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Abstract

Category-level 6DoF object pose estimation intends to
estimate the rotation, translation, and size of unseen ob-
jects. Many previous works use point clouds as a pre-
learned shape prior to overcome intra-category variabil-
ity. The shape prior is deformed to reconstruct instances’
point clouds in canonical space and to build dense 3D-3D
correspondences between the observed and reconstructed
point clouds. However, the pre-learned shape prior is not
jointly optimized with estimation networks, and they are
trained with a surrogate objective. We propose a novel
6D pose estimation network, named Query6DoF, based on
a series of category-specific sparse queries that represent
the prior shape. Each query represents a shape compo-
nent, and these queries are learnable embeddings that can
be optimized together with the estimation network accord-
ing to the point cloud reconstruction loss, the normalized
object coordinate loss, and the 6d pose estimation loss.
Query6DoF adopts a deformation-and-matching paradigm
with attention, where the queries dynamically extract fea-
tures from regions of interest using the attention mechanism
and then directly regress results. Furthermore, Query6DoF
reduces computation overhead through the sparseness of
the queries and the incorporation of a lightweight global in-
formation injection block. With the aforementioned design,
Query6DoF achieves state-of-the-art (SOTA) pose estima-
tion performance on the NOCS datasets. The source code
and models are available at https://github.com/
hustvl/Query6DoF.

†Corresponding authors: Wenyu Liu (liuwy@hust.edu.cn),
Te Li (lite@zhejianglab.com) and Minhong Wan (wanmh@
zhejianglab.com).
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Figure 1: Comparisons with conventional works. a) Con-
ventional methods adopt pre-learned shape prior and have
a two-stage pipeline, i.e., deforming the prior and build-
ing correspondences between points. b) Our method uses
sparse learnable queries as the shape prior and conducts
query/feature-based deformation and matching.

1. Introduction

Category-level object pose estimation is aimed at esti-
mating an object’s rotation, translation, and size from an
RGB-D scene within a given set of categories. This task
has attracted increasing attention due to its vital role in
robotics [5], 3D understanding [4, 22], and augmented real-
ity [29]. Compared with instance-level object pose estima-
tion, category-level object pose estimation doesn’t require
obtaining the object’s CAD model in advance, making it
more generally applicable.

Many existing methods [2, 7, 16, 30, 41, 38, 20, 35] solve
this problem as shown in Figure 1(a). First, they attempt
to reconstruct the input object point cloud in the Normal-
ized Object Coordinate Space [34] (NOCS). Then they es-
timate the 3D-3D correspondences between the input ob-
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served point cloud and the reconstructed object point cloud.
Finally, they determine object poses and sizes by applying
the Umeyama algorithm [31] to these correspondences. To
handle intra-category variability, a shape prior, which repre-
sents a basic shape for objects in the same category, is intro-
duced in [30] to this task. This shape prior is a set of point
clouds pre-learned in NOCS for each category. Objects are
reconstructed by deforming the shape prior. However, this
approach has its drawbacks: 1) the shape prior is a dense
representation of objects in a specific category, which is not
only redundant but also makes the network computationally
expensive. 2) the shape prior is pre-learned in advance and
remains static during model training. Additionally, these
methods are trained to predict the deformation field D and
a correspondence matrix A, which is a surrogate task. 3)
Conventional model architectures [30, 3, 2] typically rely
on either pooling operations in the PointNet [26] style or
3D graph convolution (3DGC) [19] to explore geometry
features. However, the pooling operation can result in the
loss of local geometry features, and these operations are not
adaptive to extract the feature information.

To address these issues, we propose a novel method
called Query6DoF (illustrated in Figure 1(b)). Instead of re-
lying on dense and static point clouds as the shape prior, we
introduce a series of sparse and learnable category-specific
queries. Each query in this series is designed to encode
a specific component of an object’s shape with implicitly
shared semantics and is optimized concurrently with the
whole model parameters. Due to intra-category variabil-
ity, the queries only need to capture the most representa-
tive components of objects and disregard unrepresentative
shape details. Consequently, the queries can be sparse.
Moreover, due to the sparseness of queries, the sparseness
of the queries reduces computational overhead. Therefore,
there is no need to use techniques such as Low-Rank trans-
former [36] mentioned in SGPA [2]. To eliminate the need
for surrogate training objectives, we employ a direct pre-
diction framework. However, unlike previous direct re-
gression methods, e.g., [3, 20], we choose to perform the
core deformation-and-matching paradigm in feature space.
The deformation process is accomplished based on an at-
tention mechanism, which adaptively extracts information
from instance features to queries. This transforms queries
from category-specific into instance-specific shape repre-
sentations. Then, correspondences between instance fea-
tures and deformed queries are established by computing
their similarity. Using these correspondences, the instance
features are paired with deformed queries. Finally, these
pairs are used to determine the pose and size through a
neural network. Since the shape prior already consists of
implicit queries, it is reasonable to also execute the entire
pipeline implicitly in the feature space to better leverage
these queries. Without pre-learned prior and surrogate train-

ing objectives, our model is trained entirely and directly.
As a result, the prior can be more suitable for the model,
enabling us to achieve state-of-the-art performance on the
task.

Conventionally, the self-attention mechanism is used in
transformers to inject global information. Unfortunately,
adding self-attention layers significantly increases compu-
tational load. Therefore, we propose an efficient global en-
hancement layer to balance efficiency and performance.

The main contributions of this work can be summarized
as:

• We propose to use sparse and learnable queries as
shape prior rather than dense and static point clouds.
In this way, the queries are optimized at the same time
as the whole model to discover the optimal set of pri-
ors, and the sparseness design reduces the computation
overhead.

• We adapt existing architectures to fit the novel shape
prior representation with the help of attention mecha-
nisms. We design a lightweight self-attention module
in this to balance accuracy and speed.

• The overall 6DoF pose estimation accuracy of our
method is better than previous state-of-the-art meth-
ods on the CAMERA25 and REAL275 datasets, espe-
cially, on the strict 5◦2cm metric our results are signif-
icantly better than previous methods.

2. Related Work
2.1. Instance-Level 6D Object Pose Estimation

Based on the input data format, existing methods can
be divided into two categories: RGB-based [15, 28, 25,
22, 37, 23] and RGB-D-based [14, 32, 10, 13] approaches.
A common approach for using RGB as input to accom-
plish this task is to detect the object’s keypoints in the im-
age and match them to the CAD model. With the 2D-3D
correspondences, the PnP algorithm is then implemented
to obtain the object’s pose. Additionally, some methods
[12, 33, 6, 1, 39, 11] do not use PnP algorithm but instead
employ neural networks to directly output object’s pose.

2.2. Category-level 6D Object Pose and Size Esti-
mation

[34] first introduced Normalized Object Coordinate
Space to represent all the possible object instances in a uni-
fied space. DualPoseNet [18] introduced a network stack-
ing an implicit decoder to impose complementary supervi-
sion on pose encoder. We absorb this practice and provide
extra implicit supervision. To handle the intra-class shape
variation, SPD [30] proposes a deep network to reconstruct
the 3D object model by explicitly modeling the deforma-
tion from a pre-learning categorical shape prior. However,
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Figure 2: Entire schematic illustration of our proposed method. The target point cloud Pobj is fed to PointNet++ [27] as
a backbone to extract the object’s geometry features Fobj . A set of queries Qcat is prepared to serve as the shape prior.
Each of the queries represents a component of object shape. The queries pass through the queries deformation estimator
to gain instance shape information from Fobj using an attention mechanism to adaptively select instance features, and then
they are deformed to the specific representation of the target observed object Qobj . Next, in the query-point correspondence
estimator, the correspondence between Qobj and Fobj is built. In the end, the poses and sizes estimator makes use of the
previous output. This block simply adopts global average pooling to aggregate all the input features and output resulting
poses and sizes through three parallel MLPs.

this prior is not flexible enough because it is obtained in
advance and remains unchanged during training. There-
fore, we propose to transform it into the learnable queries.
DPDN [17] makes efforts to overcoming synthetic-to-real
domain gap using self-supervised learning. We further de-
velop its paradigm of deforming and matching in feature
space with the attention mechanism to make it much more
effective. SGPA [2] further leverages the advantage of cat-
egory prior. It uses the transformer architecture and in or-
der to reduce computational complexity SGPA utilized the
low-rank transformer [36]. But in our work, our proposed
queries do not require to this technique for its sparseness.

3. Method

3.1. Overview

Given an RGB-D image, the goal of the category-level
object pose and size estimation is to predict the 6D object
pose and size represented by rotation R ∈ SO(3), transla-
tion t ∈ R3, and size s ∈ R3. We segment objects from the
RGB image using an off-the-shelf object segmentation tech-
nique e.g., Mask R-CNN [9]. The segmented object’s depth
data is transferred to a 3D point cloud. Then the 3D point
cloud is uniformly sampled into a fixed number. The same
as [3], noting that objects’ appearance varies much more
than their shape even in the same category, our method only
uses point cloud data as input instead of together with RGB
data.

Let’s denote the observed target point cloud as Pobj ∈
RNobj×3. Our method uses a feature extraction module to

extract object geometry feature Fobj ∈ RNobj×d from Pobj .
Unlike conventional methods that use an extra set of point
clouds as explicit shape priors, we prepare a set of queries
Qcat ∈ RNcat×d for each category as implicit shape prior.
Each query expresses a semantic component of the object
and they are the general category-specific representation.
The number of queries Ncat can be significantly fewer than
the number of points in the input point cloud Nobj . Be-
sides, the queries are learnable, which means that there is
no pre-defined prior and the full model is trained entirely
and directly.

A traditional approach to obtaining the final poses and
sizes with shape prior can be summarized as follows. First,
deform the prior point cloud to reconstruct the object shape.
Then, the correspondence between the reconstructed point
cloud and the observed object point cloud is estimated. Af-
terward, poses and sizes can be solved via Umeyama [31].

The entire schematic illustration of our proposed method
is shown in Figure 2. We implement this process in fea-
ture space with an attention mechanism. Specifically, our
method consists of three parts: queries deformation estima-
tor, query-point correspondence estimator, and poses and
sizes estimator. Furthermore, we propose a global enhance-
ment block to reinforce the features with global informa-
tion.

Queries deformation estimator is used to deform the
queries Qcat from the general category-specific representa-
tion to an object-specific one for the observed input object
using the input instance geometry feature Fobj , which can
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be formulated as:

Qobj = QDE(Qcat , Fobj ) (1)

where Qobj ∈ RNcat×d denotes the deformed queries.
QDE denotes the queries deformation estimator. In this
process, we adopt the attention mechanism to extract the
information of regions of interest from Fobj adaptively. Af-
ter deforming the queries, the canonical point cloud can be
decoded from Qobj denoted as:

Pi = Φ1(Qobj ) (2)

where Pi ∈ RNcat×3 denotes the object’s canonical sparse
point cloud. Φ1 denotes the decoder implemented by an
MLP (multi-layer perceptron). Supervision is applied to Pi

to help better guide the learning of Qobj via the loss func-
tion Lrec . Query-point correspondence estimator is used
to estimate the correspondences between deformed queries
Qobj and object feature Fobj . The correspondence then is
used to combine Qobj with Fobj as matching feature pairs.
These pairs are fed forward an MLP and a global enhance-
ment block. The result is denoted as Fnocs . The corre-
sponding NOCS coordinates of the observed object point
cloud are obtained from Fnocs using an MLP.

Pr = Φ2(Fnocs) (3)

where Pr ∈ RNobj×3 denotes the corresponding NOCS co-
ordinates. Φ2 is an MLP. Pr does not take part in the calcu-
lation of objects’ poses and sizes but only participates in the
calculation of the loss function Lnocs . This loss function is
an auxiliary loss function, which is used to apply supervi-
sion on Pr in order to guide the learning of Fnocs .

The pose and size estimator takes the previous output and
gives the object’s pose and size with three parallel MLPs.

3.2. Queries Deformation Estimator

In the queries deformation estimator, we aim to deform
the queries Qcat to a representation of the observed target
object. This goal can be achieved by injecting the object ge-
ometry feature Fobj into Qcat. Due to the unordered prop-
erty of the point cloud, the PointNet [26] style operation,
which is mainly composed of pooling, is adopted by many
methods such as [30, 38]. However, this operation loses the
detailed geometry structure and cannot adaptively pay at-
tention to features of interest. Therefore, we use the cross-
attention mechanism. Thanks to the permutation-invariance
of the attention mechanism, it is feasible to implement it for
point cloud processing. Moreover, we enhance the feature
using the proposed global enhancement block.

The detailed structure of the queries deformation estima-
tor is illustrated in Figure 2. Cross-attention is computed
to determine which feature in Fobj is necessary to extract
into Qcat. Specifically, we take the Qcat as the query and

GAP FC Norm MLP

Figure 3: Overview of the global enhancement block. The
input feature f pass through a global average pooling op-
eration and a fully-connected layer to create a global fea-
ture g. Then, the input feature f serves as the query, and
the global feature g serves as both key and value. A self-
attention mechanism is then applied to them.

the Fobj as key and value of the multi-head cross-attention
module. The computation of attention map can be formu-
lated as:

A(m) = Norm(Ψ1(Qcat)(Fobj)
T ) (4)

where A(m) ∈ RNcat×Nobj is the attention map in the m-
th head. Norm is the normalization function. Instead of
using learnable linear projections, we use Ψ1, an MLP, ap-
plied to Qcat in order to reduce the gap between Qcat and
Fobj and it experimentally works better. Vanilla attention
uses softmax to normalize the attention map, which can be
formulated as norm = f(xi)

Σkf(xk)
where f(x) = ex for soft-

max. Different from that, we use:

f(x) =
α

1 + e−x
(5)

where α is a learnable parameter. This is a sigmoid func-
tion with a learnable parameter. This function’s output is
limited between 0 and α, so there is no need to scale the
dot-product result between query and key by dividing by√
d. This function tends to saturate and thus activate larger

regions than softmax does, and the learnable parameter al-
lows the model to choose the range. Since each query corre-
sponds to a certain semantic part of the object in a specific
category, the attention map indicates which component of
the observed object has the same semantics as the query by
calculating the similarity between the queries Qcat and the
object feature Fobj .

Then, the multi-head cross-attention can be formulated
as:

D = [A(1)Fobj ; ...;A
(m)Fobj ]Wv (6)

where D ∈ RNcat×d is the multi-head cross-attention result
and Wv is the learnable parameter. In this way, the related
object feature is extracted from the Fobj . Then D can be
used to deform Qcat by adding it to Qcat:

Qobj = Qcat +D (7)
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where Qobj ∈ RNcat×d is deformed queries.
Qobj is expected to embed the object’s canonical point

cloud. It can be decoded into 3D points using a simple MLP.

Pi = Sigmoid(MLP (Qobj))− 0.5 (8)

where Pi ∈ RNcat×3. A Sigmoid function is used to limit
it to (−0.5, 0.5), so the output points are in canonical space.
We apply supervision to Pi which could guide the learning
of Qobj . Therefore, loss function Lrec is applied to Pi to
provide supervision to it.

Global enhancement block tends to enhance features
by fusing their global feature. Normally, this can be
achieved via the self-attention mechanism. However, to
make the entire model lightweight, a more efficient block
is needed. For this reason, we propose a global enhance-
ment block.

The global enhancement block is illustrated in Figure 3.
Suppose the global enhancement block takes feature f ∈
RN×d as input. We adopt the result of the global average
pooling as the global feature and pass it through a fully con-
nected layer. The outcome is denoted as g:

g = FC(AvgPool(f)) (9)

where FC is a fully connected layer. Instead of simply con-
catenating it to f and then feeding it to an MLP, we borrow
the idea from self-attention as shown in Figure 3. We use f
as query and g as key and value to carry out self-attention,
which can be denoted as:

f ′ = f +Norm(fgT )g (10)

After that, f ′ is fed into an MLP with residual. In this
way, global information is injected into the feature. This
block, unlike vanilla self-attention, reduces the complexity
of the computation. Compared with the computation com-
plexity of vanilla self-attention, O(N2 × d), our efficient
global enhancement block has a computation complexity of
O(N × d).

3.3. Query-Point Correspondence Estimator

We obtain the deformed queries Qobj by adaptively se-
lecting feature from the observed object feature Fobj . In
previous works, a correspondence matrix A ∈ RNobj×Ncat

is estimated, which models correspondences between points
in observed point cloud Pobj and reconstructed point cloud
Pi. This matrix then samples the points from Pi to be paired
with Pobj , and it can be formulated as P = A × Pi, where
P denotes the sampled points. Finally, solving of Umeyama
algorithm [31] to align the sample points with Pi gives out
the target pose and size. Instead of using this conventional
way, we move this process to the feature space. In the
query-point correspondence estimator, the correspondences
between Fobj and Qobj are built as illustrated in Figure 2.

In detail, the correspondences are built by computing the
similarity between Fobj and Qobj using dot-product, which
can be fomulated as:

A′ = Norm(Ψ2(Fobj)(Qobj)
T ) (11)

where A′ ∈ RNobj×Ncat denotes the correspondence matrix
between Fobj and Qobj . Norm is the same as that used in
queries deformation estimator. Ψ2 is an MLP. A′ represents
the soft matching between Fobj and Qobj . Then we multi-
ply A′ by Qobj to obtain the sampled features. Essentially,
we find that this process is similar to cross-attention. For
this reason, we add Fobj to the result for implementing a
residual structure similar to attention mechanism. Also, we
implement multi-head technique to the computation. Next,
we need to pair the object feature with the sampled feature.
Experimentally, it is better to use a more direct feature as
the object feature here instead of the deep object feature
Fobj . Thereby, we do not use Fobj but simply feed object
point cloud Pobj forward an MLP. The output of the MLP
is concatenated to the sampled feature. To further enhance
the feature, we use an MLP and a global enhancement block
after that. The result is denoted as Fnocs. To apply supervi-
sion on Fnocs and better guide its learning, we use a simple
MLP to transform Fnocs into NOCS coordinates denoted
as Pr ∈ RNobj×3. Pr is not used to solve the Umeyama
algorithm to obtain target pose and size, but only used to
compute loss function Lnocs.

3.4. Poses and Sizes Estimator

The rest of the work is to obtain the final object’s pose
and size, which is accomplished in the pose and size esti-
mator. The pose and size estimator applies global average
pooling operation to Fnocs, which can be formulated as:

fpose = AvgPool(Fnocs) (12)

where fpose ∈ R1×d. Then after it, three parallel MLPs
predict the rotation R, translation t, and size s respectively.

R, t, s = MLP (fpose),MLP (fpose),MLP (fpose) (13)

The representation of R here is the Continuity of Rotation
Representations [40]. For s, we follow [3] to estimate the
residual between object’s size and the mean category size.
Similarly, for t, we predict the residual between the transla-
tion ground truth and the mean value of the point cloud.

3.5. Overall Loss Function

The overall loss function is as follows:

L = λ1Lpose + λ2Lrec + λ3Lnocs (14)

Lpose is used to compute loss on predicted R, t and s. We
simply use smooth L1 loss [8] for all of them with thresh-
old of 1× 10−3, 5× 10−3, 5× 10−3 respectively. Lrec and
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Lnocs are the auxiliary losses function for Pi and Pr respec-
tively. Lrec is applied to Pi to encourage it to reconstruct
the instance point cloud in the NOCS space. Therefore, for
Lrec, we use Chamfer distance between Pi and Mgt where
Mgt ∈ RNobj×3 represents the instance point cloud model
in the NOCS space. Lrec can be formulated as follows:

Lrec =
1

Ncat

∑
xi∈Pr

min
yj∈Mgt

∥xi − yj∥22+

1

Nobj

∑
yi∈Mgt

min
xi∈Pr

∥xi − yj∥22
(15)

Lnocs is applied on Pr to encourage it in predicting the cor-
responding coordinates of Pobj in Normalized Object Coor-
dinate Space. For Lnocs, we also use a smooth L1 loss [8]
with a threshold of 0.1.

4. Experiments
Datasets. We conduct experiments using the benchmark

CAMERA25 and REAL275 [34] datasets for category-level
6D object pose and size estimation which consists of six
object categories. The CAMERA25 dataset is generated by
rendering and compositing synthetic object instances under
different views. The CAMERA25 dataset contains 300K
synthetic images of 1,085 object instances, among which
25,000 images of 184 instances are used for evaluation. The
REAL275 dataset is complementary to the CAMERA25
dataset. It includes 4,300 real-world images of 6 scenes
with 3 unseen instances per category; its training set con-
tains 4,300 images of 7 scenes, and the test set contains
2.750 images of 6 scenes. We train our model with a com-
bined use of the two datasets, as done in [18].

Implement Details. We employ a Mask R-CNN [9] to
obtain instance masks the same as [30]. The instances are
then cropped based on the segmentation result. After that,
the depth is converted to the instance point cloud using the
camera’s intrinsic parameters. 1024 points are randomly
sampled from that, so Nobj is set to 1024. To extract in-
stance geometry features, we choose PointNet++ [27] with
four abstraction levels. The number of prior queries Ncat is
set to 64. In this case, Ncat ≪ Nobj . A detailed study on the
parameter Ncat is given in our ablation study. The queries
are initialized randomly at the beginning of training. The
dimension of features and queries is set to 256. The cross-
attention in queries deformation estimator and query-point
correspondence estimator has four heads each. In the loss
function, we set λ1, λ2, λ3 to 1.0, 3.0, 1.0, respectively. We
use AdamW [21] to train this model with an initial learning
rate of 1×10−4 and weight decay 1×10−4. All models are
trained 42k iterations with batch size of 60 and cosine learn-
ing rate decay is conducted. We employ several strategies
for depth augmentation, such as adding Gaussian noise, ran-
dom scaling, random rotation, adding random points as well

as linear shape augmentation proposed in [3] and non-linear
shape augmentation proposed in [38]. All FPS(Frames Per
Second) data of our method is evaluated on a single RTX
2080Ti, an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz,
PyTorch [24] 1.10, CUDA version 11.1.

Evaluation Metrics. For category-level pose estima-
tion, we follow [34] and use two metrics to evaluate the
quality.

• 3D IoU. The overlap of two 3D bounding boxes un-
der the predicted pose and the ground truth pose is
computed. The overlap ratios larger than the threshold
are regarded as accepted. The mean Average Precision
(mAP) of the overlapping is reported.

• n◦m cm. The rotation and translation errors between
the predicted pose and the ground truth pose are com-
puted. The errors smaller than an angle threshold n◦

and a translation threshold m cm are accepted.

4.1. Comparisons with Existing Methods

NOCS-REAL275 In Table 1 we compare our method
with the existing ones for category-level 6D object pose and
size estimation. We divide these methods into two groups:
those with and without shape prior. As it is shown in Ta-
ble 1, our method outperforms other existing methods. In
detail, we outperform NOCS [34] by 46.0 in IoU75, 41.8 in
5◦2cm, 48.9 in 5◦5cm. Moreover, we achieve a better result
than existing methods that using prior information. Specif-
ically, we outperform SPD [30] by 22.9 in IoU75, 29.7 in
5◦2cm, 37.5 in 5◦5cm. and 14.2, 13.1, and 19.3 higher
than SGPA [2] which is a representative method based on
attention. This outcome demonstrates that our sparse shape
prior is superior to the traditional shape prior.

NOCS-CAMERA25 The results for CAMERA25 are
shown Table 1. Our method outperforms others at least 4.9,
4.3 in the items of 5◦2cm, 5◦5cm, and it is on par with the
best methods for IoU75. Figure 4 presents a more detailed
error evaluation result on two datasets.

4.2. Ablation Studies

Effect of the design in Query6DoF. We verify the ef-
ficacy of each component in Query6DoF in Table 2. By
replacing queries with point cloud proposed in [30] and
adding an extra PointNet++ [27] after the prior point cloud
as a feature extractor, 5◦2cm drops from 49.0 to 47.2, and
computation increases. Removing the global enhancement
block results in a 4.8 drop in 5◦2cm. Removing the queries
deformation estimator results in a 2.5 drop in 5◦2cm. If the
query-point correspondence estimator is detached, it ren-
ders the usage of queries and queries deformation estima-
tor senseless. Therefore, without using them together, our
method experiences a 13.6 drop in 5◦2cm. Moreover, we
remove the poses and sizes estimator but use Pr and Pi
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Table 1: Comparison with state-of-the-art methods on the CAMERA25 dataset and REAL275 dataset. * denotes results
without linear shape augmentation and non-linear shape augmentation. The best results shown in bold.

Method prior CAMERA25 REAL275
IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

NOCS [34] 83.9 69.5 32.3 40.9 48.2 64.6 78.0 30.1 7.2 10.0 13.8 25.2
DualPoseNet [18] 92.4 86.4 64.7 70.7 77.2 84.7 79.8 62.2 29.3 35.9 50.0 66.8
GPV-Pose [7] 93.4 88.3 72.1 79.1 - 89.0 83.0 64.4 32.0 42.9 - 73.3
SPD [30] ✓ 93.2 83.1 54.3 59.0 73.3 81.5 77.3 53.2 19.3 21.4 43.2 54.1
CR-Net [35] ✓ 93.8 88.0 72.0 76.4 81.0 87.7 79.3 55.9 27.8 34.3 47.2 60.8
SAR-Net [16] ✓ 86.8 79.0 66.7 70.9 75.6 80.3 79.3 62.4 31.6 42.3 50.3 68.3
SGPA [2] ✓ 93.2 88.1 70.7 74.5 82.7 88.4 80.1 61.9 35.9 39.6 61.3 70.7
RBP-Pose [38] ✓ 93.1 89.0 73.5 79.6 82.1 89.5 - 67.8 38.2 48.1 63.1 79.2
Self-DPDN [17] ✓ - - - - - - 83.6 76.0 46.0 50.7 70.4 78.4
Ours* ✓ 92.3 88.6 78.4 83.9 84.0 90.5 82.9 76.0 46.8 54.7 67.9 81.6
Ours ✓ 91.9 88.1 78.0 83.1 83.9 90.0 82.5 76.1 49.0 58.9 68.7 83.0

Table 2: Effect of the design on Query6DoF, evaluated on the REAL275 dataset. GlobEnhance denotes the global enhance-
ment block, QueryDeform denotes the queries deformation estimator, Query2Point denotes the query-point correspondence
estimator, and PoseSize denotes the poses and sizes estimator

Queries GlobEnhance QueryDeform Query2Point PoseSize IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

1 - ✓ ✓ ✓ ✓ 82.1 75.4 47.2 56.2 67.3 81.2
2 ✓ - ✓ ✓ ✓ 82.6 75.7 44.2 53.3 65.8 81.1
3 ✓ ✓ - ✓ ✓ 83.0 75.3 46.5 56.6 65.9 81.3
4 - ✓ - - ✓ 82.1 70.9 35.4 48.7 59.5 80.2
5 ✓ ✓ ✓ ✓ - 82.2 70.0 40.0 46.3 65.1 76.5
6 ✓ ✓ ✓ ✓ ✓ 82.5 76.1 49.0 58.9 68.7 83.0

Figure 4: Mean Average Precision (mAP) in different
thresholds. REAL275 (top rows) and CAMERA25 (bottom
rows)

to obtain poses and sizes via Umeyama [31]. As a result,
5◦2cm falls by 9.0 points.

Effect of the number of prior queries. In our method,
we use sparse queries to represent the shape prior. In this
experiment, we investigate the effect of the number of prior
queries Ncat on the results of REAL275. Table 3 presents
the result of the ablation of the effect of the number of prior

Table 3: Effect of the number of queries on REAL275

Ncat IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

16 82.5 74.6 46.0 55.4 66.6 81.0
32 82.5 74.9 46.7 55.9 67.2 81.5
64 82.6 76.1 49.0 58.9 68.7 83.0
128 82.8 76.9 46.1 55.9 68.8 82.8
256 82.8 76.6 47.6 57.3 67.8 81.6
512 82.6 75.6 46.8 56.2 66.9 81.4
1024 83.1 76.7 48.7 56.8 70.4 82.4

Table 4: Effect of different attention normalization evalu-
ated on REAL275.

Norm IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Softmax 82.1 74.7 48.6 57.2 68.6 82.4
Ours 82.5 76.1 49.0 58.9 68.7 83.0

queries. The results shows that reducing the number of prior
queries does not significantly affect the performance of our
method. This fact means that it is not necessary to use ex-
cessive points to express the object’s shape prior. A small
number of queries can effectively represent the object’s
shape. Specifically, when Ncat = 64, our method achieves
the best performance in the 5◦2cm, 5◦5cm, 10◦5cm metrics
and when Ncat = 1024, our method achieves the best per-
formance in the IoU50 metric. However, the smaller Ncat

results in less computational overhead. Therefore, we adopt
Ncat = 64 as the default setting in all other experiments.

Effect of different attention normalization. While
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Figure 5: Qualitative results of our method (red line) and SGPA [2] (green line).

Figure 6: Sparse point cloud reconstruction in the REAL275 dataset. The yellow points represent the reconstruction points
Pi, while the blue points are the observed point cloud.

Table 5: Model complexity and FPS w/o Mask R-CNN [9],
evaluated on REAL275. GEB denotes the global enhance-
ment block.

Method Params(M) FPS w/o Mask R-CNN [9] 5◦2cm

Ncat = 64 (Default) 19.53 34.9 49.0
Ncat = 1024 21.18 23.3 48.7
w/o GEB 18.71 36.8 44.2
w/o Queries 22.24 24.0 47.2

common attention mechanisms adopt softmax to normal-
ize the attention map, in our method, we use a different
normalization approach, namely sigmoid with a learnable
parameter mentioned earlier. In this experiment, we com-
pare two different settings shown in Table 4. We conduct
the evaluation on the REAL275 dataset. Using softmax to
normalize results in a 1.4 drop in IoU75 and a 0.4 drop in
5◦2cm.

4.3. Runtime Analysis

As shown in Table 5, our method, in the default setting,
has 19.43M parameters and runs at 34.9 FPS without Mask
R-CNN [9]. Increasing Ncat to 1024 brings no gain but
the FPS drops to 23.3, which shows that sparse queries are
sufficient to represent the shape prior. Adding the global
enhancement block results in a 4.8 improvement in 5◦2cm
with only a 1.9 FPS drop, demonstrating its efficiency. W/o
Queries means that we replace the queries with the pre-
learned shape prior proposed in [30] and use PointNet++

[27] as a feature extractor. In this way, due to the extra
PointNet++ [27], the speed drops to 24.0FPS, but there is
no gain in 5◦2cm. Therefore, the usage of queries is more
efficient than using point cloud both in terms of accuracy
and speed.

4.4. Visualization

Qualitative Results. Figure 5 shows the qualitative re-
sults of our method, demonstrating that our method can ac-
curately estimate the objects’ poses and sizes.

Sparse point cloud reconstruction. Our method out-
puts Pi as the sparse point cloud reconstruction in NOCS
space. We align Pi to the object’s location in RGB im-
ages for better comparison with the object’s actual shape,
as shown in Figure 6. Pi is the yellow points in it. The
blue points in it represent the observed point cloud for
comparison. It shows that our sparse point cloud can ac-
curately cover different objects’ shapes. This effect can
be attributed to our queries deformation estimator, where
category-specific queries transformed into instance-specific
ones. Through this process, the queries are able to recon-
struct the objects.

5. Conclusion
In conclusion, we present a novel network for category-

level 6D object pose and size estimation, namely
Query6DoF. In particular, we propose to use a series of
sparse and learnable queries serving as a shape prior, which
is a set of tokens that implicitly represent objects in a cer-
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tain category. Furthermore, we transform the traditional
deformation-and-matching paradigm to the feature space
using attention. Specifically, the queries are deformed by
a process where we dynamically use the attention mech-
anism to select object features and incorporate them into
queries. This step transforms the queries into a representa-
tion of a certain target object. Next, we establish the corre-
spondences between deformed queries and object features.
Finally, the poses and sizes are regressed using the corre-
spondences. Thanks to learnable queries and direct out-
put results, the queries are trained directly alongside the
entire network. This method achieves state-of-the-art per-
formance compared to other existing methods and holds
promise for applications in robotics and augmented reality.
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