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Abstract

The pretrain-finetune paradigm in modern computer
vision facilitates the success of self-supervised learning,
which tends to achieve better transferability than super-
vised learning. However, with the availability of massive
labeled data, a natural question emerges: how to train a
better model with both self and full supervision signals?
In this paper, we propose Omni-suPErvised Representation
leArning with hierarchical supervisions (OPERA) as a so-
lution. We provide a unified perspective of supervisions
from labeled and unlabeled data and propose a unified
framework of fully supervised and self-supervised learn-
ing. We extract a set of hierarchical proxy representations
for each image and impose self and full supervisions on
the corresponding proxy representations. Extensive exper-
iments on both convolutional neural networks and vision
transformers demonstrate the superiority of OPERA in im-
age classification, segmentation, and object detection.1

1. Introduction
Learning good representations is a significant yet chal-

lenging task in deep learning [12, 75, 23]. Researchers
have developed various ways to adapt to different super-
visions, such as fully supervised [41, 30, 56, 52], self-
supervised [59, 68, 21, 10], and semi-supervised learn-
ing [67, 71, 58]. They serve as fundamental procedures in
various tasks including image classification [16, 72, 70], se-
mantic segmentation [21, 48], and object detection [24, 5].

Fully supervised learning (FSL) has always been the de-
fault choice for representation learning, which learns from
discriminating samples with different ground-truth labels.
However, this dominance begins to fade with the rise of

*Equal contribution.
†Corresponding author.
1Code link: https://github.com/wangck20/OPERA.
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Figure 1. The proposed OPERA outperforms both fully supervised
and self-supervised counterparts on various downstream tasks.

the pretrain-finetune paradigm in modern computer vision.
Under such a paradigm, researchers usually pretrain a net-
work on a large dataset first and then transfer it to down-
stream tasks [22, 14, 23, 12]. This advocates transferabil-
ity more than discriminativeness of the learned representa-
tions. This preference nurtures the recent success of self-
supervised learning (SSL) methods with contrastive objec-
tive [23, 64, 21, 10, 60]. They require two views (aug-
mentations) of the same image to be consistent and dis-
tinct from other images in the representation space. This
instance-level supervision is said to obtain more general
and thus transferable representations [18, 27]. The ability
to learn without human-annotated labels also greatly pop-
ularizes self-supervised contrastive learning. Despite its
advantages, we want to explore whether combining self-
supervised signals2 with fully supervised signals further im-
proves the transferability, given the already availability of

2We mainly focus on self-supervised contrastive learning. In the rest
of the paper, we use self-supervised learning to refer to self-supervised
contrastive learning unless otherwise specified for simplicity.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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massive annotated labels [46, 33, 1, 4].
We find that a simple combination of the self and full

supervisions results in contradictory training signals. To
address this, in this paper, we provide Omni-suPErvised
Representation leArning with hierarchical supervisions
(OPERA) as a solution, as demonstrated in Figure 2.
We unify full and self supervisions in a similarity learn-
ing framework where they differ only by the definition
of positive and negative pairs. Instead of directly impos-
ing supervisions on the representations, we extract a hier-
archy of proxy representations to receive the correspond-
ing supervision signals. Extensive experiments are con-
ducted with both convolutional neural networks [25] and
vision transformers [17] as the backbone model. We pre-
train the models using OPERA on ImageNet-1K [46] and
then transfer them to various downstream tasks to evalu-
ate the transferability. We report image classification ac-
curacy with both linear probe and end-to-end finetuning on
ImageNet-1K. We also conduct experiments when transfer-
ring the pretrained model to other classification tasks, se-
mantic segmentation, and object detection. Experimental
results demonstrate consistent improvements over FSL and
SSL on all the downstream tasks, as shown in Figure 1.
Additionally, we show that OPERA outperforms the coun-
terpart methods even with fewer pretraining epochs (e.g.,
fewer than 150 epochs), demonstrating good data efficiency.

2. Related Work
Fully Supervised Representation Learning. Fully su-

pervised representation learning (FSL) utilizes the ground-
truth labels of data to learn a discriminative representa-
tion space. The general objective is to maximize the dis-
crepancies of representations from different categories and
minimize those from the same class. The softmax loss is
most widely used for fully supervised representation learn-
ing [25, 35, 16, 57]. SupCon [28] and LOOK [19] gen-
eralized the contrastive loss from self-supervised learn-
ing [23, 10, 21] to the fully supervised setting but still fo-
cused on class-level discrimination. As fully supervised ob-
jectives entail strong constraints, the learned representations
are usually more suitable for the specialized classification
task and thus lag behind on transferability [74, 18, 27]. To
alleviate this, many works devise various data augmentation
methods to expand the training distribution [72, 29, 7, 51].
Recent works also explore adding more layers after the rep-
resentation to avoid direct supervision [54, 61]. Differently,
we focus on effectively combining full supervision with
self-supervision to improve transferability.

Self-supervised Representation Learning. Self-
supervised representation learning (SSL) attracts increasing
attention in recent years due to its ability to learn mean-
ingful representation without human-annotated labels. The
main idea is to train the model to perform a carefully de-

signed label-free pretext task. Early self-supervised learn-
ing methods devised various pretext tasks including image
restoration [53, 73, 43], prediction of image rotation [20],
and solving jigsaw puzzles [40]. They achieve fair perfor-
mance but still cannot equal fully supervised learning until
the arise of self-supervised contrastive learning [23, 10, 21].
The pretext task of contrastive learning is instance discrim-
ination, i.e., to identify different views (augmentations) of
the same image from those of other images. Contrastive
learning methods [12, 64, 55, 65, 34, 8, 26, 32] demonstrate
even better transferability than fully supervised learning.
This superiority is said to result from their focus on learn-
ing lower-level and thus more general features [74, 18, 27].
Very recently, masked image modeling (MIM) [22, 77, 66]
emerges as a strong competitor to contrastive learning,
which trains the model to correctly predict the masked parts
of the input image. In this paper, we mainly focus on con-
trastive learning in self-supervised learning. Our framework
can be extended to other pretext tasks by inserting a new
task space in our hierarchy.

Omni-supervised Representation Learning: It is
worth mentioning that some existing studies have attempted
to combine FSL and SSL [44, 38, 62, 61]. Radosavovic et
al. [44] first trained an FSL model and then performed
knowledge distillation on unlabeled data. Wei et al. [62]
adopted an SSL pretrained model to generate instance la-
bels and compute an overall similarity to train a new model.
Nevertheless, they do not consider the hierarchical relations
between the self and full supervision. Also, they perform
SSL and FSL sequentially in separate stages. Differently,
OPERA thoroughly employs FSL and SSL in a universal
perspective and imposes the supervisions on different levels
of the representations. Our framework can be trained in an
end-to-end manner efficiently with fewer epochs.

3. Proposed Approach
In this section, we first present a unified perspective of

self-supervised learning (SSL) and fully supervised learn-
ing (FSL) under a similarity learning framework. We then
propose OPERA to impose hierarchical supervisions on hi-
erarchical representations for better transferability. Lastly,
we elaborate on the instantiation of OPERA.

3.1. Unified Framework of Similarity Learning

Given an image space X ⊂ RH×W×C , deep representa-
tion learning trains a deep neural network as the map to their
representation space Y ⊂ RD×1. Fully supervised learning
and self-supervised learning are two mainstream represen-
tation learning approaches in modern deep learning. FSL
utilizes the human-annotated labels as explicit supervision
to train a discriminative classifier. Differently, SSL trains
models without ground-truth labels. The widely used con-
trastive learning (e.g., MoCo-v3 [13]) obtains meaningful
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Figure 2. Comparisons of different learning strategies. Fully supervised learning (a) and self-supervised learning (b) constrain images at
the class level and instance level, respectively. They conflict with each other for different images from the same class. OPERA imposes
hierarchical supervisions on hierarchical spaces and uses a transformation to resolve the supervision conflicts.

representations by maximizing the similarity between ran-
dom augmentations of the same image.

Generally, FSL and SSL differ in both the supervision
form and optimization objective. To integrate them, we first
provide a unified similarity learning framework to include
both training objectives:

J(Y,P,L) =
∑

y∈Y,p∈P,l∈L

[−wp · I(ly, lp) · s(y,p)

+ wn · (1− I(ly, lp)) · s(y,p)],
(1)

where wp ≥ 0 and wn ≥ 0 denote the coefficients of posi-
tive and negative pairs, ly and lp are the labels of the sam-
ples, and s(y,p) defines the pairwise similarity between y
and p. I(a, b) is an indicator function which outputs 1 if
a = b and 0 otherwise. L is the label space, and P can be
the same as Y , a transformation of Y , or a learnable class
prototype space. For example, to obtain the softmax objec-
tive widely employed in FSL [25, 49], we can set:

wp = 1, wn =
exp(s(y,p))∑

lp′ ̸=ly
exp(s(y,p′))

, (2)

where s(y,p) = yT ·p, and p is the row vector in the clas-
sifier matrix W. For the InfoNCE loss used in contrastive
learning [50, 23, 28], we set:

wp =
1

τ

∑
ll
p′ ̸=y

exp(s(y,p′)/τ)

exp(s(y,p)/τ)+
∑

lp′ ̸=ly
exp(s(y,p′)/τ)

,

wn =
1

τ

exp(s(y,p)/τ)

exp(s(y,p)/τ)+
∑

lp′ ̸=ly
exp(s(y,p′)/τ)

,

(3)

where τ is the temperature hyper-parameter. See the sup-
plementary material for more details.

Under the unified training objective (1), the main differ-
ence between FSL and SSL lies in the definition of the label

space Lfull and Lself . For the labels lfull ∈ Lfull in FSL,
lfulli = lfullj only if they are from the same ground-truth
category. For the labels lself ∈ Lself in SSL, lselfi = lselfj

only if they are the augmented views of the same image.

3.2. Hierarchical Supervisions on Hierarchical Rep-
resentations

With the same training objective formulation, a naive
way to combine FSL and SSL is to simply add them, which
is similar to adding self-supervision on SupCon [28]:

Jnaive(Y,P,L) =
∑

y∈Y,p∈P,l∈L

[−wself
p · I(lselfy , lselfp ) · s(y,p)

+ wself
n · (1− I(lselfy , lselfp )) · s(y,p)

− wfull
p · I(lfully , lfullp ) · s(y,p)

+ wfull
n · (1− I(lfully , lfullp )) · s(y,p)].

(4)

For y and p from the same class, i.e., I(lselfy , lselfp ) = 0

and I(lfully , lfullp ) = 1, the training loss is:

Jnaive(y,p, l) = (wself
n − wfull

p ) · s(y,p). (5)

This indicates the two training signals are contradictory
and may neutralize each other. This is particularly harm-
ful if we adopt similar loss functions for FSL and SSL, i.e.,
wself

n ≈wfull
p , and thus Jnaive(y,p, l)≈ 0, demonstrating

the difficulty of directly generalizing SupCon [28].
Existing methods [38, 62, 61] address this by subse-

quently imposing the two training signals. They tend to first
obtain a self-supervised pretrained model and then use full
supervision to tune it. Differently, we propose a more effi-
cient way to adaptively balance the two weights so that we
can simultaneously employ them:

Jadap(y,p, l) = (wself
n · α− wfull

p · β) · s(y,p), (6)
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Figure 3. An illustration of the proposed OPERA framework. We perform SSL and FSL on the corresponding proxy representations.
OPERA combines both supervisions to balance instance-level and class-level information for the backbone in an end-to-end manner.

where α and β are modulation factors that can be depen-
dent on y and p for more flexibility. However, it remains
challenging to design the specific formulation of α and β.

Considering that the two label spaces are entangled and
demonstrate a hierarchical structure:

I(lselfy , lselfp ) = 1 =⇒ I(lfully , lfullp ) = 1, (7)

i.e., the two augmented views of the same image must share
the same category label, we transform the image represen-
tation into proxy representations in an instance space and a
class space to construct a hierarchical structure. Formally,
we apply two transformations Y sequentially:

Yself = g(Y), Yfull = h(Yself ), (8)

where g(·) and h(·) denote the mapping functions. We ex-
tract the class representations following the instance repre-
sentations since full supervision encodes higher-level fea-
tures than self-supervision.

We then impose the self and full supervision on the in-
stance space and class space, respectively, to formulate the
overall training objective for the proposed OPERA:

JO(Y,P,L) = Jself (Yself ,Pself ,Lself )

+ Jfull(Yfull,Pfull,Lfull).
(9)

We will show in the next subsection that this objective nat-
urally implies (6), which implicitly and adaptively balances
self and full supervisions in the representation space.

3.3. Omni-supervised Representation Learning

To effectively combine the self and full supervision to
learn representations, OPERA further extracts a set of proxy
representations hierarchically to receive the corresponding
training signal, as illustrated in Figure 3. Despite its sim-
plicity and efficiency, it is not clear how it achieves balances

between the two supervision signals and how it resolves the
contradiction demonstrated in (5).

To thoroughly understand the effect of (9) on the im-
age representations, we project it back on the representation
space Y and obtain an equivalent training objective in Y .
Proposition 1. Assume using linear projection as the trans-
formation between representation spaces. g(y) = Wgy
and h(y) = Why, where Wg and Wh are learnable pa-
rameters. Optimizing (9) is equivalent to optimizing the fol-
lowing objective on the original representation space Y:

J(Y,P,L) =
∑

y∈Y,p∈P,l∈L

[I(lselfy , lselfp ) · I(lfully , lfullp )

· (−wself
p α(Wg)− wfull

p β(Wg,Wh)) · s(y,p)
+ (1− I(lselfy , lselfp )) · I(lfully , lfullp )

· (wself
n α(Wg)− wfull

p β(Wg,Wh)) · s(y,p)
+ (1− I(lselfy , lselfp )) · (1− I(lfully , lfullp ))

· (wself
n α(Wg) + wfull

n β(Wg,Wh)) · s(y,p)],

(10)

where α(Wg) and β(Wg,Wh) are scalars related to the
transformation parameters.

We give detailed proof in the supplementary material.
Remark. Proposition 1 only considers the case without ac-
tivation functions. We conjecture that the mappings g(·) and
h(·) only influence the form of β(·, ·) without altering the fi-
nal conclusion.

Proposition 1 induces two corollaries as proved in the
supplementary material.
Corollary 1. The loss weight w on a pair of samples (y,p)
satisfies:

w(lselfy = lselfp , lfully = lfullp ) ≤ w(lselfy ̸= lselfp , lfully = lfullp )

≤ w(lselfy ̸= lselfp , lfully ̸= lfullp ).
(11)
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Corollary 1 ensures that the learned representations are
consistent with human perception, i.e., the similarities be-
tween different images of the same class should be larger
than those between images of different classes but smaller
than those between the views of the same images.

Corollary 2. We resolve the contradictory in (5) by adap-
tively adjusting the loss weight by:

wself
n · α(Wg)− wfull

p · β(Wg,Wh). (12)

Corollary 2 demonstrates the ability of OPERA to adap-
tively balance the training signals of both supervisions.

OPERA can be trained efficiently in an end-to-end man-
ner using both self and full supervisions. For inference, we
discard the proxy representations and directly add the task
head on the image representation space Y .

3.4. Instantiation of OPERA

We present the instantiation of the proposed omni-
supervised representation learning with hierarchical super-
visions. In the pretraining procedure, we extract hierarchi-
cal proxy representations for each image xi in our model,
denoted as {yself

i ,yfull
i }. We conduct self-supervised

learning with the instance-level label lselfi on the instance-
level representation yself

i and the class-level label lfulli is
imposed on yfull

i . The overall objective of our framework
follows (9) and OPERA can be optimized in an end-to-end
manner. During finetuning, the downstream task head is di-
rectly applied to the learned representations Y . The transfer
learning includes image classification and other dense pre-
diction tasks such as semantic segmentation.

In this paper, we apply OPERA to MoCo-v3 [13] by in-
stantiating Yself as the output of the online predictor and
the target predictor denoted as Yself

q and Yself
k , respec-

tively. Additionally, J(Yself ,Lself ) is set to be the In-
foNCE loss [50]. Furthermore, we employ an extra MLP
block that explicitly connects to the online predictor to ob-
tain Yfull and fix the output dimension to the class number
of the pretrained dataset (e.g., 1,000 for ImageNet). We
then introduce full supervision on Yfull with the Softmax
loss. The overall objective based on MoCo-v3 is as follows:

Jm(Y,L) = 1

N

N∑
i=1

[−log
exp(yfull

i,li
)∑

j ̸=li
exp(yfull

i,j )

− log
exp(yself

q,i ·yself
k,i /τ)

exp(yq,i ·yk,i/τ)+
∑

j ̸=i exp(yq,i ·yk,j/τ)
]

(13)

where yfull
i,j denotes the jth component of yfull

i . We also
adopt the stop-gradient operation and the momentum updat-
ing [23]. Compared with MoCo-v3, OPERA further incor-
porates class-level knowledge for better representation.

4. Experiments

In this section, we conducted extensive experiments to
evaluate the performance of our OPERA framework. We
pretrained the network using OPERA on the ImageNet-
1K [46] (IN) dataset and then evaluated its performance on
different tasks. As existing works usually adopt different
experimental settings, and many previous methods lack the
evaluation on downstream tasks, it is very difficult to pro-
vide a fair comparison with all the methods. Therefore, we
reproduced the FSL and SSL baselines under the same set-
ting and ran most of the experiments for only one time with-
out hyperparameter optimization. We also provide in-depth
ablation studies to analyze the effectiveness of OPERA.

4.1. Experimental Setup

Datasets. We pretrain our model on the training set of
ImageNet-1K [46] containing 1,280,000 samples of 1,000
categories. We evaluate the linear probe and end-to-end
finetuning performance on the validation set consisting of
50,000 images. For transferring to other classification tasks,
we use CIFAR-10 [31], CIFAR-100 [31], Oxford Flowers-
102 [39], and Oxford-IIIT-Pets [42]. For other downstream
tasks, we use ADE20K [76] for semantic segmentation and
COCO [33] for object detection and instance segmentation.

Implementation Details. We mainly applied our
OPERA to MoCo-v3 [13]. We added an extra MLP block
after the predictor of the online network composed of two
fully connected layers with a batch normalization layer and
a ReLU layer. The hidden dimension of the MLP block
was set to 256 while the output dimension was 1, 000. We
trained ResNet50 [25] (R50) and ViTs [49, 17] (ViT-S and
ViT-B) as our backbone with a batch size of 1024, 2048, and
4096. We adopted LARS [69] as the optimizer for R50 and
AdamW [37] for ViT. We set the other settings the same as
the original MoCo-v3 for fair comparisons. In the follow-
ing experiments, † denotes our reproduced results with the
same settings and BS denotes the batch size. P.T and F.T
denote the pretraining and finetuning epochs, respectively.
The bold number highlights the improvement of OPERA
compared with the associated method, and the red number
indicates the best performance.

4.2. Main Results

Linear Probe Evaluation on ImageNet. We evaluated
OPERA using the linear probe protocol and trained a clas-
sifier on top of the frozen representation. We used the
SGD [45] optimizer and fixed the batch size to 1024. We set
the learning rate to 0.1 for R50 [25] and 3.0 for ViT-S [49].
The weight decay was 0 and the momentum of the optimizer
was 0.9 for both architectures. We compared OPERA with
existing SSL methods including MoCo-v1 [23], MoCo-
v2 [11], SimCLR [10], BYOL [21], and SimSiam [12], as
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Table 1. Top-1 and top-5 accuracies (%) under the linear classifi-
cation protocol on ImageNet.

Method BS P.T. F.T. Backbone Top-1 Acc Top-5 Acc

MoCo-v1 256 200 100 R50 60.6 -
MoCo-v2 256 200 100 R50 67.5 -
MoCo-v2 256 800 100 R50 71.1 -
SimCLR 4096 1000 100 R50 69.3 89.0
BYOL 4096 1000 80 R50 74.3 91.6
SimSiam 256 800 100 R50 71.3 -

MoCo-v3† 1024 300 90 R50 70.5 90.0
OPERA 1024 150 90 R50 73.7 91.2
OPERA 1024 300 90 R50 74.8 91.9

MoCo-v3† 1024 300 90 ViT-S 71.2 90.3
OPERA 1024 150 90 ViT-S 72.7 90.7
OPERA 1024 300 90 ViT-S 73.7 91.3

shown in Table 1. We achieved 74.8% and 73.7% top-1 ac-
curacy using R50 [25] and ViT-S [49], respectively. Addi-
tionally, OPERA pretrained with 150 epochs surpasses the
MoCo-v3 baseline, demonstrating the discriminative ability
of the learned representations.

End-to-end Finetuning on Imagenet. Having pre-
trained, we finetuned the backbone on ImageNet. We used
AdamW [37] with an initial learning rate of 5e-4 and a
weight decay of 0.05 and employed the cosine anneal-
ing [36] learning schedule. We provide the results in Table
2 with diverse batch sizes, pretraining epochs, and finetun-
ing epochs. We see that OPERA consistently achieves bet-
ter performance under the same setting compared with the
MoCo-v3 baseline and DINO [6].

Transfer to Other Classification Tasks. We trans-
ferred the pretrained network to other classification tasks in-
cluding CIFAR-10 [31], CIFAR-100 [31], Oxford Flowers-
102 [39], and Oxford-IIIT-Pets [42]. We fixed the finetun-
ing epochs to 100 following [13] and reported the top-1 ac-
curacy in Table 3. We observe that OPERA obtains com-
petitive results on four datasets with both R50 and ViT-S.
Though MoCo-v3 does not show consistent improvement
compared to supervised training, our OPERA demonstrates
clear superiority. Note that SupCon [28] and LOOK [19]
achieve better results on the Flowers-102 and Pets datasets
because of the stronger baselines they have adopted. The
results show that OPERA learns generic representations
which can widely transfer to smaller classification datasets.

Transfer to Semantic Segmentation. We transferred
the OPERA-pretrained network to semantic segmentation
on ADE20K [76], which aims at classifying each pixel of
an image. We adopted MMSegmentaion [15] to conduct
the experiments under the same setting. We equipped R50
with FCN [47] and ViTs with UPerNet [63]. We applied
SGD [45] with a learning rate of 0.01, a momentum of 0.9,
and a weight decay of 5e-4. We used a learning schedule
of 160k and provided the experimental results in Table 4.
We observe consistent improvements over both supervised

Table 2. Top-1 and top-5 accuracies (%) under the end-to-end fine-
tuning protocol on ImageNet.

Method BS P.T. F.T. Backbone Top-1 Acc Top-5 Acc

Supervised 1024 300 - R50 76.5 -
MoCo-v3 1024 150 150 R50 76.4 -
OPERA 1024 150 150 R50 77.0 -

Supervised 1024 300 - ViT-S 79.8 95.0
Supervised 1024 300 - ViT-B 81.8 95.6
DINO† 1024 300 300 ViT-B 82.8 96.3

MoCo-v3† 1024 300 100 ViT-S 78.8 94.6
OPERA 1024 150 100 ViT-S 79.1 94.7
OPERA 1024 300 100 ViT-S 80.0 95.1

MoCo-v3† 1024 300 150 ViT-S 79.1 94.6
OPERA 1024 150 150 ViT-S 79.9 95.1
OPERA 1024 300 150 ViT-S 80.4 95.3

MoCo-v3† 1024 300 200 ViT-S 80.0 95.2
OPERA 1024 300 200 ViT-S 80.8 95.5

MoCo-v3† 1024 300 150 ViT-B 82.1 95.9
OPERA 1024 150 150 ViT-B 82.4 96.0
OPERA 1024 300 150 ViT-B 82.6 96.2

MoCo-v3† 2048 300 150 ViT-B 82.7 96.3
OPERA 2048 150 150 ViT-B 82.8 96.3
OPERA 2048 300 150 ViT-B 83.1 96.4

MoCo-v3† 4096 300 150 ViT-B 83.0 96.3
OPERA 4096 150 150 ViT-B 83.2 96.4
OPERA 4096 300 150 ViT-B 83.5 96.5

Table 3. Top-1 accuracy (%) of the transfer learning on other clas-
sification datasets.
Method P.T. Backbone C-10 C-100 Flowers-102 Pets

Supervised† 300 R50 97.6 85.5 95.6 92.2
SupCon 350 R50 97.4 84.3 96.0 93.5
LOOK 90 R50 - - 96.4 92.5
SimCLR† 1000 R50 97.7 85.9 91.5 83.4
BYOL† 1000 R50 97.8 86.1 95.5 90.4
MoCo-v3† 300 R50 97.8 86.0 93.7 90.0
OPERA 150 R50 97.9 86.3 93.9 91.1
OPERA 300 R50 98.2 86.8 95.6 92.7

Supervised† 300 ViT-S 98.4 86.9 95.4 93.0
MoCo-v3† 300 ViT-S 97.9 86.6 90.3 90.1
OPERA 150 ViT-S 98.4 88.5 94.6 91.9
OPERA 300 ViT-S 98.6 89.0 95.5 93.3

learning and MoCo-v3 with both R50 and ViTs. Particu-
larly, MoCo-v3 performs worse than the supervised model
with ViT-S (-0.6 mIoU) while OPERA still outperforms su-
pervised learning by a large margin (+0.9 mIoU).

Transfer to Object Detection and Instance Segmenta-
tion. We further evaluated the transferability of OPERA to
object detection and instance segmentation on COCO [33].
We performed finetuning and evaluation on COCOtrain2017

and COCOval2017, respectively, using the MMDetection [9]
codebase. (Note that the detection performances present
significant deviations with different codebases even under
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Table 4. Experimental results of semantic segmentation on
ADE20K. (160k schedule)

Method P.T. Backbone BS mIoU mAcc aAcc

Supervised 300 R50 1024 36.1 45.4 77.5
MoCo-v3† 300 R50 1024 37.0 47.0 77.6
MoCo-v3† 1000 R50 1024 38.1 47.8 77.9
OPERA 150 R50 1024 37.7 47.9 77.7
OPERA 300 R50 1024 37.9 48.1 77.9
OPERA 150 R50 4096 38.1 47.9 78.0
OPERA 300 R50 4096 38.4 48.5 78.1

Supervised 300 ViT-S 1024 42.9 53.9 80.3
MoCo-v3† 300 ViT-S 1024 42.3 53.5 80.6
OPERA 150 ViT-S 1024 43.4 54.2 80.8
OPERA 300 ViT-S 1024 43.6 54.4 80.9
OPERA 150 ViT-S 4096 43.5 54.3 80.8
OPERA 300 ViT-S 4096 43.8 54.6 80.9

Supervised 300 ViT-B 1024 45.4 56.5 81.4
MoCo-v3† 300 ViT-B 1024 44.4 55.1 81.5
OPERA 150 ViT-B 1024 44.8 55.7 81.8
OPERA 300 ViT-B 1024 45.2 55.9 81.9
Supervised 300 2048 ViT-B 45.6 56.3 81.8
MoCo-v3† 300 ViT-B 2048 45.2 55.5 81.9
OPERA 150 ViT-B 2048 45.6 56.4 82.0
OPERA 300 ViT-B 2048 45.9 56.7 82.0
Supervised 300 4096 ViT-B 46.0 56.7 82.0
MoCo-v3† 300 ViT-B 4096 46.1 56.7 82.1
OPERA 150 ViT-B 4096 46.4 56.9 82.1
OPERA 300 ViT-B 4096 46.6 57.2 82.1

the same setting and our reported results are consistently
based on MMDetection.) We adopted Mask R-CNN [24]
with R50-FPN as the detection model. We used SGD [45]
with a learning rate of 0.02, a momentum of 0.9, and a
weight decay of 1e-4. We reported the performance us-
ing the 1 × schedule (12 epochs) and 2 × schedule (24
epochs) in Table 5 and Table 6, respectively. The exper-
imental results of SimCLR [10], BYOL [21], and Sim-
Siam [12] are from [12]. We observe that both OPERA
and MoCo-v3 demonstrate remarkable advantages com-
pared with random initialization, supervised learning, and
other contrastive learning approaches on two tasks. OPERA
further improves MoCo-v3 by a relatively large margin on
both training schedules, indicating the generalization ability
on detection and instance segmentation datasets.

4.3. Ablation Study

To further understand the proposed OPERA, we con-
ducted various ablation studies to evaluate its effective-
ness. We mainly focus on end-to-end finetuning on Im-
ageNet [46] for representation discriminativeness and se-
mantic segmentation on ADE20K [76] for representation
transferability evaluation on ViT-S. We fixed the number of
finetuning epochs to 100 for ImageNet and used a learning
schedule of 160k based on UPerNet [63] on ADE20K.

Arrangements of Supervisions. As discussed in the pa-

Table 5. Experimental results of object detection and instance seg-
mentation on COCO. (Mask R-CNN, R50-FPN, 1 × schedule)
Method P.T. BS APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand. Init. - 1024 31.0 49.5 33.2 28.5 46.8 30.4
Supervised 300 1024 38.2 58.8 41.4 34.7 55.7 37.2
SimCLR 1000 4096 37.9 57.7 40.9 33.3 54.6 35.3
BYOL 1000 4096 37.9 57.8 40.9 33.2 54.3 45.0
SimSiam 800 256 39.2 59.3 42.1 34.4 56.0 34.7
MoCo-v3† 300 1024 38.9 58.8 42.4 35.2 56.0 37.7
OPERA 150 1024 38.9 58.9 42.1 35.3 55.8 37.8
OPERA 300 1024 39.2 59.2 42.6 35.9 56.2 38.1
OPERA 150 4096 39.1 59.1 42.7 35.6 56.2 38.0
OPERA 300 4096 39.3 59.3 42.9 36.0 56.4 38.1

per, the arrangements of supervisions are significant to the
quality of the representation. We thus conducted experi-
ments with different arrangements of supervisions to ana-
lyze their effects, as illustrated in Figure 4. We maintained
the basic structure of contrastive learning and imposed the
fully-supervised training signal on four different positions.
Note that Figure 4 only shows the online network of the
framework. Specifically, arrangement A simply combines
the MoCo-v3 baseline with supervised learning by impos-
ing the full supervision and self supervision in the same
space, which is similar to the setting of SupCon [28]. Ad-
ditionally, arrangement B obtains the class-level represen-
tation from the backbone and directly imposes the fully-
supervised learning signal. Differently, arrangement C si-
multaneously extracts the class-level representation and the
instance-level representation with an MLP structure from
the projector. Arrangement D denotes the proposed OPERA
framework in our main experiments. The experimental re-
sults are shown in the right of Figure 4. We observe that
arrangement B achieves the highest classification perfor-
mance on ImageNet. This is because the full supervision
is directly imposed on the backbone feature, which extracts
more class-level information during pretraining. However,
arrangements A, B, and C perform much worse on the
downstream semantic segmentation task. They ignore the
underlying hierarchy of the supervisions and do not apply
the stronger supervision (full supervision) after the weaker
supervision (self-supervision). The learned representation
tends to abandon more instance-level information but ob-
tain more task-specific knowledge, which is not beneficial
to the transfer learning tasks. Instead, our OPERA (ar-
rangement D) achieves a better balance of class-level and
instance-level information learning.

Pretraining Epochs. We conducted experiments with
different pretraining epochs on ImageNet and provided cor-
responding results in Figure 5. We observe that both tasks
perform better with longer pretraining epochs. Particularly,
the performance on semantic segmentation is more sensitive
to the number of pretraining epochs compared with Ima-
geNet finetuning, indicating that it takes longer for learning
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Figure 4. Comparisons between different arrangements of supervisions.

Figure 5. Pretraining epochs. Figure 6. Layer numbers of
MLP.

Figure 7. Embedding dimen-
sions.

Figure 8. Hidden dimensions
of MLP.

Table 6. Experimental results of object detection and instance seg-
mentation on COCO. (Mask R-CNN, R50-FPN, 2 × schedule)
Method P.T. BS APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Rand. Init. - 1024 36.7 56.7 40.0 33.7 53.8 35.9
Supervised 300 1024 39.2 59.6 42.8 35.4 56.4 37.9
MoCo-v3† 300 1024 40.3 60.0 44.3 36.5 57.4 39.0
OPERA 150 1024 40.5 60.0 44.6 36.4 57.3 39.0
OPERA 300 1024 41.2 60.7 45.0 36.9 57.7 39.5
OPERA 150 4096 41.2 60.9 45.1 37.0 58.0 39.6
OPERA 300 4096 41.5 61.2 45.5 37.3 58.2 39.9

instance-level knowledge. Note that the finetuning accu-
racy reaches 78.7% with only 50 pretraining epochs, which
demonstrates the efficiency of OPERA.

Layer Numbers of MLP. We evaluated OPERA with
different numbers of fully-connected layers in the final MLP
block, as illustrated in Figure 6. We observe that the classi-
fication performance generally decreases with more layers
deployed. This demonstrates that the class-level supervi-
sion is weakened after the MLP block so that the model
extracts less class-level information with more layers. For
semantic segmentation, the mIoU improves (+0.5) when the
layer number increases from 1 to 2, indicating that weaker
class-level supervision boosts the transferability of the rep-
resentation. Still, the performance drops with more layers
due to the less effect of the class-level supervision.

Embedding Dimensions. The embedding dimension in
our framework measures the output size of the online net-
work projector. We tested the performance using a dimen-
sion of 128, 256, 512, 1024, 2048, and 4096 for the em-
bedding and provide the results in Figure 7. We observe
that the ImageNet accuracy gradually increases before the
embedding dimension reaches 512. In addition, the model
achieves the best segmentation performance when the di-
mension is 256. This indicates that larger dimensions do not
necessarily enhance the results because of the information
redundancy. Therefore, we adopted the embedding dimen-

Table 7. Comparison between supervised pretraining with an MLP
projector and OPERA.

Method P.T. Backbone. Top-1 Acc mIoU

MoCo-v3 100 ViT-S 78.3 41.4
Supervised 100 ViT-S 78.7 41.5
Supervised (MLP) 100 ViT-S 78.4 41.9
OPERA 100 ViT-S 78.8 42.4
Table 8. Results using fully unlabeled data for pretraining.

Method Backbone. Top-1 Acc mIoU

MoCo-v3 (100% unlabeled) ViT-S 78.3 41.4
Supervised (100% labeled) ViT-S 78.7 41.5
20% labeled + 80% unlabeled ViT-S 78.6 41.7
80% labeled + 20% unlabeled ViT-S 78.7 42.0

sion of 256 in the main experiments for the best trade-off
between model performances and training efficiency.

Hidden Dimensions of MLP. The hidden dimension of
MLP corresponds to the output size of the first linear layer.
We fixed the other settings and used a dimension of 128,
256, 512, 1024, 2048, and 4096 for comparison, as shown in
Figure 8. We see that enlarging the hidden dimension would
not necessarily benefit two tasks, indicating that OPERA is
not sensitive to the hidden dimensions of MLP. Therefore,
we employ a dimension of 256 for the main experiments.

Transferability for Supervised Learning. As illus-
trated in the previous study [61], adding an MLP block be-
fore the classifier of the supervised backbone boosts the
transferability of supervised pretraining. Therefore, we
conducted experiments to compare the performance be-
tween the supervised pretraining with an MLP projector and
our OPERA framework, as shown in Table 7. We observe
that adding the MLP block enhances the transferability for
supervised learning while reducing the discriminativeness
of the representation with the same pretraining epoch. Nev-
ertheless, OPERA constantly surpasses the discriminative-
ness and transferability compared with the supervised pre-
training with the MLP block, demonstrating its superiority.
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Table 9. Comparisons with supervised contrastive learning.

Method BS P.T. Backbone Linear Probe End-to-end mIoU

SupCon 4096 300 ViT-B 78.3 82.7 46.4
OPERA 4096 300 ViT-B 78.7 83.5 46.6

Table 10. Top-1 accuracy (%) under the end-to-end finetuning pro-
tocol on ImageNet based on MIM methods.

Method Type P.T. Backbone Top-1 Acc

BEiT Masked Image Modeling 800 ViT-B 83.2
MSN Masked Image Modeling 600 ViT-B 83.4
MAE Masked Image Modeling 1600 ViT-B 83.6
iBOT Masked Image Modeling 1600 ViT-B 83.8
SimMIM Masked Image Modeling 800 ViT-B 83.8

DINO† Contrastive Learning 300 ViT-B 82.8
MoCo-v3† Contrastive Learning 300 ViT-B 83.0
OPERA Contrastive Learning 300 ViT-B 83.5

Use of Additional Unlabeled Data. We conducted
experiments to evaluate OPERA using only subsets of
ImageNet-1K as labeled data for pretraining. Specifically,
we randomly selected 80% (20%) labeled samples and
treated the rest 20% (80%) as unlabeled in the ImageNet-1K
dataset, as illustrated in Table 8. We observe that OPERA
with only partially labeled data for pretraining outperforms
both MoCo-v3 and fully supervised learning, especially
when 80% labeled and 20% unlabeled samples were cho-
sen, verifying its effectiveness.

Comparison with SupCon. SupCon [28] generalizes
contrastive loss from SSL to SL and selects positive and
negative pairs based on label information. We reproduce
SupCon and perform experiments on ImageNet classifi-
cation (including linear probe and end-to-end classifica-
tion) and semantic segmentation with a similar setting with
OPERA. Table 9 verifies that OPERA surpasses SupCon on
both tasks, which demonstrates the superiority of OPERA.

Generalizing to MIM Methods. The recent emergence
of a new type of self-supervised learning method, masked
image modeling (MIM), has demonstrated promising re-
sults on vision transformers. MIM masks part of the input
images and aims to reconstruct the masked parts of the im-
age. It extracts the representations based on the masked
images and uses reconstruction as the objective to learn
meaningful representations. For example, MAE [22] adopts
an encoder to extract the representations of unmasked to-
kens and a decoder to reconstruct the whole image with
the representations. MIM-based methods typically outper-
form existing self-supervised contrastive learning methods
by a large margin [22] on ViTs as shown in Table 10.
We show several MIM-based methods including BEiT [3],
MSN [2], MAE [22], iBOT [77], and SimMIM [66]. We
see that MIM-based methods tend to pretrain the models
for more epochs and obtain better performances than con-
trastive learning methods. Though OPERA fails to achieve
better performance than all MIM-based methods, the gap is

Table 11. Generalizing OPERA to MAE.

Method P.T. Backbone Top-1 Acc mIoU

MAE 800 ViT-B 83.6 48.1
OPERA-MAE 800 ViT-B 83.9 48.2

further reduced with fewer training epochs required. Par-
ticularly, our OPERA framework achieves 83.5% top-1 ac-
curacy and is comparable with MIM-based methods (even
higher than BEiT [3] and MSN [2]), which demonstrates
the effectiveness of the proposed method.

Additionally, OPERA can be easily extended to MIM by
inserting a new task space in our hierarchy. As MIM aims
to reconstruct a specific view of an instance, we deem that
it learns more low-level features than self-supervised con-
trastive learning (instance-level). Therefore, we expect to
insert the task space of MIM below the self-supervised con-
trastive learning space:

Ymask = Y, Yself = g(Y), Yfull = h(Yself ). (14)

The overall objective of OPERA is then:

JO(Y,P,L) = Jmask(Ymask,Lmask)

+ Jself (Yself ,Pself ,Lself )

+ Jfull(Yfull,Pfull,Lfull),

(15)

where Jmask(Ymask,Lmask) is the MIM learning objec-
tive. We implemented a naive version of it as shown in Ta-
ble 11. We observe that OPERA further boosts MAE on
both classification and segmentation tasks.

5. Conclusion
In this paper, we have presented an omni-supervised

representation learning with hierarchical supervisions
(OPERA) framework to effectively combine fully-
supervised and self-supervised contrastive learning. We
provide a unified perspective of both supervisions and
impose the corresponding supervisions on the hierarchical
proxy representations in an end-to-end manner. We have
conducted extensive experiments on classification and
other downstream tasks including semantic segmentation
and object detection to evaluate the effectiveness of our
framework. The experimental results have demonstrated
the superior classification and transferability of OPERA
over both fully supervised learning and self-supervised
contrastive learning. In the future, we will seek to inte-
grate other self-supervised signals such as masked image
modeling to further improve the performance.

Acknowledgement
This work was supported in part by the National Key

Research and Development Program of China under Grant
2022ZD0114903 and in part by the National Natural Sci-
ence Foundation of China under Grant 62125603.

5567



References
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Nat-

sev, George Toderici, Balakrishnan Varadarajan, and Sud-
heendra Vijayanarasimhan. Youtube-8m: A large-scale
video classification benchmark. arXiv, abs/1609.08675,
2016. 2

[2] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bo-
janowski, Florian Bordes, Pascal Vincent, Armand Joulin,
Michael Rabbat, and Nicolas Ballas. Masked siamese net-
works for label-efficient learning. arXiv, abs/2204.07141,
2022. 9

[3] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:
Bert pre-training of image transformers. In ICLR, 2021. 9

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan,
Giancarlo Baldan, and Oscar Beijbom. nuscenes: A mul-
timodal dataset for autonomous driving. In CVPR, pages
11621–11631, 2020. 2

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-
to-end object detection with transformers. In ECCV, pages
213–229, 2020. 1

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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