, so we define a metric called
Hybrid Quality Score (HQS) :

HQS(γ) = Ey[N̄ − H̄], (12)

Where HQS ∈ R1×T . As shown in Fig. 4, training with the
timestep with the higher hybrid quality score gives us rich
semantic gradients2 and better editing results.

Based on this, we propose a timestep selection strat-
egy: Given text prompt γ, we compute the HQS(γ) at each
timestep t. Then we build a set of t with a larger HQS value.
Next, when optimizing the image manipulator with Eq. (7),
we sample timesteps t from the set. To decide the number
of timesteps in this set, we introduce a hyperparameter, ξ,
which controls the tolerance for uncorrelated t. While select-
ing t with the maximum HQS is generally effective, relaxing
the HQS requirement can also improve editing. By using a
smaller ξ, only the most relevant features will change, mak-
ing the semantic modification relatively simple but requiring
fewer optimization costs. On the other hand, using a larger ξ
makes the editing more comprehensive but increases the risk
of introducing uncorrelated t.

In conclusion, training our image manipulator fϕ with
this strategy is shown in Alg. 1.

Algorithm 1 Selective Diffusion Distillation

1: Input: text prompts γ, image data q(y), threshold ξ,
pretrained diffusion model ϵθ

2: Compute HQS(γ) by Eq. (12)
3: S = {t | HQSt > ξ}
4: Randomly initialize our image manipulator fϕ
5: repeat
6: y ∼ q(y), t ∈ S, ϵ ∼ N (0, I)
7: Take gradient descent step on
8: ∇ϕ

∥∥ϵ− ϵθ(
√
ᾱtfϕ(y) +

√
1− ᾱtϵ, t)

∥∥2
2

9: until converged

Using this strategy leads to a set S of a smaller size.
This selected S contains fewer ineffective timesteps than
the whole timesteps set. Training the image manipulator
with selected S leads to correct semantic manipulation. We
prove the effectiveness in the Sec. 5.4. The above analysis is
agnostic to the concrete form of image manipulators so that
it can be extended to any image manipulation framework.

5. Experiments

In this section, we first introduce the implementation de-
tails of our Selective Diffusion Distillation. Then, we present
the manipulating ability of SDD by showing its application
in different domains. Afterward, we compare our method to
other image manipulation methods regarding quality and effi-
ciency. At last, we conduct the ablation study of HQS-based
step selection to demonstrate its effectiveness.

2we clip and normalize the gradient value for better illustration.

7476



5.1. Implementation details

The discussion in Sec. 4.1 shows that our framework is
independent of the form of the image manipulator. There-
fore, our method can theoretically be applied to any image
manipulation method.

We select StyleGAN [18] as our image manipulator back-
bone because of its exceptional capabilities in image ma-
nipulation [11, 21, 29, 35, 45]. In our framework, both the
diffusion model and the StyleGAN contain large parameters.
Directly optimizing the StyleGAN by our framework could
produce unacceptable computational costs. Therefore, we
follow the configuration of [29] to reduce the computational
cost. Under this configuration, we only optimize a tiny MLP,
called latent mapper, to achieve numerous editing tasks.

For the text-to-image diffusion model, we employ the
popular latent diffusion models [36].

Overall, our image manipulator consists of three compo-
nents: a StyleGAN encoder, a latent mapper, and a Style-
GAN generator. The StyleGAN encoder and generator are
pre-trained and remain fixed during the optimization. only
the latent mapper is trained in the distillation.

For regularization, we introduce L2 loss and face identity
loss [9] as suggested by [29]. We also use gradient clipping
in some scenarios for training stability. The whole training
procedure follows the Alg. 1.

5.2. Applications

Our SDD shows its strong ability in image manipulation.
It successfully edits images of various domains and vari-
ous attributes while preserving high image quality. Fig. 5
demonstrates our manipulated images. For human faces, we
could conduct the hair color, hairstyle, and facial expression
transfer, as well as the attributes addition and celebrities
conversion. For cats and cars, we could change their types,
colors, and some specific details. More manipulation results
are shown in our supplementary materials.

5.3. Comparison and Evaluation

In this section, we compare SDD with other image ma-
nipulation methods. The empirical results demonstrate our
benefits. To measure the result quantitatively, we adopt two
metrics, the Fréchet inception distance(FID) [39] and CLIP
similarity [33], separately. FID is a metric used to measure
the similarity between the distribution of real images and gen-
erated images. We use it to measure the similarity between
the manipulated and original images. The CLIP similarity
measures whether the semantic change of a manipulated
image aligns with the text description. A higher directional
CLIP similarity indicates a better manipulation result.

Compared to diffusion-based methods We first compare
our SDD with other typical diffusion-based image manipula-

tion methods, including SDEdit [25], DDIB [44], and Dif-
fAE [31]. The qualitative is shown in Fig. 6. SDD achieves
semantic manipulation in all cases while preserving most of
the other information from the input images compared to the
baselines.

The quantitative result is shown in Table 1. SDD demon-
strates the highest CLIP similarity and maintains the lowest
FID, which is consistent with the quantitative comparison.
This excellent result indicates that SDD successfully avoids
the trade-off problem in diffusion-based manipulation. More-
over, considering that the StyleGAN of our image manipu-
lator is pre-trained with data of the target domain, we also
finetune the best of the baselines on this data for a fair com-
parison. Line 2 of Table 1 shows that despite the extra data,
SDD still outperforms it.

In addition, we also compare SDD with these baselines in
terms of computation costs. Given the task of manipulating
m images for each of n prompts, we compute the total time
cost of our method and diffusion-based method to compare
their efficiency. For diffusion-based methods, we consider
the input image inversion time and the iterative denoising
time as their total inference time. τDiff,infer denotes the time
cost of each manipulation in diffusion-based methods.

τDiff = m× n× τDiff,infer (13)

For SDD, we need to train individual image manipulators
for each of the prompts, and when inference, only the image
manipulator is needed. We add the training time of image
manipulators and the inference time of manipulation together
and treat it as the total time of SDD. τSDD,train denotes the
required training time for SDD’s image manipulator to con-
verge. τSDD,infer denotes the time cost of inference with the
image manipulator.

τSDD = n× τSDD,train + n×m× τSDD,infer (14)

Accorind the Eq. 13 and Eq. 14, all methods have the same
complexity of O(mn). However, in our method, the coef-
ficient of mn is τSDD,infer, which is a much smaller value
compared to τDiff,infer.

We further deduce that when m satisfied Eq. (15), our
methods will achieve better efficiency. This efficiency im-
provement will be exaggerated, especially when m becomes
larger.

m >
τSDD,train

τDiff,infer − τSDD,infer
(15)

We compared the overall time cost between our method and
diffusion-based methods in Table 1. All diffusion models
use DDIM [41] acceleration with 50 inference steps. We
set m=100, and n=10 in the experiment. The comparison of
computational costs is shown in column 3 of Table 1.
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“With glasses” “With beard” “Elf” “Dwayne Johnson”“Mickael Jackson” “Nicolas Cage” “Taylor Swift”

“White hair” “Happy”“Bald”Original image “Black hair” “Sad”“Bangs hair”

“Orange”“British shorthair”Original image “Big eyes”“Ragdoll”“Black”

“Sports car”“red car” “classic”Original image “SUV”“white car”“BMW” “BENZ”

Figure 5. The manipulation results of SDD of various domains (CelebA-HQ [23], AFHQ-cat [8], LSUN-car [46]) and various attributes. We
keep the image fidelity and make it coherent with the text.

Compared to StyleCLIP Our method shares some sim-
ilarities to the StyleCLIP in the aspect of the manipulator.
Here, we discuss the major difference between SDD and
StyleCLIP and empirically compare them. The diffusion
model has a significant advantage over CLIP in that the
gradient it provides shares the same spatial size as images.
Compared to CLIP, these gradients from diffusion models
contain structural information, making our SDD capable of
position manipulations. In contrast, CLIP guidance is insen-
sitive to 3D positional information, so it does not support

FID CLIP Similarity Total time
SDEdit 32.126 0.2189 2215

SDEdit* 16.761 0.2133 2215
DDIB 87.737 0.2268 3502

DiffAE 41.896 0.2136 5658
SDD 6.066 0.2337 148.67

Table 1. The quantitative comparison between our method and
diffusion-based image manipulations. * means we fine-tune the
diffusion model on the target dataset.

such manipulation. Other studies [17] also notice this insen-
sitivity of CLIP, and they provide further explanation for that.
Concretely, our image manipulator can change the pose of
a human’s face, but CLIP-based methods fails, as shown in
Fig. 7.

We also quantitatively compare manipulation tasks that
can be accomplished by both methods and demonstrate that
our SDD provides better guidance for training the image
manipulator, as shown in Table 2. Note that directly replacing
CLIP with a diffusion model and not using our timestep
selection strategy will not yield such results.

5.4. Ablation Study

In this section, we conduct an ablation study of the
timestep selection strategy for optimizing the image ma-
nipulator. We build four configurations: For random strategy,
we randomly sample t from all timesteps; For small thresh-
old strategy, we use HQS with a small ξ to obtain S with a
large number of t; For large threshold strategy, we use HQS
with a large ξ to obtain S with a small number of t; For
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DDIB

𝜶 = 𝟎. 𝟕

Input SDEdit

𝜶 = 𝟎. 𝟕

SDDSDEdit

𝜶 = 𝟎. 𝟗

DDIB

𝜶 = 𝟎. 𝟗

Figure 6. The visual comparison between SDD and diffusion-
based image manipulations. α ranges from zero to one and rep-
resents the noise level. SDEdit and DDIB fail to manipulate the
semantics at a noise level of 0.7, while SDD successfully manipu-
lates the semantics with less distortion.

Domains FID CLIP Similarity
Face 16.542 0.2250

StyleCLIP Car 52.356 0.2652
Cat 42.737 0.2582
Face 6.066 0.2337

SDD Car 52.356 0.2621
Cat 39.354 0.2948

Table 2. Quantitative comparison between SDD and StyleCLIP.

Input

StyleCLIP

SDD

Figure 7. Comparison of SDD and StyleCLIP in pose manipu-
lation. Text prompt: “side view”. The results demonstrate that the
diffusion model provides superior semantic guidance, enabling a
broader range of manipulations.

largest HQS strategy, we only sample t with the largest HQS
value. We keep other configurations the same and compare
them qualitatively and quantitatively.

The qualitative result in Fig. 8 shows that the proposed
HQS-based step selection significantly overperforms other
baseline methods. Random strategy always seems to have
little modification to the original image. We attribute this

Input Random
HQS

(Large 𝝃)

HQS
(Small 𝝃)

HQS
(Largest 𝝃)

“
W
o
m
e
n
”

Figure 8. Visual result of Ablation Study. The average HQS score
of timesteps used for training increases from left to right and so
does the accuracy of manipulation.

to its redundant timestep selection. The result of the largest
HQS strategy in the most desirable and intensive modifica-
tion, proving that our HQS helps us find the most useful
step. Furthermore, by combining the results from the small
threshold, large threshold, and largest HQS, we can observe
that under the same number of training iterations, the av-
erage HQS score of the t they sampled increased in order,
leading to a sequential improvement of the manipulation
effect. Therefore, it is proved that HQS can select the t with
the maximum contribution to the semantic manipulation.
The quantitative result in Table 3 also demonstrates that the
largest HQS strategy performs the best. The increase in FID
is caused by the manipulation effect, as shown in Fig. 8.
Meanwhile, we still preserve image quality, as evidenced by
our very low FID.

FID CLIP Similarity
Random 3.288 0.2146

Small threshold 3.819 0.2155
Large threshold 5.927 0.2168

Largest HQS 9.154 0.2190

Table 3. The quantitative ablation for HQS-based timestep selection
strategy. The FID increase because the manipulation effect increase,
as shown in Fig. 8

6. Conclusion
In this paper, we present a novel image manipulation

method called Selective Distillation Diffusion (SDD). This
paradigm avoids the Editability & Fidelity trade-off by distill-
ing the diffusion model’s knowledge to a lightweight image
manipulator. To distillate correct semantic information, we
carefully design the Hybrid Quality Score (HQS) to help us
select the helpful timesteps. We evaluate our method SDD on
a variety of image manipulation tasks and achieve promising
results.
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